1
|
Wang T, Yamato T, Sugiura W. Thermal Energy Transport through Nonbonded Native Contacts in Protein. J Phys Chem B 2024; 128:8641-8650. [PMID: 39197018 DOI: 10.1021/acs.jpcb.4c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Within the protein interior, where we observe various types of interactions, nonuniform flow of thermal energy occurs along the polypeptide chain and through nonbonded native contacts, leading to inhomogeneous transport efficiencies from one site to another. The folded native protein serves not merely as thermal transfer medium but, more importantly, as sophisticated molecular nanomachines in cells. Therefore, we are particularly interested in what sort of "communication" is mediated through native contacts in the folded proteins and how such features are quantitatively depicted in terms of local transport coefficients of heat currents. To address the issue, we introduced a concept of inter-residue thermal conductivity and characterized the nonuniform thermal transport properties of a small globular protein, HP36, using equilibrium molecular dynamics simulation and the Green-Kubo formula. We observed that the thermal transport of the protein was dominated by that along the polypeptide chain, while the local thermal conductivity of nonbonded native contacts decreased in the order of H-bonding > π-stacking > electrostatic > hydrophobic contacts. Furthermore, we applied machine learning techniques to analyze the molecular mechanism of protein thermal transport. As a result, the contact distance, variance in contact distance, and H-bonding occurrence probability during MD simulations are found to be the top three important determinants for predicting local thermal transport coefficients.
Collapse
Affiliation(s)
- Tingting Wang
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takahisa Yamato
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Wataru Sugiura
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
2
|
Poudel H, Wales DJ, Leitner DM. Vibrational Energy Landscapes and Energy Flow in GPCRs. J Phys Chem B 2024; 128:7568-7576. [PMID: 39058920 DOI: 10.1021/acs.jpcb.4c04513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
We construct and analyze disconnectivity graphs to provide the first graphical representation of the vibrational energy landscape of a protein, in this study β2AR, a G-protein coupled receptor (GPCR), in active and inactive states. The graphs, which indicate the relative free energy of each residue and the minimum free energy barriers for energy transfer between them, reveal important composition, structural and dynamic properties that mediate the flow of energy. Prolines and glycines, which contribute to GPCR plasticity and function, are identified as bottlenecks to energy transport along the backbone from which alternative pathways for energy transport via nearby noncovalent contacts emerge, seen also in the analysis of first passage time (FPT) distributions presented here. Striking differences between the disconnectivity graphs and FPT distributions for the inactive and active states of β2AR are found where structural and dynamic changes occur upon activation, contributing to allosteric regulation.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David J Wales
- Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge CB2 1EW, U.K
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
3
|
Antonio JJ, Kraka E. Noncovalent π Interactions in Mutated Aquomet-Myoglobin Proteins: A QM/MM and Local Vibrational Mode Study. Biochemistry 2023; 62:2325-2337. [PMID: 37458402 DOI: 10.1021/acs.biochem.3c00192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Protein dynamics and function is strongly connected to the energy flow taking place. Myoglobin (Mb) and its mutations are ideal systems to study the process of vibrational energy transfer (VET) at the molecular level. Anti-Stokes ultraviolet resonance Raman studies using a tryptophan (Trp) probe, introduced at different Mb positions by amino acid replacement, have suggested that the amount of VET depends on the position of the Trp probe relative to the heme group. Inspired by this experimental work, we explored the strength of noncovalent π interactions, as well as covalent interactions for both the axial and distal ligands bound to iron in aquomet-Mb with the local vibrational mode analysis (LMA), originally developed by Konkoli and Cremer. Two sets of noncovalent interactions were investigated: (1) the interaction between the water ligand and Trp rings and (2) the interaction between the Trp and the porphyrin rings of the heme group. We assessed the strength of these noncovalent interactions via a special local mode force constant. Various Trp-modified water-bound ferric Mb proteins in the ground state were studied (6 in total) using gas-phase and QM/MM calculations followed by LMA. Our results disclose that VET is indeed dependent on the position of the Trp probe relative to the heme group but also on the tautomeric nature of distal histidine. They provide new guidelines on how to assess noncovalent π interactions in proteins utilizing LMA and how to use these data to explore VET, and more generally protein dynamics and function.
Collapse
Affiliation(s)
- Juliana J Antonio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas 75275-0314, United States
| |
Collapse
|
4
|
Mizutani Y, Mizuno M. Time-resolved spectroscopic mapping of vibrational energy flow in proteins: Understanding thermal diffusion at the nanoscale. J Chem Phys 2022; 157:240901. [PMID: 36586981 DOI: 10.1063/5.0116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vibrational energy exchange between various degrees of freedom is critical to barrier-crossing processes in proteins. Hemeproteins are well suited for studying vibrational energy exchange in proteins because the heme group is an efficient photothermal converter. The released energy by heme following photoexcitation shows migration in a protein moiety on a picosecond timescale, which is observed using time-resolved ultraviolet resonance Raman spectroscopy. The anti-Stokes ultraviolet resonance Raman intensity of a tryptophan residue is an excellent probe for the vibrational energy in proteins, allowing the mapping of energy flow with the spatial resolution of a single amino acid residue. This Perspective provides an overview of studies on vibrational energy flow in proteins, including future perspectives for both methodologies and applications.
Collapse
Affiliation(s)
- Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
5
|
Poudel H, Leitner DM. Energy Transport in Class B GPCRs: Role of Protein-Water Dynamics and Activation. J Phys Chem B 2022; 126:8362-8373. [PMID: 36256609 DOI: 10.1021/acs.jpcb.2c03960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We compute energy exchange networks (EENs) through glucagon-like peptide-1 receptor (GLP-1R), a class B G-protein-coupled receptor (GPCR), in inactive and two active states, one activated by a peptide ligand and the other by a small molecule agonist, from results of molecular dynamics simulations. The reorganized network upon activation contains contributions from structural as well as from dynamic changes and corresponding entropic contributions to the free energy of activation, which are estimated in terms of the change in rates of energy transfer across non-covalent contacts. The role of water in the EENs and in activation of GLP-1R is also investigated. The dynamics of water in contact with the central polar network of the transmembrane region is found to be significantly slower for both activated states compared to the inactive state. This result is consistent with the contribution of water molecules to activation of GLP-1R previously suggested and resembles water dynamics in parts of the transmembrane region found in earlier studies of rhodopsin-like GPCRs.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| |
Collapse
|
6
|
Haliloglu T, Hacisuleyman A, Erman B. Prediction of Allosteric Communication Pathways in Proteins. Bioinformatics 2022; 38:3590-3599. [PMID: 35674396 DOI: 10.1093/bioinformatics/btac380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/12/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Allostery in proteins is an essential phenomenon in biological processes. In this paper, we present a computational model to predict paths of maximum information transfer between active and allosteric sites. In this information theoretic study, we use mutual information as the measure of information transfer, where transition probability of information from one residue to its contacting neighbors is proportional to the magnitude of mutual information between the two residues. Starting from a given residue and using a Hidden Markov Model, we successively determine the neighboring residues that eventually lead to a path of optimum information transfer. The Gaussian approximation of mutual information between residue pairs is adopted. The limits of validity of this approximation are discussed in terms of a nonlinear theory of mutual information and its reduction to the Gaussian form. RESULTS Predictions of the model are tested on six widely studied cases, CheY Bacterial Chemotaxis, B-cell Lymphoma extra-large Bcl-xL, Human proline isomerase cyclophilin A (CypA), Dihydrofolate reductase DHFR, HRas GTPase, and Caspase-1. The communication transmission rendering the propagation of local fluctuations from the active sites throughout the structure in multiple paths correlate well with the known experimental data. Distinct paths originating from the active site may likely represent a multi functionality such as involving more than one allosteric site and/or preexistence of some other functional states. Our model is computationally fast and simple, and can give allosteric communication pathways, which are crucial for the understanding and control of protein functionality. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Turkan Haliloglu
- Polymer Research Center and Chemical Engineering Department, Bogazici University, 34342, Turkey
| | - Aysima Hacisuleyman
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), 1015, Switzerland
| | - Burak Erman
- Chemical and Biological Engineering, Koc University, 34450, Turkey
| |
Collapse
|
7
|
Yamashita S, Mizuno M, Takemura K, Kitao A, Mizutani Y. Dependence of Vibrational Energy Transfer on Distance in a Four-Helix Bundle Protein: Equidistant Increments with the Periodicity of α Helices. J Phys Chem B 2022; 126:3283-3290. [PMID: 35467860 DOI: 10.1021/acs.jpcb.2c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrational energy exchanges between various degrees of freedom are critical to barrier-crossing processes in proteins. Heme proteins are highly suitable for studies of the vibrational energy exchanges in proteins. The migration of excess energy released by heme in a protein moiety can be observed using time-resolved anti-Stokes ultraviolet resonance Raman spectroscopy. The anti-Stokes resonance Raman intensity of a tryptophan residue is an excellent probe for the excess energy and the spatial resolution of a single amino acid residue can be achieved. Here, we studied dependence of vibrational energy transfer on the distance in cytochrome b562, which is a heme-containing, four-helix bundle protein. The vibrational energy transfer from the heme group to a single tryptophan residue introduced by site-directed mutagenesis was examined for different heme-tryptophan distances by a quasi-constant length with the periodicity of α helices. Taken together with structural data obtained by molecular dynamics simulations, the energy transfer could be well described by the model of classical thermal diffusion, which suggests that continuum media provide a good approximation of the protein interior, of which the atomic packing density is very high.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuhiro Takemura
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
8
|
Hacisuleyman A, Erman B. Information Flow and Allosteric Communication in Proteins. J Chem Phys 2022; 156:185101. [DOI: 10.1063/5.0088522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Based on Schreiber's work on transfer entropy, a molecular theory of nonlinear information transfer in proteins is developed. The joint distribution function for residue fluctuations is expressed in terms of tensor Hermite polynomials which conveniently separate harmonic and nonlinear contributions to information transfer. The harmonic part of information transfer is expressed as the difference between time dependent and independent mutual information. Third order nonlinearities are discussed in detail. Amount and speed of information transfer between residues, important for understanding allosteric activity in proteins, are discussed. While mutual information shows the maximum amount of information that may be transferred between two residues, it does not explain the actual amount of transfer nor the transfer rate of information. For this, dynamic equations of the system are needed. The solution of the Langevin equation and molecular dynamics trajectories are used in the present work for this purpose. Allosteric communication in Human NAD-dependent isocitrate dehydrogenase is studied as an example. Calculations show that several paths contribute collectively to information transfer. Important residues on these paths are identified. Time resolved information transfer between these residues, their amplitudes and transfer rates, which are in agreement with time resolved ultraviolet resonance Raman measurements in general, are estimated. Estimated transfer rates are in the order of 1-20 megabits per second. Information transfer from third order contributions are one to two orders of magnitude smaller than the harmonic terms, showing that harmonic analysis is a good approximation to information transfer.
Collapse
Affiliation(s)
- Aysima Hacisuleyman
- Chemical and Biological Engineering, Koc University College of Engineering, Turkey
| | - Burak Erman
- College of Engineering, Koc University, Turkey
| |
Collapse
|
9
|
Yamashita S, Mizuno M, Mizutani Y. High suitability of tryptophan residues as a spectroscopic thermometer for local temperature in proteins under nonequilibrium conditions. J Chem Phys 2022; 156:075101. [DOI: 10.1063/5.0079797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Satoshi Yamashita
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
10
|
He J, Zhang L, Liu L. The hydrogen-bond configuration modulates the energy transfer efficiency in helical protein nanotubes. NANOSCALE 2021; 13:991-999. [PMID: 33367447 DOI: 10.1039/d0nr06031c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Energy transport in proteins is critical to a variety of physical, chemical, and biological processes in living organisms. While strenuous efforts have been made to study vibrational energy transport in proteins, thermal transport processes across the most fundamental building blocks of proteins, i.e. helices, are not well understood. This work studies energy transport in a group of "isomer" helices. The π-helix is shown to have the highest thermal conductivity, 110% higher than that of the α-helix and 207% higher than that of the 310-helix. The H-bond connectivity is found to govern thermal transport mechanisms including the phonon spectral energy density, dispersion, mode-specific transport, group velocity, and relaxation time. The energy transport is strongly correlated with the H-bond strength which is also modulated by the H-bond connectivity. These fundamental insights provide a novel perspective for understanding energy transfer in proteins and guiding a rational molecule-level design of novel materials with configurable H-bonds.
Collapse
Affiliation(s)
- Jinlong He
- Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA. and Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322, USA
| | - Lin Zhang
- Department of Engineering Mechanics, School of Civil Engineering, Shandong University, Jinan, 250061, P.R. China and Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ling Liu
- Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
11
|
Marzolf DR, McKenzie AM, O’Malley MC, Ponomarenko NS, Swaim CM, Brittain TJ, Simmons NL, Pokkuluri PR, Mulfort KL, Tiede DM, Kokhan O. Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2143. [PMID: 33126541 PMCID: PMC7693585 DOI: 10.3390/nano10112143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Efficient nanomaterials for artificial photosynthesis require fast and robust unidirectional electron transfer (ET) from photosensitizers through charge-separation and accumulation units to redox-active catalytic sites. We explored the ultrafast time-scale limits of photo-induced charge transfer between a Ru(II)tris(bipyridine) derivative photosensitizer and PpcA, a 3-heme c-type cytochrome serving as a nanoscale biological wire. Four covalent attachment sites (K28C, K29C, K52C, and G53C) were engineered in PpcA enabling site-specific covalent labeling with expected donor-acceptor (DA) distances of 4-8 Å. X-ray scattering results demonstrated that mutations and chemical labeling did not disrupt the structure of the proteins. Time-resolved spectroscopy revealed three orders of magnitude difference in charge transfer rates for the systems with otherwise similar DA distances and the same number of covalent bonds separating donors and acceptors. All-atom molecular dynamics simulations provided additional insight into the structure-function requirements for ultrafast charge transfer and the requirement of van der Waals contact between aromatic atoms of photosensitizers and hemes in order to observe sub-nanosecond ET. This work demonstrates opportunities to utilize multi-heme c-cytochromes as frameworks for designing ultrafast light-driven ET into charge-accumulating biohybrid model systems, and ultimately for mimicking the photosynthetic paradigm of efficiently coupling ultrafast, light-driven electron transfer chemistry to multi-step catalysis within small, experimentally versatile photosynthetic biohybrid assemblies.
Collapse
Affiliation(s)
- Daniel R. Marzolf
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Aidan M. McKenzie
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Matthew C. O’Malley
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Nina S. Ponomarenko
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA; (N.S.P.); (K.L.M.); (D.M.T.)
| | - Coleman M. Swaim
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Tyler J. Brittain
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| | - Natalie L. Simmons
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA;
| | | | - Karen L. Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA; (N.S.P.); (K.L.M.); (D.M.T.)
| | - David M. Tiede
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA; (N.S.P.); (K.L.M.); (D.M.T.)
| | - Oleksandr Kokhan
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA; (D.R.M.); (A.M.M.); (C.M.S.); (T.J.B.)
| |
Collapse
|
12
|
Poudel H, Reid KM, Yamato T, Leitner DM. Energy Transfer across Nonpolar and Polar Contacts in Proteins: Role of Contact Fluctuations. J Phys Chem B 2020; 124:9852-9861. [PMID: 33107736 DOI: 10.1021/acs.jpcb.0c08091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular dynamics simulations of the villin headpiece subdomain HP36 have been carried out to examine relations between rates of vibrational energy transfer across non-covalently bonded contacts and equilibrium structural fluctuations, with focus on van der Waals contacts. Rates of energy transfer across van der Waals contacts vary inversely with the variance of the contact length, with the same constant of proportionality for all nonpolar contacts of HP36. A similar relation is observed for hydrogen bonds, but the proportionality depends on contact pairs, with hydrogen bonds stabilizing the α-helices all exhibiting the same constant of proportionality, one that is distinct from those computed for other polar contacts. Rates of energy transfer across van der Waals contacts are found to be up to 2 orders of magnitude smaller than rates of energy transfer across polar contacts.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Korey M Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Takahisa Yamato
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
13
|
Leitner DM, Hyeon C, Reid KM. Water-mediated biomolecular dynamics and allostery. J Chem Phys 2020; 152:240901. [DOI: 10.1063/5.0011392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
14
|
Mizuno M, Mizutani Y. Role of atomic contacts in vibrational energy transfer in myoglobin. Biophys Rev 2020; 12:511-518. [PMID: 32206983 DOI: 10.1007/s12551-020-00681-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/02/2020] [Indexed: 11/26/2022] Open
Abstract
Heme proteins are ideal systems to investigate vibrational energy flow at the atomic level. Upon photoexcitation, a large amount of excess vibrational energy is selectively deposited on heme due to extremely fast internal conversion. This excess energy is redistributed to the surrounding protein moiety and then to water. Vibrational energy flow in myoglobin (Mb) was examined using picosecond time-resolved anti-Stokes ultraviolet resonance Raman (UVRR) spectroscopy. We used the Trp residue directly contacting the heme group as a selective probe for vibrationally excited populations. Trp residues were placed at different position close to the heme by site-directed mutagenesis. This technique allows us to monitor the excess energy on residue-to-residue basis. Anti-Stokes UVRR measurements for Mb mutants suggest that the dominant channel for energy transfer in Mb is the pathway through atomic contacts between heme and nearby amino acid residues as well as that between the protein and solvent water. It is found that energy flow through proteins is analogous to collisional exchange processes in solutions.
Collapse
Affiliation(s)
- Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
15
|
Leitner DM, Yamato T. Recent developments in the computational study of protein structural and vibrational energy dynamics. Biophys Rev 2020; 12:317-322. [PMID: 32124240 DOI: 10.1007/s12551-020-00661-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
Recent developments in the computational study of energy transport in proteins are reviewed, including advances in both methodology and applications. The concept of energy exchange network (EEN) is discussed, and a recent calculation of EENs for the allosteric protein FixL is reviewed, which illustrates how residues and protein regions involved in the allosteric transition can be identified. Recent work has examined relations between EENs and protein dynamics as well as structure. We review some of the computational studies carried out on several proteins that explore connections between energy conductivity across polar contacts in proteins and between proteins and water and equilibrium dynamics of the contacts, and we discuss some of the recent experimental work that addresses this topic.
Collapse
Affiliation(s)
- David M Leitner
- Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, NV, 89557, USA.
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Takahisa Yamato
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| |
Collapse
|
16
|
Yamato T, Leitner DM. Structure, dynamics, and energy flow that govern Heme protein functions: theory and experiments. Session 3SBA at the 57th BSJ Annual Meeting. Biophys Rev 2020; 12:291-292. [PMID: 32002759 DOI: 10.1007/s12551-020-00625-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/14/2020] [Indexed: 10/25/2022] Open
Affiliation(s)
- Takahisa Yamato
- Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - David M Leitner
- Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
17
|
Huang BC, Yang LW. Molecular dynamics simulations and linear response theories jointly describe biphasic responses of myoglobin relaxation and reveal evolutionarily conserved frequent communicators. Biophys Physicobiol 2020; 16:473-484. [PMID: 31984199 PMCID: PMC6975898 DOI: 10.2142/biophysico.16.0_473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/20/2019] [Indexed: 12/01/2022] Open
Abstract
In this study, we provide a time-dependent mechanical model, taking advantage of molecular dynamics simulations, quasiharmonic analysis of molecular dynamics trajectories, and time-dependent linear response theories to describe vibrational energy redistribution within the protein matrix. The theoretical description explained the observed biphasic responses of specific residues in myoglobin to CO-photolysis and photoexcitation on heme. The fast responses were found to be triggered by impulsive forces and propagated mainly by principal modes <40 cm−1. The predicted fast responses for individual atoms were then used to study signal propagation within the protein matrix and signals were found to propagate ~8 times faster across helices (4076 m/s) than within the helices, suggesting the importance of tertiary packing in the sensitivity of proteins to external perturbations. We further developed a method to integrate multiple intramolecular signal pathways and discover frequent “communicators”. These communicators were found to be evolutionarily conserved including those distant from the heme.
Collapse
Affiliation(s)
- Bang-Chieh Huang
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Sciences, Academia Sinica, Taipei 11529, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.,Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan
| |
Collapse
|
18
|
Reid KM, Yamato T, Leitner DM. Variation of Energy Transfer Rates across Protein–Water Contacts with Equilibrium Structural Fluctuations of a Homodimeric Hemoglobin. J Phys Chem B 2020; 124:1148-1159. [DOI: 10.1021/acs.jpcb.9b11413] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Takahisa Yamato
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
19
|
Amadei A, Aschi M. Modelling vibrational relaxation in complex molecular systems. Phys Chem Chem Phys 2019; 21:20003-20017. [PMID: 31478042 DOI: 10.1039/c9cp03379c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we show how it is possible to treat the quantum vibrational relaxation of a chromophore, embedded in a complex atomic-molecular environment, via the explicit solution of the time-dependent Schroedinger equation once using a proper separation between quantum and semiclassical degrees of freedom. The rigorous theoretical framework derived, based on first principles and making use of well defined approximations/assumptions, is utilized to construct a general model for the kinetics of the vibrational relaxation as obtained by the direct evaluation of the density matrix for all the relevant quantum state transitions. Application to (deuterated) N-methylacetamide (the typical benchmark used as a model for the amino acids) shows that the obtained theoretical-computational approach captures the essential features of the experimental process, unveiling the basic relaxation mechanism involving several vibrational state transitions.
Collapse
Affiliation(s)
- Andrea Amadei
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00133 Roma, Italy.
| | | |
Collapse
|
20
|
Leitner DM, Pandey HD, Reid KM. Energy Transport across Interfaces in Biomolecular Systems. J Phys Chem B 2019; 123:9507-9524. [DOI: 10.1021/acs.jpcb.9b07086] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Hari Datt Pandey
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
21
|
Balevičius V, Wei T, Di Tommaso D, Abramavicius D, Hauer J, Polívka T, Duffy CDP. The full dynamics of energy relaxation in large organic molecules: from photo-excitation to solvent heating. Chem Sci 2019; 10:4792-4804. [PMID: 31183032 PMCID: PMC6521204 DOI: 10.1039/c9sc00410f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/29/2019] [Indexed: 01/04/2023] Open
Abstract
In some molecular systems, such as nucleobases, polyenes or sunscreens, substantial amounts of photo-excitation energy are dissipated on a sub-picosecond time scale. Where does this energy go or among which degrees of freedom it is being distributed at such early times?
In some molecular systems, such as nucleobases, polyenes or the active ingredients of sunscreens, substantial amounts of photo-excitation energy are dissipated on a sub-picosecond time scale, raising questions such as: where does this energy go or among which degrees of freedom it is being distributed at such early times? Here we use transient absorption spectroscopy to track excitation energy dispersing from the optically accessible vibronic subsystem into the remaining vibrational subsystem of the solute and solvent. Monitoring the flow of energy during vibrational redistribution enables quantification of local molecular heating. Subsequent heat dissipation away from the solute molecule is characterized by classical thermodynamics and molecular dynamics simulations. Hence, we present a holistic approach that tracks the internal temperature and vibronic distribution from the act of photo-excitation to the restoration of the global equilibrium. Within this framework internal vibrational redistribution and vibrational cooling are emergent phenomena. We demonstrate the validity of the framework by examining a highly controversial example, carotenoids. We show that correctly accounting for the local temperature unambiguously explains their energetically and temporally congested spectral dynamics without the ad hoc postulation of additional ‘dark’ states. An immediate further application of this approach would be to monitor the excitation and thermal dynamics of pigment–protein systems.
Collapse
Affiliation(s)
- Vytautas Balevičius
- School of Chemical and Biological Sciences , Queen Mary University of London , Mile End Road , London E1 4NS , UK .
| | - Tiejun Wei
- School of Chemical and Biological Sciences , Queen Mary University of London , Mile End Road , London E1 4NS , UK .
| | - Devis Di Tommaso
- School of Chemical and Biological Sciences , Queen Mary University of London , Mile End Road , London E1 4NS , UK .
| | - Darius Abramavicius
- Institute of Chemical Physics , Vilnius University , Sauletekio av. 9 , Vilnius , LT-10222 , Lithuania
| | - Jürgen Hauer
- Fakultät für Chemie , Technical University of Munich , Lichtenbergstraße 4 , D-85748 Garching , Germany.,Photonics Institute , TU Wien , Gußhausstraße 27 , 1040 Vienna , Austria
| | - Tomas Polívka
- Institute of Physics and Biophysics , Faculty of Science , University of South Bohemia , Branišovská 1760 , 37005 České Budějovice , Czech Republic
| | - Christopher D P Duffy
- School of Chemical and Biological Sciences , Queen Mary University of London , Mile End Road , London E1 4NS , UK .
| |
Collapse
|
22
|
Mukherjee S, Mondal S, Bagchi B. Mechanism of Solvent Control of Protein Dynamics. PHYSICAL REVIEW LETTERS 2019; 122:058101. [PMID: 30822020 DOI: 10.1103/physrevlett.122.058101] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 06/09/2023]
Abstract
We find that the coupled interactions between protein and water polarization fluctuations play a dominant role in driving the configuration space random walk of solvated proteins. We perform atomistic molecular dynamics simulations on five proteins. Owing to a very low dielectric constant of protein, its dipolar groups experience forces from water along with local forces due to protein atoms. Energy fluctuations reveal a pronounced anticorrelation between protein and water contributions. The protein energy spectrum shows bimodal 1/f noise, which can be attributed to the influence of water on the dynamics of protein.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
23
|
Abstract
The exchange of vibrational energy in proteins is crucial for their function. Here, we establish a connection between quantities related to it with geometry-based properties such as the proteins' residues coordination number. This relation is proven by molecular simulation in a neuro-pharmacologically relevant transmembrane receptor. The connection demonstrated here paves the way to studies of protein allostery and conformational changes based solely on protein structure.
Collapse
Affiliation(s)
- L Maggi
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - P Carloni
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
- Institute for Neuroscience and Medicine INM-11 , Forschungszentrum Jülich , 52428 Jülich , Germany
- Department of Physics , RWTH Aachen University , 52078 Aachen , Germany
- Department of Neurology , University Hospital Aachen , 52078 Aachen , Germany
| | - G Rossetti
- Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
- Division Computational Science - Simulation Laboratory Biology, Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH , 52428 Jülich , Germany
- Department of Oncology, Hematology and Stem Cell Transplantation, University Hospital Aachen , RWTH Aachen University , 52074 Aachen , Germany
| |
Collapse
|
24
|
Leitner DM, Yamato T. MAPPING ENERGY TRANSPORT NETWORKS IN PROTEINS. REVIEWS IN COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1002/9781119518068.ch2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Reid KM, Yamato T, Leitner DM. Scaling of Rates of Vibrational Energy Transfer in Proteins with Equilibrium Dynamics and Entropy. J Phys Chem B 2018; 122:9331-9339. [DOI: 10.1021/acs.jpcb.8b07552] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Takahisa Yamato
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
26
|
Yamashita S, Mizuno M, Tran DP, Dokainish H, Kitao A, Mizutani Y. Vibrational Energy Transfer from Heme through Atomic Contacts in Proteins. J Phys Chem B 2018; 122:5877-5884. [DOI: 10.1021/acs.jpcb.8b03518] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Satoshi Yamashita
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Duy Phuoc Tran
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Hisham Dokainish
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
27
|
Mizutani Y. Time-Resolved Resonance Raman Spectroscopy and Application to Studies on Ultrafast Protein Dynamics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170218] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| |
Collapse
|
28
|
Yang Y, Liao G, Kong X. Charge-state Resolved Infrared Multiple Photon Dissociation (IRMPD) Spectroscopy of Ubiquitin Ions in the Gas Phase. Sci Rep 2017; 7:16592. [PMID: 29185478 PMCID: PMC5707388 DOI: 10.1038/s41598-017-16831-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, we obtained for the first time the direct infrared multiple photon dissociation (IRMPD) spectra of ubiquitin ions in the range 2700-3750 cm-1. Ubiquitin ions with different charge states showed absorption in the two regions of 2940-3000 cm-1 and 3280-3400 cm-1. The increase of the charge state of ubiquitin ions broadened the absorption peak on the high-frequency side in the second region, indicating some hydrogen bonds were weakened due to Coulomb interaction. It is also found that the relative intensity of the absorption peak in the first region compared to the absorption peak in the second region increased with increasing charge state, making the IRMPD spectra charge-state resolved. Although it is usually reasonable to suggest the origin of the absorption in the range 2940-3000 cm-1 as the C-H bond stretching modes, the results show significantly reduced absorption after the deuteration of all labile hydrogen atoms. A possible explanation for this is that the coupling coefficients between the C-H vibrational mode and other selective modes decreased greatly after the deuteration, reducing the rate of energy redistribution and probability of consecutive IR absorption.
Collapse
Affiliation(s)
- Yijie Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guanhua Liao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xianglei Kong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|