1
|
de Oliveira AP, Chase W, Confer MP, Walker S, Baghel D, Ghosh A. Colocalization of β-Sheets and Carotenoids in Aβ Plaques Revealed with Multimodal Spatially Resolved Vibrational Spectroscopy. J Phys Chem B 2024; 128:33-44. [PMID: 38124262 PMCID: PMC10851346 DOI: 10.1021/acs.jpcb.3c04782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The aggregation of amyloid β(Aβ) peptides is at the heart of Alzheimer's disease development and progression. As a result, amyloid aggregates have been studied extensively in vitro, and detailed structural information on fibrillar amyloid aggregates is available. However, forwarding these structural models to amyloid plaques in the human brain is still a major challenge. The chemistry of amyloid plaques, particularly in terms of the protein secondary structure and associated chemical moieties, remains poorly understood. In this report, we use Raman microspectroscopy to identify the presence of carotenoids in amyloid plaques and demonstrate that the abundance of carotenoids is correlated with the overall protein secondary structure of plaques, specifically to the population of β-sheets. While the association of carotenoids with plaques has been previously identified, their correlation with the β structure has never been identified. To further validate these findings, we have used optical photothermal infrared (O-PTIR) spectroscopy, which is a spatially resolved technique that yields complementary infrared contrast to Raman. O-PTIR unequivocally demonstrates the presence of elevated β-sheets in carotenoid-containing plaques and the lack of β structure in noncarotenoid plaques. Our findings underscore the potential link between anti-inflammatory species as carotenoids to specific secondary structural motifs within Aβ plaques and highlight the possible role of chemically distinct plaques in neuroinflammation, which can uncover new mechanistic insights and lead to new therapeutic strategies for AD.
Collapse
Affiliation(s)
| | - William Chase
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Matthew P. Confer
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, Illinois 61801, USA
| | - Savannah Walker
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Divya Baghel
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| |
Collapse
|
2
|
Haldar T, Chatterjee S, Alam MN, Maity P, Bagchi S. Blue Fluorescence of Cyano-tryptophan Predicts Local Electrostatics and Hydrogen Bonding in Biomolecules. J Phys Chem B 2022; 126:10732-10740. [PMID: 36511763 DOI: 10.1021/acs.jpcb.2c05848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cyano-tryptophan is an unnatural fluorescent amino acid that emits in the visible region. Along with the structural similarity with tryptophan, the unique photophysical properties of this fluorophore make it an ideal probe for biophysical research. Herein, combining fluorescence spectroscopy, infrared spectroscopy, and molecular dynamics simulations, we show that the cyano-tryptophan's emission energy quantifies the underlying bond-specific noncovalent interactions in terms of the electric field. We further report the use of fluorophore's emission energy to predict its hydrogen bond characteristics. We demonstrate that combining experiments with molecular dynamics simulations can provide the hydrogen bonding status of the nitrile moiety. In addition, we report a method to differentiate between aqueous and nonaqueous hydrogen-bonding partners. Using a phenomenological approach, we demonstrate that the presence of the cyano-indole moiety is responsible for the distinct correlations between the fluorophore's emission and the electrostatic forces on the nitrile bond. As indole is a privileged scaffold for both native amino acids and nucleobases, cyano-indoles will have many multifaceted applications.
Collapse
Affiliation(s)
- Tapas Haldar
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Md Nirshad Alam
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Pradip Maity
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
3
|
Confer MP, Holcombe BM, Foes AG, Holmquist JM, Walker SC, Deb S, Ghosh A. Label-Free Infrared Spectroscopic Imaging Reveals Heterogeneity of β-Sheet Aggregates in Alzheimer's Disease. J Phys Chem Lett 2021; 12:9662-9671. [PMID: 34590866 PMCID: PMC8933041 DOI: 10.1021/acs.jpclett.1c02306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The aggregation of the amyloid beta (Aβ) protein into plaques is a pathological feature of Alzheimer's disease (AD). While amyloid aggregates have been extensively studied in vitro, their structural aspects and associated chemistry in the brain are not fully understood. In this report, we demonstrate, using infrared spectroscopic imaging, that Aβ plaques exhibit significant heterogeneities in terms of their secondary structure and phospholipid content. We show that the capabilities of discrete frequency infrared imaging (DFIR) are ideally suited for characterization of amyloid deposits in brain tissues and employ DFIR to identify nonplaque β-sheet aggregates distributed throughout brain tissues. We further demonstrate that phospholipid-rich β-sheet deposits exist outside of plaques in all diseased tissues, indicating their potential clinical significance. This is the very first application of DFIR toward a characterization of protein aggregates in an AD brain and provides a rapid, label-free approach that allows us to uncover β-sheet heterogeneities in the AD, which may be significant for targeted therapeutic strategies in the future.
Collapse
|
4
|
Chatterjee S, Haldar T, Ghosh D, Bagchi S. Electrostatic Manifestation of Micro-Heterogeneous Solvation Structures in Deep-Eutectic Solvents: A Spectroscopic Approach. J Phys Chem B 2020; 124:3709-3715. [DOI: 10.1021/acs.jpcb.9b11352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Tapas Haldar
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Deborin Ghosh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Ghosh A, Cohn B, Prasad AK, Chuntonov L. Quantifying conformations of ester vibrational probes with hydrogen-bond-induced Fermi resonances. J Chem Phys 2018; 149:184501. [PMID: 30441918 DOI: 10.1063/1.5055041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Solvatochromic shifts of local vibrational probes report on the strength of the surrounding electric fields and the probe's hydrogen bonding status. Stretching vibrational mode of the ester carbonyl group is a popular solvatochromic reporter used in the studies of peptides and proteins. Small molecules, used to calibrate the response of the vibrational probes, sometimes involve Fermi resonances (FRs) induced by inter-molecular interactions. In the present work, we focus on the scenario where FR does not appear in the infrared spectrum of the ester carbonyl stretching mode in aprotic solvents; however, it is intensified when a hydrogen bond with the reporter is established. When two molecules form hydrogen bonds to the same carbonyl oxygen atom, FR leads to strong hybridization of the involved modes and splitting of the absorption peak. Spectral overlap between the Fermi doublets associated with singly and doubly hydrogen-bonded carbonyl groups significantly complicates quantifying different hydrogen-bonded conformations. We employed a combination of linear and third-order (2DIR) infrared spectroscopy with chemometrics analysis to reveal the individual line shapes and to estimate the occupations of the hydrogen-bonded conformations in methyl acetate, a model small molecule. We identified a hydrogen-bond-induced FR in complexes of methyl acetate with alcohols and water and found that FR is lifted in larger molecules used for control experiments-cholesteryl stearate and methyl cyanoacetate. Applying this methodology to analyze acetonitrile-water solutions revealed that when dissolved in neat water, methyl acetate occupies a single hydrogen-bonding conformation, which is in contrast to the conclusions of previous studies. Our approach can be generally used when FRs prevent direct quantification of the hydrogen bonding status of the vibrational probe.
Collapse
Affiliation(s)
- Anup Ghosh
- Schulich Faculty of Chemistry and Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Bar Cohn
- Schulich Faculty of Chemistry and Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Amit K Prasad
- Schulich Faculty of Chemistry and Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
6
|
Slocum JD, Webb LJ. Measuring Electric Fields in Biological Matter Using the Vibrational Stark Effect of Nitrile Probes. Annu Rev Phys Chem 2018; 69:253-271. [DOI: 10.1146/annurev-physchem-052516-045011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joshua D. Slocum
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, USA
| | - Lauren J. Webb
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, USA
| |
Collapse
|
7
|
Torii H. Strategy for Modeling the Electrostatic Responses of the Spectroscopic Properties of Proteins. J Phys Chem B 2017; 122:154-164. [PMID: 29192780 DOI: 10.1021/acs.jpcb.7b10791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For better understanding and more efficient use of the spectroscopic probes (vibrational and NMR) of the local electrostatic situations inside proteins, appropriate modeling of the properties of those probes is essential. The present study is devoted to examining the strategy for constructing such models. A more well-founded derivation than the ones in previous studies is given in constructing the models. Theoretical analyses are conducted on two representative example cases related to proteins, i.e., the peptide group of the main chains and the CO and NO ligands to the Fe2+ ion of heme, with careful treatment of the behavior of electrons in the electrostatic responses and with verification of consistency with observable quantities. It is shown that, for the stretching frequencies and NMR chemical shifts, it is possible to construct reasonable electrostatic interaction models that encompass the situations of hydration and uniform electric field environment and thus are applicable also to the cases of nonuniform electrostatic situations, which are highly expected for inside of proteins.
Collapse
Affiliation(s)
- Hajime Torii
- Department of Chemistry, Faculty of Education and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University , 836 Ohya, Shizuoka 422-8529, Japan
| |
Collapse
|
8
|
Ghosh A, Mukherjee P, Deb S, Bhargava R. Mapping Solvation Environments in Porous Metal-Organic Frameworks with Infrared Chemical Imaging. J Phys Chem Lett 2017; 8:5325-5330. [PMID: 29023128 DOI: 10.1021/acs.jpclett.7b02104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report here the first mesoscale characterization of solvent environments in the metal-organic framework (MOF) Cu3(BTC)2 using infrared imaging. Two characteristic populations of the MOF structures corresponding to the carboxylate binding to the Cu(II) (metal) ions were observed, which reflect a regular solvated MOF structure with axial solvents in the binuclear copper paddlewheel and an unsolvated defect mode that lacks axial solvent coordination. Infrared imaging also shows strong correlation between solvent localization and the spatial distribution of the solvated population within the MOF. This is a vital result as any remnant solvent molecules adsorbed inside of MOFs can render them less effective. We propose fast IR imaging as a potential characterization technique that can measure adsorbate and defect distributions in MOFs.
Collapse
Affiliation(s)
- Ayanjeet Ghosh
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Prabuddha Mukherjee
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Sanghamitra Deb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Cancer Center at Illinois, Departments of Bioengineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Mechanical Science and Engineering and Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Kashid SM, Jin GY, Chakrabarty S, Kim YS, Bagchi S. Two-Dimensional Infrared Spectroscopy Reveals Cosolvent-Composition-Dependent Crossover in Intermolecular Hydrogen-Bond Dynamics. J Phys Chem Lett 2017; 8:1604-1609. [PMID: 28326785 DOI: 10.1021/acs.jpclett.7b00270] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cosolvents have versatile composition-dependent applications in chemistry and biology. The simultaneous presence of hydrophobic and hydrophilic groups in dimethyl sulfoxide (DMSO), an industrially important amphiphilic cosolvent, when combined with the unique properties of water, plays key roles in the diverse fields of pharmacology, cryoprotection, and cell biology. Moreover, molecules dissolved in aqueous DMSO exhibit an anomalous concentration-dependent nonmonotonic behavior in stability and activity near a critical DMSO mole fraction of 0.15. An experimental identification of the origin of this anomaly can lead to newer chemical and biological applications. We report a direct spectroscopic observation of the anomalous behavior using ultrafast two-dimensional infrared spectroscopy experiments. Our results demonstrate the cosolvent-concentration-dependent nonmonotonicity arises from nonidentical mechanisms in ultrafast hydrogen-bond-exchange dynamics of water above and below the critical cosolvent concentration. Comparison of experimental and theoretical results provides a molecular-level mechanistic understanding: a distinct difference in the stabilization of the solute through dynamic solute-solvent interactions is the key to the anomalous behavior.
Collapse
Affiliation(s)
- Somnath M Kashid
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, India
| | - Geun Young Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulsan 44919, Korea
| | - Suman Chakrabarty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, India
| | - Yung Sam Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulsan 44919, Korea
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|