1
|
Duncan DA, Blowey PJ, Lee TL, Allegretti F, Nielsen CB, Rochford LA. Quantitative Insights into the Adsorption Structure of Diindeno[1,2- a;1',2'- c]fluorene-5,10,15-trione (Truxenone) on a Cu(111) Surface Using X-ray Standing Waves. ACS OMEGA 2021; 6:34525-34531. [PMID: 34963937 PMCID: PMC8697368 DOI: 10.1021/acsomega.1c04799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The adsorption structure of truxenone on Cu(111) was determined quantitatively using normal-incidence X-ray standing waves. The truxenone molecule was found to chemisorb on the surface, with all adsorption heights of the dominant species on the surface less than ∼2.5 Å. The phenyl backbone of the molecule adsorbs mostly parallel to the underlying surface, with an adsorption height of 2.32 ± 0.08 Å. The C atoms bound to the carbonyl groups are located closer to the surface at 2.15 ± 0.10 Å, a similar adsorption height to that of the chemisorbed O species; however, these O species were found to adsorb at two different adsorption heights, 1.96 ± 0.08 and 2.15 ± 0.06 Å, at a ratio of 1:2, suggesting that on average, one O atom per adsorbed truxenone molecule interacts more strongly with the surface. The adsorption geometry determined herein is an important benchmark for future theoretical calculations concerning both the interaction with solid surfaces and the electronic properties of a molecule with electron-accepting properties for applications in organic electronic devices.
Collapse
Affiliation(s)
- David A. Duncan
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
| | - Philip J. Blowey
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
- Physics
Department, University of Warwick, Coventry CV4 7AL, U.K.
| | - Tien-Lin Lee
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
| | - Francesco Allegretti
- Physics
Department E20, Technical University of
Munich, James Franck
Straße 1, D-85748 Garching, Germany
| | - Christian B. Nielsen
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Luke A. Rochford
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
- Chemistry
Department, University of Warwick, Coventry CV4 7AL, U.K.
- Chemistry
Department, University of Birmingham, University Road, Birmingham B15 2TT, U.K.
| |
Collapse
|
2
|
Cui D, MacLeod JM, Rosei F. Planar Anchoring of C 70 Liquid Crystals Using a Covalent Organic Framework Template. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903294. [PMID: 31513362 DOI: 10.1002/smll.201903294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The surface-induced anchoring effect is a well-developed technique to control the growth of liquid crystals (LCs). Nevertheless, a defined nanometer-scale template has never been used to induce the anchored growth of LCs with molecular building units. Scanning tunneling microscopy results at the solid/liquid interface reveal that a 2D covalent organic framework (COF-1) can offer an anchoring effect to template C70 molecules into forming several LC mesophases, which cannot be obtained under other conditions. Through comparison with the C60 system, a stepwise breakdown in ordering of C70 LC is observed. The process is described in terms of the effects of molecular anisotropy on the epitaxial growth of molecular crystals. The results suggest that using a surface-confined template to anchor the initial layer of LC molecules can be a modular and potentially broadly applicable approach for organizing molecular mesogens into LCs.
Collapse
Affiliation(s)
- Daling Cui
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3 × 1S2, Canada
| | - Jennifer M MacLeod
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3 × 1S2, Canada
- School of Chemistry Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, 4000, QLD, Australia
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3 × 1S2, Canada
| |
Collapse
|
3
|
Cui D, Ebrahimi M, Macleod JM, Rosei F. Template-Driven Dense Packing of Pentagonal Molecules in Monolayer Films. NANO LETTERS 2018; 18:7570-7575. [PMID: 30403353 DOI: 10.1021/acs.nanolett.8b03126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The integration of molecules with irregular shape into a long-range, dense and periodic lattice represents a unique challenge for the fabrication of engineered molecular scale architectures. The tiling of pentagonal molecules on a two-dimensional (2D) plane can be used as a proof-of-principle investigation to overcome this problem because basic geometry dictates that a 2D surface cannot be filled with a periodic arrangement of pentagons, a fundamental limitation that suggests that pentagonal molecules may not be suitable as building blocks for dense films. However, here we show that the 2D covalent organic framework (COF) known as COF-1 can direct the growth of pentagonal guest molecules as dense crystalline films at the solution/solid interface. We find that the pentagonal molecule corannulene adsorbs at two different sites on the COF-1 lattice, and that multiple molecules can adsorb into well-defined clusters patterned by the COF. Two types of these dense periodic packing motifs lead to a five-fold symmetry reduction compatible with translational symmetry, one of which gives an unprecedented high molecular density of 2.12 molecules/nm2.
Collapse
Affiliation(s)
- Daling Cui
- Centre Énergie, Matériaux et Télécommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
| | - Maryam Ebrahimi
- Centre Énergie, Matériaux et Télécommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
- Physics Department E20 , Technical University of Munich James-Franck-Strasse1 , D-85748 Garching , Germany
| | - Jennifer M Macleod
- Centre Énergie, Matériaux et Télécommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
- School of Chemistry, Physics, and Mechanical Engineering , Queensland University of Technology , Brisbane , 4000 QLD Australia
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
- Institute of Fundamental and Frontier Science , University of Electronic Science and Technology of China , Chengdu 610054 People's Republic of China
| |
Collapse
|
4
|
Cui D, Ebrahimi M, Rosei F, Macleod JM. Control of Fullerene Crystallization from 2D to 3D through Combined Solvent and Template Effects. J Am Chem Soc 2017; 139:16732-16740. [DOI: 10.1021/jacs.7b08642] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daling Cui
- Centre
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Maryam Ebrahimi
- Centre
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Federico Rosei
- Centre
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
- Institute
of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054 P. R. China
| | - Jennifer M. Macleod
- Centre
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
- School
of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, 4000 Queensland Australia
| |
Collapse
|