1
|
Garcia-Orrit S, Vega-Mayoral V, Chen Q, Serra G, Guizzardi M, Romano V, Dal Conte S, Cerullo G, Di Mario L, Kot M, Loi MA, Narita A, Müllen K, Tommasini M, Cabanillas-González J. Visualizing Thermally Activated Conical Intersections Governing Non-Radiative Triplet Decay in a Ni(II) Porphyrin-Nanographene Conjugate with Variable Temperature Transient Absorption Spectroscopy. J Phys Chem Lett 2024; 15:10366-10374. [PMID: 39374120 DOI: 10.1021/acs.jpclett.4c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Metalloporphyrins based on open-shell transition metals, such as Ni(II), exhibit typically fast excited-state relaxation. In this work, we shed light into the nonradiative relaxation mechanism in a nanographene-Ni(II) porphyrin conjugate. Variable temperature transient absorption and global fit analysis are combined to produce a picture of the relaxation pathways. At room temperature, photoexcitation of the lowest π-π* transition is followed by vibrational cooling in 1.6 ps, setting a short 20 ps temporal window wherein a small fraction of relaxed singlets radiatively decay to the ground state before intersystem crossing proceeds. Following intersystem crossing, triplets relax rapidly to the ground state (S0) in a few tens of picoseconds. By performing measurements at low temperature, we provide evidence for a competition between two terminal relaxation pathways from the lowest (metal-centered) triplet to the ground state: a slow ground state relaxation process proceeding in time scales beyond 1.6 ns and a faster pathway dictated by a sloped conical intersection, which is thermally accessible at room temperature from the triplet state. The overall triplet decay at a given temperature is dictated by the interplay of these two contributions. This observation bears significance in understanding the underlying fast relaxation processes in Ni-based molecules and related transition metal complexes, opening avenues for potential applications for energy harvesting and optoelectronics.
Collapse
Affiliation(s)
- Saül Garcia-Orrit
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Víctor Vega-Mayoral
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Qiang Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Gianluca Serra
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G.Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
| | - Michele Guizzardi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
| | - Valentino Romano
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
| | - Stefano Dal Conte
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
| | - Lorenzo Di Mario
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Mordechai Kot
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Maria Antonietta Loi
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute for Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G.Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
| | - Juan Cabanillas-González
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
2
|
Medagedara H, Teferi MY, Wanasinghe ST, Burson W, Kizi S, Zaslona B, Mardis KL, Niklas J, Poluektov OG, Rury AS. Decorrelated singlet and triplet exciton delocalization in acetylene-bridged Zn-porphyrin dimers. Chem Sci 2024; 15:1736-1751. [PMID: 38303928 PMCID: PMC10829018 DOI: 10.1039/d3sc03327a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024] Open
Abstract
The controlled delocalization of molecular excitons remains an important goal towards the application of organic chromophores in processes ranging from light-initiated chemical transformations to classical and quantum information processing. In this study, we present a methodology to couple optical and magnetic spectroscopic techniques and assess the delocalization of singlet and triplet excitons in model molecular chromophores. By comparing the steady-state and time-resolved optical spectra of Zn-porphyrin monomers and weakly coupled dimers, we show that we can use the identity of substituents bound at specific positions of the macromolecules' rings to control the inter-ring delocalization of singlet excitons stemming from their B states through acetylene bridges. While broadened steady-state absorption spectra suggest the presence of delocalized B state excitons in mesityl-substituted Zn-tetraphenyl porphyrin dimers (Zn2U-D), we confirm this conclusion by measuring an enhanced ultrafast non-radiative relaxation from these inter-ring excitonic states to lower lying electronic states relative to their monomer. In contrast to the delocalized nature of singlet excitons, we use time-resolved EPR and ENDOR spectroscopies to show that the triplet states of the Zn-porphyrin dimers remain localized on one of the two macrocyclic sub-units. We use the analysis of EPR and ENDOR measurements on unmetallated model porphyrin monomers and dimers to support this conclusion. The results of DFT calculations also support the interpretation of localized triplet states. These results demonstrate researchers cannot conclude triplet excitons delocalize in macromolecular based on the presence of spatially extended singlet excitons, which can help in the design of chromophores for application in spin conversion and information processing technologies.
Collapse
Affiliation(s)
- Hasini Medagedara
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Mandefro Y Teferi
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | | | - Wade Burson
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Shahad Kizi
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Bradly Zaslona
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Kristy L Mardis
- Department of Chemistry, Physics, and Engineering Sciences, Chicago State University Chicago IL 60628 USA
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Aaron S Rury
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| |
Collapse
|
3
|
Khanlarkhani S, Akbarzadeh AR, Rahimi R. A retrospective-prospective survey of porphyrinoid fluorophores: towards new architectures as an electron transfer systems promoter. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Nolden O, Fleck N, Lorenzo ER, Wasielewski MR, Schiemann O, Gilch P, Richert S. Excitation Energy Transfer and Exchange-Mediated Quartet State Formation in Porphyrin-Trityl Systems. Chemistry 2020; 27:2683-2691. [PMID: 32681763 PMCID: PMC7898503 DOI: 10.1002/chem.202002805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 01/07/2023]
Abstract
Photogenerated multi‐spin systems hold great promise for a range of technological applications in various fields, including molecular spintronics and artificial photosynthesis. However, the further development of these applications, via targeted design of materials with specific magnetic properties, currently still suffers from a lack of understanding of the factors influencing the underlying excited state dynamics and mechanisms on a molecular level. In particular, systematic studies, making use of different techniques to obtain complementary information, are largely missing. This work investigates the photophysics and magnetic properties of a series of three covalently‐linked porphyrin‐trityl compounds, bridged by a phenyl spacer. By combining the results from femtosecond transient absorption and electron paramagnetic resonance spectroscopies, we determine the efficiencies of the competing excited state reaction pathways and characterise the magnetic properties of the individual spin states, formed by the interaction between the chromophore triplet and the stable radical. The differences observed for the three investigated compounds are rationalised in the context of available theoretical models and the implications of the results of this study for the design of a molecular system with an improved intersystem crossing efficiency are discussed.
Collapse
Affiliation(s)
- Oliver Nolden
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Nico Fleck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115, Bonn, Germany
| | - Emmaline R Lorenzo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115, Bonn, Germany
| | - Peter Gilch
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| |
Collapse
|
5
|
Oxidative Hydroxylation of Aryl Boronic Acid Catalyzed by Co-porphyrin Complexes via Blue-Light Irradiation. Catalysts 2020. [DOI: 10.3390/catal10111262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Oxidative reactions often require unstable and environmentally harmful oxidants; therefore, the investigation of safer alternatives is urgent. Here, the hydroxylation of aryl boronic acid in the presence of Co-complexes is demonstrated. Tetrakis(4-carboxyphenyl) Co(II)-porphyrin was combined with biodegradable polymers such as chitosan catalyzed hydroxylation of phenyl boronic acids to form phenol derivatives under blue-light irradiation. This catalytic system can be used as an eco-friendly oxidation process that does not release oxidizing agents into the atmosphere.
Collapse
|
6
|
Bonafé FP, Aradi B, Hourahine B, Medrano CR, Hernández FJ, Frauenheim T, Sánchez CG. A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron–Nuclear Dynamics and Pump–Probe Spectroscopy Simulations. J Chem Theory Comput 2020; 16:4454-4469. [DOI: 10.1021/acs.jctc.9b01217] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Franco P. Bonafé
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universitát Bremen, Bremen, Germany
| | - Ben Hourahine
- SUPA, Department of Physics, John Anderson Building, The University of Strathclyde, 107 Rottenrow, Glasgow G15 6QN, United Kingdom
| | - Carlos R. Medrano
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Federico J. Hernández
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
- Department of Physics, Universidad de Santiago de Chile, Av. Ecuador 3493, Santiago, Chile
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, Universitát Bremen, Bremen, Germany
- Computational Science Research Center (CSRC) Beijing and Computational Science and Applied Research (CSAR) Institute, Shenzhen, China
| | - Cristián G. Sánchez
- Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| |
Collapse
|
7
|
Moretti L, Kudisch B, Terazono Y, Moore AL, Moore TA, Gust D, Cerullo G, Scholes GD, Maiuri M. Ultrafast Dynamics of Nonrigid Zinc-Porphyrin Arrays Mimicking the Photosynthetic "Special Pair". J Phys Chem Lett 2020; 11:3443-3450. [PMID: 32290662 DOI: 10.1021/acs.jpclett.0c00856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conjugated porphyrin arrays are heavily investigated as efficient molecular systems for photosynthesis and photocatalysis. Recently, a series of one-, two-, and six-zinc-porphyrin arrays, noncovalently linked through benzene-based hubs, have been synthesized with the aim of mimicking the structure and function of the bacteriochlorophyll "special pair" in photosynthetic reaction centers. The excitonically coupled porphyrin subunits are expected to activate additional excited state relaxation channels with respect to the monomer. Here, we unveil the appearance of such supramolecular electronic interactions using ultrafast transient absorption spectroscopy with sub-25 fs time resolution. Upon photoexcitation of the Soret band, we resolve energy trapping within ∼150 fs in a delocalized dark excitonic manifold. Moreover, excitonic interactions promote an additional fast internal conversion from the Q-band to the ground state with an efficiency of up to 60% in the hexamer. These relaxation pathways appear to be common loss channels that limit the lifetime of the exciton states in noncovalently bound molecular aggregates.
Collapse
Affiliation(s)
- Luca Moretti
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan, Italy
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Bryan Kudisch
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Yuichi Terazono
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ana L Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Devens Gust
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan, Italy
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan, Italy
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
8
|
Kim W, Kim T, Kang S, Hong Y, Würthner F, Kim D. Tracking Structural Evolution during Symmetry‐Breaking Charge Separation in Quadrupolar Perylene Bisimide with Time‐Resolved Impulsive Stimulated Raman Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Woojae Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Taeyeon Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Seongsoo Kang
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Yongseok Hong
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for, Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Dongho Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| |
Collapse
|
9
|
Kim W, Kim T, Kang S, Hong Y, Würthner F, Kim D. Tracking Structural Evolution during Symmetry‐Breaking Charge Separation in Quadrupolar Perylene Bisimide with Time‐Resolved Impulsive Stimulated Raman Spectroscopy. Angew Chem Int Ed Engl 2020; 59:8571-8578. [DOI: 10.1002/anie.202002733] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Woojae Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Taeyeon Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Seongsoo Kang
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Yongseok Hong
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for, Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Dongho Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Korea
| |
Collapse
|
10
|
Baral S, Phillips M, Yan H, Avenso J, Gundlach L, Baumeier B, Lyman E. Ultrafast Formation of the Charge Transfer State of Prodan Reveals Unique Aspects of the Chromophore Environment. J Phys Chem B 2020; 124:2643-2651. [PMID: 32160469 PMCID: PMC7587403 DOI: 10.1021/acs.jpcb.0c00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipophilic dyes such as laurdan and prodan are widely used in membrane biology due to a strong bathochromic shift in emission that reports the structural parameters of the membrane such as area per molecule. Disentangling of the factors which control the spectral shift is complicated by the stabilization of a charge-transfer-like excitation of the dye in polar environments. Predicting the emission therefore requires modeling both the relaxation of the environment and the corresponding evolution of the excited state. Here, an approach is presented in which (i) the local environment is sampled by a classical molecular dynamics (MD) simulation of the dye and solvent, (ii) the electronically excited state of prodan upon light absorption is predicted by numerical quantum mechanics (QM), (iii) the iterative relaxation of the environment around the excited dye by MD coupled with the evolution of the excited state is performed, and (iv) the emission properties are predicted by QM. The QM steps are computed using the many-body Green's function in the GW approximation and the Bethe-Salpeter equation with the environment modeled as fixed point charges, sampled in the MD simulation steps. The comparison to ultrafast time-resolved transient absorption measurements demonstrates that the iterative molecular mechanics (MM)/QM approach agrees quantitatively with both the polarity-dependent shift in emission and the time scale over which the charge transfer state is stabilized. Together the simulations and experimental measurements suggest that the evolution into the charge transfer state is slower in amphiphilic solvents.
Collapse
Affiliation(s)
- Swapnil Baral
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew Phillips
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Han Yan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joseph Avenso
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Lars Gundlach
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Björn Baumeier
- Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular System, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
11
|
Bonafé FP, Hernández FJ, Aradi B, Frauenheim T, Sánchez CG. Fully Atomistic Real-Time Simulations of Transient Absorption Spectroscopy. J Phys Chem Lett 2018; 9:4355-4359. [PMID: 30024765 DOI: 10.1021/acs.jpclett.8b01659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have implemented an electron-nuclear real-time propagation scheme for the calculation of transient absorption spectra. When this technique is applied to the study of ultrafast dynamics of Soret-excited zinc(II) tetraphenylporphyrin in the subpicosecond time scale, quantum beats in the transient absorption caused by impulsively excited molecular vibrations are observed. The launching mechanism of such vibrations can be regarded as a displacive excitation of the zinc-pyrrole and pyrrole C-C bonds.
Collapse
Affiliation(s)
- Franco P Bonafé
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , Córdoba , Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba , INFIQC (CONICET - Universidad Nacional de Córdoba) , Córdoba , Argentina
| | - Federico J Hernández
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , Córdoba , Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba , INFIQC (CONICET - Universidad Nacional de Córdoba) , Córdoba , Argentina
| | - Bálint Aradi
- Bremen Center for Computational Materials Science , Universität Bremen , Bremen , Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science , Universität Bremen , Bremen , Germany
| | - Cristián G Sánchez
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , Córdoba , Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba , INFIQC (CONICET - Universidad Nacional de Córdoba) , Córdoba , Argentina
| |
Collapse
|
12
|
Falahati K, Hamerla C, Huix-Rotllant M, Burghardt I. Ultrafast photochemistry of free-base porphyrin: a theoretical investigation of B → Q internal conversion mediated by dark states. Phys Chem Chem Phys 2018; 20:12483-12492. [PMID: 29700539 DOI: 10.1039/c8cp00657a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We examine the mechanism of ultrafast internal conversion between the B band (Soret band) and the Q band in porphine (H2P), the prototypical free-base porphyrin, using electronic structure studies and on-the-fly surface-hopping nonadiabatic dynamics. Our study highlights the crucial role of dark states within the N band which are found to mediate B/Q state transfer, necessitating a treatment beyond Gouterman's classic four-orbital model. The sequential B → N → Q pathway dominates largely over the direct B → Q pathway which is found to be energetically unfavorable. Potential energy surface cuts and conical intersections between excited states are determined by TDDFT and validated by CASSCF/CASPT2 and XMCQDPT2 calculations. Both the static analysis and on-the-fly surface-hopping calculations suggest a pathway which involves minor structural deformations via in-plane vibrations. The B → N conversion is a barrierless adiabatic process occurring within ∼20 fs, while the subsequent N → Q conversion occurs via a conical intersection within ∼100 fs, in agreement with time-resolved experiments for porphine and related free base porphyrins. Furthermore, evidence for both sequential and direct transfer to the Qx and Qy states is obtained.
Collapse
Affiliation(s)
- Konstantin Falahati
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany.
| | | | | | | |
Collapse
|
13
|
Ellis SR, Hoffman DP, Park M, Mathies RA. Difference Bands in Time-Resolved Femtosecond Stimulated Raman Spectra of Photoexcited Intermolecular Electron Transfer from Chloronaphthalene to Tetracyanoethylene. J Phys Chem A 2018; 122:3594-3605. [PMID: 29558802 DOI: 10.1021/acs.jpca.8b00318] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The time-resolved femtosecond stimulated Raman spectra (FSRS) of a charge transfer (CT) excited noncovalent complex tetracyanoethylene:1-chloronaphthalene (TCNE:ClN) in dichloromethane (DCM) is reported with 40 fs time resolution. In the frequency domain, five FSRS peaks are observed with frequencies of 534, 858, 1069, 1392, and 1926 cm-1. The most intense peaks at 534 and 1392 cm-1 correspond to fundamentals while the features at 858, 1069, and 1926 cm-1 are attributed to a difference frequency, an overtone and a combination frequency of the fundamentals, respectively. The frequency of the 1392 cm-1 fundamental corresponding to the central C═C stretch of TCNE•- is red-shifted from the frequency of the steady state radical due to the close proximity and electron affinity of the countercation. The observation of a FSRS band at a difference frequency is analyzed. This analysis lends evidence for alternative nonlinear pathways of inverse Raman gain scattering (IRGS) or vertical-FSRS (VFSRS) which may contribute to the time-evolving FSRS spectrum on-resonance. Impulsive stimulated Raman measurements of the complex show coherent oscillations of the stimulated emission with frequencies of 153, 278, and 534 cm-1. The 278 cm-1 mode corresponds to Cl bending of the dichloromethane solvent. The center frequency of the 278 cm-1 mode is modulated by a frequency of ∼30 cm-1 which is attributed to the effect of librational motion of the dichloromethane solvent as it reorganizes around the nascent contact ion pair. The 153 ± 15 cm-1 mode corresponds to an out-of-plane bending motion of TCNE. This motion modulates the intermolecular separation of the contact ion pair and thereby the overlap of the frontier orbitals which is crucial for rapid charge recombination in 5.9 ± 0.2 ps. High time-frequency resolution vibrational spectra provide unique molecular details regarding charge localization and recombination.
Collapse
Affiliation(s)
- Scott R Ellis
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - David P Hoffman
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - Myeongkee Park
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - Richard A Mathies
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
14
|
Abraham B, Fan H, Galoppini E, Gundlach L. Vibrational Spectroscopy on Photoexcited Dye-Sensitized Films via Pump-Degenerate Four-Wave Mixing. J Phys Chem A 2018; 122:2039-2045. [PMID: 29381068 DOI: 10.1021/acs.jpca.7b10652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular sensitization of semiconductor films is an important technology for energy and environmental applications including solar energy conversion, photocatalytic hydrogen production, and water purification. Dye-sensitized films are also scientifically complex and interesting systems with a long history of research. In most applications, photoinduced heterogeneous electron transfer (HET) at the molecule/semiconductor interface is of critical importance, and while great progress has been made in understanding HET, many open questions remain. Of particular interest is the role of combined electronic and vibrational effects and coherence of the dye during HET. The ultrafast nature of the process, the rapid intramolecular vibrational energy redistribution, and vibrational cooling present complications in the study of vibronic coupling in HET. We present the application of a time domain vibrational spectroscopy-pump-degenerate four-wave mixing (pump-DFWM)-to dye-sensitized solid-state semiconductor films. Pump-DFWM can measure Raman-active vibrational modes that are triggered by excitation of the sample with an actinic pump pulse. Modifications to the instrument for solid-state samples and its application to an anatase TiO2 film sensitized by a Zn-porphyrin dye are discussed. We show an effective combination of experimental techniques to overcome typical challenges in measuring solid-state samples with laser spectroscopy and observe molecular vibrations following HET in a picosecond time window. The cation spectrum of the dye shows modes that can be assigned to the linker group and a mode that is localized on the Zn-phorphyrin chromophore and that is connected to photoexcitation.
Collapse
Affiliation(s)
- Baxter Abraham
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Hao Fan
- Department of Chemistry, Rutgers University , Newark, New Jersey 07102, United States
| | - Elena Galoppini
- Department of Chemistry, Rutgers University , Newark, New Jersey 07102, United States
| | - Lars Gundlach
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States.,Department of Physics and Astronomy, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Ponseca CS, Chábera P, Uhlig J, Persson P, Sundström V. Ultrafast Electron Dynamics in Solar Energy Conversion. Chem Rev 2017; 117:10940-11024. [DOI: 10.1021/acs.chemrev.6b00807] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Carlito S. Ponseca
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Pavel Chábera
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Jens Uhlig
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Petter Persson
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Villy Sundström
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| |
Collapse
|
16
|
Bragg AE, Yu W, Zhou J, Magnanelli T. Ultrafast Raman Spectroscopy as a Probe of Local Structure and Dynamics in Photoexcited Conjugated Materials. J Phys Chem Lett 2016; 7:3990-4000. [PMID: 27681200 DOI: 10.1021/acs.jpclett.6b01060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An important challenge in the study of conjugated organic materials is to relate the properties of transient states underlying macroscopic material responses directly with intra- and intermolecular structure. We discuss recent efforts using the vibrational sensitivity of time-resolved Raman spectroscopy to interrogate structural properties of transient excited and charge-separated states in conjugated oligomers and polymers in order to relate them to molecular conformations and material microstructures. We focus on recent work with excited-state Raman spectroscopy that provides mode-specific signatures of structural relaxation in oligo- and polythiophenes, examination of structural heterogeneities associated with exciton localization in different structural motifs of amorphous polymers, and interrogation of correlations between microstructure and properties and dynamics of charge-separated states within polymer aggregates. On the basis of these recent efforts, we provide an outlook for further applying this method to elucidate relationships between the structure and properties of transient states and the photoresponses of conjugated materials.
Collapse
Affiliation(s)
- Arthur E Bragg
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Wenjian Yu
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jiawang Zhou
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Timothy Magnanelli
- Department of Chemistry, Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|