1
|
Chen N, Rao G, Tao L, Britt RD, Wang LP. HydE Catalytic Mechanism Is Powered by a Radical Relay with Redox-Active Fe(I)-Containing Intermediates. J Am Chem Soc 2025; 147:4800-4809. [PMID: 39884680 PMCID: PMC11826987 DOI: 10.1021/jacs.4c12668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
[FeFe]-hydrogenases are enzymes that catalyze the redox interconversion of H+ and H2 using a six-iron active site, known as the H-cluster, which consists of a structurally unique [2Fe]H subcluster linked to a [4Fe-4S]H subcluster. A set of enzymes, HydG, HydE, and HydF, are responsible for the biosynthesis of the [2Fe]H subcluster. Among them, it is well established that HydG cleaves tyrosine into CO and CN- and forms a mononuclear [Fe(II)(Cys)(CO)2(CN)] complex. Recent work using EPR spectroscopy and X-ray crystallography show that HydE uses this organometallic Fe complex as its native substrate. The low spin Fe(II) center is reduced into an adenosylated Fe(I) species, which is proposed to form an Fe(I)Fe(I) dimer within HydE. The highly unusual transformation catalyzed by HydE draws interest in both biochemistry and organometallic chemistry. Due to the instability of the substrate, the intermediates, and the proposed product, experimental characterization of the detailed HydE mechanism and its final product is challenging. Herein, the catalytic mechanism of HydE is studied using hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations. A radical relay mechanism was found for the cleavage of the cysteine S-Cβ bond that is energetically favored with respect to a closed-shell mechanism involving unconventional proton transfer. In addition, we propose a pathway for the dimerization of two Fe(I) complexes within the HydE hydrophobic cavity, which is consistent with the recent experimental result that HydF can perform [FeFe]-hydrogenase maturation with a synthetic dimer complex as the substrate. These simulation results take us further down the path to a more complete understanding of these enzymes that synthesize one of Nature's most efficient energy conversion catalysts.
Collapse
Affiliation(s)
| | - Guodong Rao
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | | | - R. David Britt
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
2
|
Lachmann MT, Duan Z, Rodríguez-Maciá P, Birrell JA. The missing pieces in the catalytic cycle of [FeFe] hydrogenases. Chem Sci 2024:d4sc04041d. [PMID: 39246377 PMCID: PMC11376134 DOI: 10.1039/d4sc04041d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Hydrogen could provide a suitable means for storing energy from intermittent renewable sources for later use on demand. However, many challenges remain regarding the activity, specificity, stability and sustainability of current hydrogen production and consumption methods. The lack of efficient catalysts based on abundant and sustainable elements lies at the heart of this problem. Nature's solution led to the evolution of hydrogenase enzymes capable of reversible hydrogen conversion at high rates using iron- and nickel-based active sites. Through a detailed understanding of these enzymes, we can learn how to mimic them to engineer a new generation of highly active synthetic catalysts. Incredible progress has been made in our understanding of biological hydrogen activation over the last few years. In particular, detailed studies of the [FeFe] hydrogenase class have provided substantial insight into a sophisticated, optimised, molecular catalyst, the active site H-cluster. In this short perspective, we will summarise recent findings and highlight the missing pieces needed to complete the puzzle.
Collapse
Affiliation(s)
- Manon T Lachmann
- School of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester Leicester LE1 7RH UK
| | - Zehui Duan
- University of Oxford, Department of Chemistry, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Patricia Rodríguez-Maciá
- School of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester Leicester LE1 7RH UK
| | - James A Birrell
- School of Life Sciences, University of Essex Colchester CO4 3SQ UK
| |
Collapse
|
3
|
Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst. Nat Commun 2022; 13:845. [PMID: 35149679 PMCID: PMC8837612 DOI: 10.1038/s41467-022-28409-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Rhenium(I)-carbonyl-diimine complexes have emerged as promising photocatalysts for carbon dioxide reduction with covalent organic frameworks recognized as perfect sensitizers and scaffold support. Such Re complexes/covalent organic frameworks hybrid catalysts have demonstrated high carbon dioxide reduction activities but with strong excitation energy-dependence. In this paper, we rationalize this behavior by the excitation energy-dependent pathways of internal photo-induced charge transfer studied via transient optical spectroscopies and time-dependent density-functional theory calculation. Under band-edge excitation, the excited electrons are quickly injected from covalent organic frameworks moiety into catalytic RheniumI center within picosecond but followed by fast backward geminate recombination. While under excitation with high-energy photon, the injected electrons are located at high-energy levels in RheniumI centers with longer lifetime. Besides those injected electrons to RheniumI center, there still remain some long-lived electrons in covalent organic frameworks moiety which is transferred back from RheniumI. This facilitates the two-electron reaction of carbon dioxide conversion to carbon monoxide. Re complexes within covalent organic frameworks have emerged as promising photocatalysts for CO2 reduction. Here, authors identify a high-energy electron transfer pathway during CO2 reduction that results in longer-lived excited states than a low-energy electron transfer pathway.
Collapse
|
4
|
Birrell JA, Rodríguez-Maciá P, Reijerse EJ, Martini MA, Lubitz W. The catalytic cycle of [FeFe] hydrogenase: A tale of two sites. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214191] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021; 50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
[FeFe]-hydrogenases recieved increasing interest in the last decades. This review summarises important findings regarding their enzymatic reactivity as well as inorganic models applied as electro- and photochemical catalysts.
Collapse
Affiliation(s)
| | | | - Shanika Yadav
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Daniel Siegmund
- Department of Electrosynthesis
- Fraunhofer UMSICHT
- 46047 Oberhausen
- Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
- Department of Electrosynthesis
| |
Collapse
|
6
|
Land H, Senger M, Berggren G, Stripp ST. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01614] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
7
|
Duan J, Mebs S, Laun K, Wittkamp F, Heberle J, Happe T, Hofmann E, Apfel UP, Winkler M, Senger M, Haumann M, Stripp ST. Geometry of the Catalytic Active Site in [FeFe]-Hydrogenase Is Determined by Hydrogen Bonding and Proton Transfer. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jifu Duan
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Stefan Mebs
- Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, 14195 Berlin, Germany
| | - Konstantin Laun
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Florian Wittkamp
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr University Bochum, 44801 Bochum, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Eckhard Hofmann
- Faculty of Biology and Biotechnology, Protein Crystallography, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr University Bochum, 44801 Bochum, Germany
- Fraunhofer UMSICHT, 46047 Oberhausen, Germany
| | - Martin Winkler
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Moritz Senger
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Haumann
- Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sven T. Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
8
|
Liu Y, Mohammadi M, Vashisth H. Diffusion network of CO in FeFe-Hydrogenase. J Chem Phys 2018; 149:204108. [PMID: 30501239 DOI: 10.1063/1.5054877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
FeFe-hydrogenase is an efficient enzyme to produce H2 under optimal conditions. However, the activity of this enzyme is highly sensitive to the presence of inhibitory gases CO and O2 that cause irreversible damage to the active site. Therefore, a detailed knowledge of the diffusion pathways of these inhibitory gases is necessary to develop strategies for designing novel enzymes that are tolerant to these gases. In this work, we studied the diffusion pathways of CO in the CpI FeFe-hydrogenase from Clostridium pasteurianum. Specifically, we used several enhanced sampling and free-energy simulation methods to reconstruct a three-dimensional free-energy surface for CO diffusion which revealed 45 free-energy minima forming an interconnected network of pathways. We discovered multiple pathways of minimal free-energy as diffusion portals for CO and found that previously suggested hydrophobic pathways are not thermodynamically favorable for CO diffusion. We also observed that the global minimum in the free-energy surface is located in the vicinity of the active-site metal cluster, the H-cluster, which suggests a high-affinity for CO near the active site. Among 19 potential residues that we propose as candidates for future mutagenesis studies, 11 residues are shared with residues that have been previously proposed to increase the tolerance of this enzyme for O2. We hypothesize that these shared candidate residues are potentially useful for designing new variants of this enzyme that are tolerant to both inhibitory gases.
Collapse
Affiliation(s)
- Yong Liu
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, New Hampshire 03824, USA
| | - Mohammadjavad Mohammadi
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, New Hampshire 03824, USA
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, New Hampshire 03824, USA
| |
Collapse
|
9
|
Abstract
Over the past two decades, the bioinorganic chemistry of hydrogenases has attracted much interest from basic and applied research. Hydrogenases are highly efficient metalloenzymes that catalyze the reversible reduction of protons to molecular hydrogen (H2) in all domains of life. Their iron- and nickel-based cofactors represent promising blueprints for the design of biomimetic, synthetic catalysts. In this Account, we address the molecular proceedings of hydrogen turnover with [FeFe]-hydrogenases. The active site cofactor of [FeFe]-hydrogenases ("H-cluster") comprises a unique diiron complex linked to a [4Fe-4S] cluster via a single cysteine. Since it was discovered that a synthetic analogue of the diiron site can be incorporated into apoprotein in vitro to yield active enzyme, significant progress has been made toward a comprehensive understanding of hydrogenase catalysis. The diiron site carries three to four carbon monoxide (CO) and two cyanide (CN-) ligands that give rise to intense infrared (IR) absorption bands. These bands are sensitive reporters of the electron density across the H-cluster, which can be addressed by infrared spectroscopy to follow redox and protonation changes at the cofactor. Synthetic variation of the metal-bridging dithiolate ligand at the diiron site, as well as site-directed mutagenesis of amino acids, provides access to the proton pathways toward the cofactor. Quantum chemical calculations are employed to specifically assign IR bands to vibrational modes of the diatomic ligands and yield refined H-cluster geometries. Here, we provide an overview of recent research on [FeFe]-hydrogenases with emphasis on experimental and computational IR studies. We describe advances in attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) and protein film electrochemistry, as well as density functional theory (DFT) calculations. Key cofactor species are discussed in terms of molecular geometry, redox state, and protonation. Isotope editing is introduced as a tool to evaluate the cofactor geometry beyond the limits of protein crystallography. In particular, the role of proton-coupled electron transfer (PCET) in the generation of catalytically relevant redox species is addressed. We propose that site-selective protonation of the H-cluster biases surplus electrons either to the [4Fe-4S] cluster or to the diiron site. Protonation of the [4Fe-4S] cluster prevents premature reduction at the diiron site and stabilizes a reactive, terminal hydride. The observed H-cluster species are assigned to rapid H2 conversion or to reactions possibly involved in activity regulation and cellular H2 sensing. In the catalytic cycle of [FeFe]-hydrogenases, an H-cluster geometry is preserved that features a bridging CO ligand. PCET levels the redox potential for two steps of sequential cofactor reduction. The concept of consecutive PCET at a geometrically inert cofactor with tight control of electron and proton localization may inspire the design of a novel generation of biomimetic catalysts for the production of H2 as a fuel.
Collapse
Affiliation(s)
- Michael Haumann
- Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sven T. Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
10
|
Senger M, Mebs S, Duan J, Shulenina O, Laun K, Kertess L, Wittkamp F, Apfel UP, Happe T, Winkler M, Haumann M, Stripp ST. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases. Phys Chem Chem Phys 2018; 20:3128-3140. [PMID: 28884175 DOI: 10.1039/c7cp04757f] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The [FeFe]-hydrogenases of bacteria and algae are the most efficient hydrogen conversion catalysts in nature. Their active-site cofactor (H-cluster) comprises a [4Fe-4S] cluster linked to a unique diiron site that binds three carbon monoxide (CO) and two cyanide (CN-) ligands. Understanding microbial hydrogen conversion requires elucidation of the interplay of proton and electron transfer events at the H-cluster. We performed real-time spectroscopy on [FeFe]-hydrogenase protein films under controlled variation of atmospheric gas composition, sample pH, and reductant concentration. Attenuated total reflection Fourier-transform infrared spectroscopy was used to monitor shifts of the CO/CN- vibrational bands in response to redox and protonation changes. Three different [FeFe]-hydrogenases and several protein and cofactor variants were compared, including element and isotopic exchange studies. A protonated equivalent (HoxH) of the oxidized state (Hox) was found, which preferentially accumulated at acidic pH and under reducing conditions. We show that the one-electron reduced state Hred' represents an intrinsically protonated species. Interestingly, the formation of HoxH and Hred' was independent of the established proton pathway to the diiron site. Quantum chemical calculations of the respective CO/CN- infrared band patterns favored a cysteine ligand of the [4Fe-4S] cluster as the protonation site in HoxH and Hred'. We propose that proton-coupled electron transfer facilitates reduction of the [4Fe-4S] cluster and prevents premature formation of a hydride at the catalytic diiron site. Our findings imply that protonation events both at the [4Fe-4S] cluster and at the diiron site of the H-cluster are important in the hydrogen conversion reaction of [FeFe]-hydrogenases.
Collapse
Affiliation(s)
- Moritz Senger
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany.
| | - Stefan Mebs
- Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Olga Shulenina
- Faculty of Physics, St. Petersburg State University, 198504 St. Petersburg, Russian Federation
| | - Konstantin Laun
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany.
| | - Leonie Kertess
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Florian Wittkamp
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Martin Winkler
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Michael Haumann
- Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
11
|
Wittkamp F, Senger M, Stripp ST, Apfel UP. [FeFe]-Hydrogenases: recent developments and future perspectives. Chem Commun (Camb) 2018; 54:5934-5942. [DOI: 10.1039/c8cc01275j] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[FeFe]-Hydrogenases are the most efficient enzymes for catalytic hydrogen turnover.
Collapse
Affiliation(s)
- F. Wittkamp
- Faculty of Chemistry and Biochemistry
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - M. Senger
- Department of Physics
- Freie Universität Berlin
- 1495 Berlin
- Germany
| | - S. T. Stripp
- Department of Physics
- Freie Universität Berlin
- 1495 Berlin
- Germany
| | - U.-P. Apfel
- Faculty of Chemistry and Biochemistry
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
- Fraunhofer UMSICHT
| |
Collapse
|
12
|
Sensi M, Baffert C, Fradale L, Gauquelin C, Soucaille P, Meynial-Salles I, Bottin H, de Gioia L, Bruschi M, Fourmond V, Léger C, Bertini L. Photoinhibition of FeFe Hydrogenase. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Matteo Sensi
- Aix Marseille University, CNRS, BIP UMR 7281, 13402 CEDEX 20 Marseille, France
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Carole Baffert
- Aix Marseille University, CNRS, BIP UMR 7281, 13402 CEDEX 20 Marseille, France
| | - Laura Fradale
- Aix Marseille University, CNRS, BIP UMR 7281, 13402 CEDEX 20 Marseille, France
| | - Charles Gauquelin
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135
CNRS:UMR 5504, Avenue
de Rangueil, 31077 Toulouse, France
| | - Philippe Soucaille
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135
CNRS:UMR 5504, Avenue
de Rangueil, 31077 Toulouse, France
| | - Isabelle Meynial-Salles
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135
CNRS:UMR 5504, Avenue
de Rangueil, 31077 Toulouse, France
| | - Hervé Bottin
- Institut
de Biologie Intégrative de la Cellule (I2BC), Institut Frédéric
Joliot, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198 CEDEX Gif-Sur-Yvette, France
| | - Luca de Gioia
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Maurizio Bruschi
- Department
of Earth and Environmental Sciences, Milano-Bicocca University, Piazza della
Scienza 1, 20126 Milan, Italy
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Vincent Fourmond
- Aix Marseille University, CNRS, BIP UMR 7281, 13402 CEDEX 20 Marseille, France
| | - Christophe Léger
- Aix Marseille University, CNRS, BIP UMR 7281, 13402 CEDEX 20 Marseille, France
| | - Luca Bertini
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
13
|
Greene BL, Schut GJ, Adams MWW, Dyer RB. Pre-Steady-State Kinetics of Catalytic Intermediates of an [FeFe]-Hydrogenase. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03276] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Brandon L. Greene
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Gerrit J. Schut
- Department
of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Michael W. W. Adams
- Department
of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - R. Brian Dyer
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
Abdellah M, El-Zohry AM, Antila LJ, Windle CD, Reisner E, Hammarström L. Time-Resolved IR Spectroscopy Reveals a Mechanism with TiO 2 as a Reversible Electron Acceptor in a TiO 2-Re Catalyst System for CO 2 Photoreduction. J Am Chem Soc 2017; 139:1226-1232. [PMID: 28013539 DOI: 10.1021/jacs.6b11308] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Attaching the phosphonated molecular catalyst [ReIBr(bpy)(CO)3]0 to the wide-bandgap semiconductor TiO2 strongly enhances the rate of visible-light-driven reduction of CO2 to CO in dimethylformamide with triethanolamine (TEOA) as sacrificial electron donor. Herein, we show by transient mid-IR spectroscopy that the mechanism of catalyst photoreduction is initiated by ultrafast electron injection into TiO2, followed by rapid (ps-ns) and sequential two-electron oxidation of TEOA that is coordinated to the Re center. The injected electrons can be stored in the conduction band of TiO2 on an ms-s time scale, and we propose that they lead to further reduction of the Re catalyst and completion of the catalytic cycle. Thus, the excited Re catalyst gives away one electron and would eventually get three electrons back. The function of an electron reservoir would represent a role for TiO2 in photocatalytic CO2 reduction that has previously not been considered. We propose that the increase in photocatalytic activity upon heterogenization of the catalyst to TiO2 is due to the slow charge recombination and the high oxidative power of the ReII species after electron injection as compared to the excited MLCT state of the unbound Re catalyst or when immobilized on ZrO2, which results in a more efficient reaction with TEOA.
Collapse
Affiliation(s)
- Mohamed Abdellah
- Ångström Laboratory, Department of Chemistry, Uppsala University , Box 523, 75120 Uppsala, Sweden.,Department of Chemistry, Qena Faculty of Science, South Valley University , 83523 Qena, Egypt
| | - Ahmed M El-Zohry
- Ångström Laboratory, Department of Chemistry, Uppsala University , Box 523, 75120 Uppsala, Sweden
| | - Liisa J Antila
- Ångström Laboratory, Department of Chemistry, Uppsala University , Box 523, 75120 Uppsala, Sweden
| | - Christopher D Windle
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Leif Hammarström
- Ångström Laboratory, Department of Chemistry, Uppsala University , Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
15
|
Sensi M, Baffert C, Greco C, Caserta G, Gauquelin C, Saujet L, Fontecave M, Roy S, Artero V, Soucaille P, Meynial-Salles I, Bottin H, de Gioia L, Fourmond V, Léger C, Bertini L. Reactivity of the Excited States of the H-Cluster of FeFe Hydrogenases. J Am Chem Soc 2016; 138:13612-13618. [DOI: 10.1021/jacs.6b06603] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matteo Sensi
- Aix Marseille Univ., CNRS, BIP UMR 7281, Marseille, France
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Carole Baffert
- Aix Marseille Univ., CNRS, BIP UMR 7281, Marseille, France
| | - Claudio Greco
- Department
of Earth and Environmental Sciences, Milano-Bicocca University, Piazza della
Scienza 1, 20126 Milan, Italy
| | - Giorgio Caserta
- Laboratoire
de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Charles Gauquelin
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135 CNRS:UMR 5504, avenue de Rangueil, 31077 Toulouse, France
| | - Laure Saujet
- Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM/Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, CEA, CNRS, Université Paris Sud, F-91191 Gif sur Yvette, France
| | - Marc Fontecave
- Laboratoire
de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Souvik Roy
- Laboratoire
de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, 38054 Grenoble, France
| | - Vincent Artero
- Laboratoire
de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs, 38054 Grenoble, France
| | - Philippe Soucaille
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135 CNRS:UMR 5504, avenue de Rangueil, 31077 Toulouse, France
| | - Isabelle Meynial-Salles
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792,135 CNRS:UMR 5504, avenue de Rangueil, 31077 Toulouse, France
| | - Hervé Bottin
- Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM/Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, CEA, CNRS, Université Paris Sud, F-91191 Gif sur Yvette, France
| | - Luca de Gioia
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | | | | | - Luca Bertini
- Department
of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| |
Collapse
|