1
|
Miller ER, Hoehn SJ, Kumar A, Jiang D, Parker SM. Ultrafast photochemistry and electron diffraction for cyclobutanone in the S2 state: Surface hopping with time-dependent density functional theory. J Chem Phys 2024; 161:034105. [PMID: 39007373 DOI: 10.1063/5.0203679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
We simulate the photodynamics of gas-phase cyclobutanone excited to the S2 state using fewest switches surface hopping (FSSH) dynamics powered by time-dependent density functional theory (TDDFT). We predict a total photoproduct yield of 8%, with a C3:C2 product ratio of 0 trajectories to 8 trajectories. One primary S2 → S1 conical intersection is identified involving the compression of an α-carbon-carbon-hydrogen bond angle. Excited state lifetimes computed with respect to electronic state populations were found to be 3.96 ps (S2 → S1) and 498 fs (S1 → S0). We also generate time-resolved difference pair distribution functions (ΔPDFs) from our TDDFT-FSSH dynamics results in order to generate direct comparisons with ultrafast electron diffraction experiment observables. Global and target analysis of time-resolved ΔPDFs produced a distinct set of lifetimes: (i) a 0.548 ps decay and (ii) a 1.69 ps decay, both resembling the S2 minimum, as well as (iii) a long decay that resembles the S1 minimum geometry and the fully separated C2 products. Finally, we contextualize our results by considering the impact of the most likely sources of significant errors.
Collapse
Affiliation(s)
- Ericka Roy Miller
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, USA
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, USA
| | - Abhijith Kumar
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, USA
| | - Dehua Jiang
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, USA
| | - Shane M Parker
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, USA
| |
Collapse
|
2
|
Jaddi A, Marakchi K, Zanchet A, García-Vela A. A high-level ab initio study of the photodissociation of acetaldehyde. J Chem Phys 2024; 160:224309. [PMID: 38874103 DOI: 10.1063/5.0207362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Acetaldehyde is a very relevant atmospheric species whose photodissociation has been extensively studied in the first absorption band both experimentally and theoretically. Very few works have been reported on acetaldehyde photodissociation at higher excitation energies. In this work, the photodissociation dynamics of acetaldehyde is investigated by means of high-level multireference configuration interaction ab initio calculations. Five different fragmentation pathways of acetaldehyde are explored by calculating the potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distances. The excitation energy range covered in the study is up to 10 eV, nearly the ionization energy of acetaldehyde. We intend to rationalize the available experimental results and, in particular, to elucidate why some of the studied fragmentation pathways are experimentally observed in the different excitation energy regions and some others are not. Based on the shape of the calculated potential curves, we are able to explain the main findings of the available experiments, also suggesting possible dynamical dissociation mechanisms in the different energy regions. Thus, the reported potential curves are envisioned as a useful tool to interpret the currently available experiments as well as future ones on acetaldehyde photodissociation at excitation wavelengths in the range studied here.
Collapse
Affiliation(s)
- A Jaddi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, LS3MN2E/CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
| | - K Marakchi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, LS3MN2E/CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - A Zanchet
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
| | - A García-Vela
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
3
|
Shu Y, Akher FB, Guo H, Truhlar DG. Parametrically Managed Activation Functions for Improved Global Potential Energy Surfaces for Six Coupled 5A' States and Fourteen Coupled 3A' States of O + O 2. J Phys Chem A 2024; 128:1207-1217. [PMID: 38349764 DOI: 10.1021/acs.jpca.3c06823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
We report new potential energy surfaces for six coupled 5A' states and 14 coupled 3A' states of O3. The new surfaces are created by parametrically managed diabatization by deep neural network (PM-DDNN). The PM-DDNN method uses calculated adiabatic potential energy surfaces to discover and fit an underlying adiabatic-equivalent set of diabatic surfaces and their couplings and obtains the fit to the adiabatic surfaces by diagonalization of the diabatic potential energy matrix (DPEM). The procedure yields the adiabatic surfaces and their gradients, as well as the DPEM and its gradient. If desired one can also compute the nonadiabatic coupling due to the transformation. The present work improves on previous work by using a new coordinate to guide the decay of the neural network contribution to the many-body fit to the whole DPEM. The main objective was to obtain smoother potentials than the previous ones with better suitability for dynamics calculations, and this was achieved. Furthermore, we obtained suitably small deviations from the input reference data. For the six coupled 5A' surfaces, the 60,366 data below 10 eV are fit with a mean unsigned error (MUE) of 49 meV, and for the 14 coupled 3A' surfaces, the 76,733 data below 10 eV are fit with an MUE of 28 meV. The data below 5 eV fit even more accurately with MUEs of 37 meV (5A') and 20 meV (3A').
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Farideh Badichi Akher
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
4
|
Nelson TR, Fernandez-Alberti S, Tretiak S. Modeling excited-state molecular dynamics beyond the Born-Oppenheimer regime. NATURE COMPUTATIONAL SCIENCE 2022; 2:689-692. [PMID: 38177357 DOI: 10.1038/s43588-022-00357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Affiliation(s)
- Tammie R Nelson
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
5
|
Erickson M, Han Y, Rasulev B, Kilin D. Molecular Dynamics Study of the Photodegradation of Polymeric Chains. J Phys Chem Lett 2022; 13:4374-4380. [PMID: 35544382 DOI: 10.1021/acs.jpclett.2c00802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of reusable polymeric materials inspires an attempt to combine renewable biomass with upcycling to form a biorenewable closed system. It has been reported that 2,5-furandicarboxylic acid (FDCA) can be recovered for recycling when incorporated as monomers into photodegradable polymeric systems. Here, we conduct density functional theory (DFT) studies with periodic boundary conditions on microscopic structures involved in the photodegradation of polymeric chains incorporating FDCA and 2-nitro-1,3-benzenedimethanol. The photodegradation process of polymeric chains is studied using time-dependent excited-state molecular dynamics (TDESMD) in vacuum and aqueous environments. Changes in the photophysical properties for reaction intermediates are characterized by ground-state observables. The distribution of reaction intermediates and products is obtained from TDESMD trajectories using cheminformatics techniques. Results show that a higher degree of polymeric chain degradation is achieved in the vacuum environment. Additionally, one finds that the FDCA molecule is recoverable in the aqueous environment, in qualitative agreement with experimental findings.
Collapse
Affiliation(s)
- Meade Erickson
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
6
|
Han Y, Iduoku K, Grant G, Rasulev B, Leontyev A, Hobbie EK, Tretiak S, Kilina SV, Kilin DS. Hot Carrier Dynamics at Ligated Silicon(111) Surfaces: A Computational Study. J Phys Chem Lett 2021; 12:7504-7511. [PMID: 34342460 DOI: 10.1021/acs.jpclett.1c02084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We provide a case-study for thermal grafting of benzenediazonium bromide onto a hydrogenated Si(111) surface using ab initio molecular dynamics (AIMD) calculations. A sequence of reaction steps is identified in the AIMD trajectory, including the loss of N2 from the diazonium salt, proton transfer from the surface to the bromide ion that eliminates HBr, and deposition of the phenyl group onto the surface. We next assess the influence of the phenyl groups on photophysics of hydrogen-terminated Si(111) slabs. The nonadiabatic couplings necessary for a description of the excited-state dynamics are calculated by combining ab initio electronic structures and reduced density matrix formalism with Redfield theory. The phenyl-terminated slab shows reduced nonradiative relaxation and recombination rates of hot charge carriers in comparison with the hydrogen-terminated slab. Altogether, our results provide atomistic insights revealing that (i) the diazonium salt thermally decomposes at the surface allowing the formation of covalently bonded phenyl group, and (ii) the coverage of phenyl groups on the surface slows down charge carrier cooling driven by electron-phonon interactions, which increases photoluminescence efficiency at the near-infrared spectral region.
Collapse
Affiliation(s)
- Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kweeni Iduoku
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Gena Grant
- Turtle Mountain Community College, 10145 BIA Road 7, PO Box 340, Belcourt, North Dakota 58316, United States
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Alexey Leontyev
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Erik K Hobbie
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Svetlana V Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dmitri S Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
7
|
Balasubramani SG, Chen GP, Coriani S, Diedenhofen M, Frank MS, Franzke YJ, Furche F, Grotjahn R, Harding ME, Hättig C, Hellweg A, Helmich-Paris B, Holzer C, Huniar U, Kaupp M, Marefat Khah A, Karbalaei Khani S, Müller T, Mack F, Nguyen BD, Parker SM, Perlt E, Rappoport D, Reiter K, Roy S, Rückert M, Schmitz G, Sierka M, Tapavicza E, Tew DP, van Wüllen C, Voora VK, Weigend F, Wodyński A, Yu JM. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J Chem Phys 2020; 152:184107. [PMID: 32414256 PMCID: PMC7228783 DOI: 10.1063/5.0004635] [Citation(s) in RCA: 563] [Impact Index Per Article: 140.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 01/30/2023] Open
Abstract
TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy-cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe-Salpeter methods, second-order Møller-Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE's functionality, including excited-state methods, RPA and Green's function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE's current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE's development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.
Collapse
Affiliation(s)
- Sree Ganesh Balasubramani
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Guo P Chen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Michael Diedenhofen
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Marius S Frank
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Yannick J Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Arnim Hellweg
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Christof Holzer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Uwe Huniar
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Alireza Marefat Khah
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Thomas Müller
- Forschungszentrum Jülich, Jülich Supercomputer Centre, Wilhelm-Jonen Straße, 52425 Jülich, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Brian D Nguyen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Shane M Parker
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Eva Perlt
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Dmitrij Rappoport
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kevin Reiter
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Saswata Roy
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Matthias Rückert
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Gunnar Schmitz
- Department of Chemistry, Aarhus Universitet, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Marek Sierka
- TURBOMOLE GmbH, Litzenhardtstraße 19, 76135 Karlsruhe, Germany
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, USA
| | - David P Tew
- Max Planck Institute for Solid State Research, Heisenbergstaße 1, 70569 Stuttgart, Germany
| | - Christoph van Wüllen
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Staße 52, 67663 Kaiserslautern, Germany
| | - Vamsee K Voora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Florian Weigend
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Artur Wodyński
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jason M Yu
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| |
Collapse
|
8
|
Zhang Y, Li L, Tretiak S, Nelson T. Nonadiabatic Excited-State Molecular Dynamics for Open-Shell Systems. J Chem Theory Comput 2020; 16:2053-2064. [DOI: 10.1021/acs.jctc.9b00928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Linqiu Li
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie Nelson
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
9
|
Yang CH, Bhattacharyya S, Liu L, Fang WH, Liu K. Real-time tracking of the entangled pathways in the multichannel photodissociation of acetaldehyde. Chem Sci 2020; 11:6423-6430. [PMID: 34094106 PMCID: PMC8159351 DOI: 10.1039/d0sc00063a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The roaming mechanism, an unconventional reaction path, was discovered more than a decade ago in the studies of formaldehyde photodissociation, H2CO → H2 + CO. Since then, observations of roaming have been claimed in numerous photochemical processes. A closer examination of the presented data, however, revealed that evidence for roaming is not always unequivocal, and some of the conclusions could be misleading. We report here an in-depth, joint experimental and theoretical study of the title reaction. By tracking the time-evolution of the pair-correlated product state distributions, we decipher the competing, interwoven reaction pathways that lead to the radical (CH3 + HCO) and molecular (CH4 + CO) products. Possible roaming pathways are then elucidated and a more precise descriptor of the phenomenon is delineated.
Collapse
Affiliation(s)
- Chung-Hsin Yang
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica P. O. Box 23-166 Taipei Taiwan 10617
| | - Surjendu Bhattacharyya
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica P. O. Box 23-166 Taipei Taiwan 10617
| | - Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Department of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Department of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Kopin Liu
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica P. O. Box 23-166 Taipei Taiwan 10617 .,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS Dalian 116023 P. R. China.,Aerosol Science Research Center, National Sun Yat-sen University Kaohsiung Taiwan 80424
| |
Collapse
|
10
|
Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem Rev 2020; 120:2215-2287. [PMID: 32040312 DOI: 10.1021/acs.chemrev.9b00447] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
Collapse
Affiliation(s)
- Tammie R Nelson
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander J White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Josiah A Bjorgaard
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Andrew E Sifain
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.,U.S. Army Research Laboratory , Aberdeen Proving Ground , Maryland 21005 , United States
| | - Yu Zhang
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Benjamin Nebgen
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
11
|
Zhang Y, Nelson T, Tretiak S. Non-adiabatic molecular dynamics of molecules in the presence of strong light-matter interactions. J Chem Phys 2019; 151:154109. [PMID: 31640366 DOI: 10.1063/1.5116550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Tammie Nelson
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
12
|
Parker SM, Roy S, Furche F. Multistate hybrid time-dependent density functional theory with surface hopping accurately captures ultrafast thymine photodeactivation. Phys Chem Chem Phys 2019; 21:18999-19010. [DOI: 10.1039/c9cp03127h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an efficient analytical implementation of first-order nonadiabatic derivative couplings between arbitrary Born–Oppenheimer states in the hybrid time-dependent density functional theory (TDDFT) framework using atom-centered basis functions.
Collapse
Affiliation(s)
- Shane M. Parker
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - Saswata Roy
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - Filipp Furche
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| |
Collapse
|
13
|
Sifain AE, Gifford BJ, Gao DW, Lystrom L, Nelson TR, Tretiak S. NEXMD Modeling of Photoisomerization Dynamics of 4-Styrylquinoline. J Phys Chem A 2018; 122:9403-9411. [DOI: 10.1021/acs.jpca.8b09103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew E. Sifain
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485, United States
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brendan J. Gifford
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - David W. Gao
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Los Alamos High School, Los Alamos, New Mexico 87544, United States
| | - Levi Lystrom
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Tammie R. Nelson
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
14
|
Tapavicza E, Thompson T, Redd K, Kim D. Tuning the photoreactivity of Z-hexatriene photoswitches by substituents - a non-adiabatic molecular dynamics study. Phys Chem Chem Phys 2018; 20:24807-24820. [PMID: 30229769 PMCID: PMC6211802 DOI: 10.1039/c8cp05181j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To understand how substituents can be used to increase the quantum yield of photochemical electrocyclic ring-closing of the Z-hexa-1,3,5-triene (HT) photoswitch forming cyclohexadiene (CHD), we investigate the S1 photo dynamics of HT and its derivatives 2,5-dimethyl-HT (DMHT), 2-isopropyl-5-methyl-HT (2,5-IMHT), 1-isopropyl-4-methyl-HT (1,4-IMHT), and 2,5-diisopropyl-HT (DIHT) using time-dependent density functional theory surface hopping dynamics. We report detailed photoproduct distributions, formation mechanisms, branching ratios, and wavelength-dependent product quantum yields. Most products have been confirmed experimentally and include all-trans HT derivatives, cyclopropanes, cyclobutenes, cyclopentene, cyclohexadienes, and bicyclic compounds. Regarding CHD formation, we find that for the 2,5-substituted derivatives DMHT, 2,5-IMHT, and DIHT, the branching ratios increase with increasing size of the substituents. In contrast the branching ratios of the E/Z-isomerization decrease with increasing size of the substituents. Due to steric interactions, increasing the size of the substituents increases the amount of gZg rotamers in the ground state, which are prone to CHD formation and have lower E/Z-isomerization probability. Furthermore, we find [1,4], [1,5], and [1,6]-sigmatropic hydrogen shift reactions occurring at large percentages (5% to 15%); for sterical reasons these reactions stem from tZg conformers. DIHT shows the lowest percentage of side product formation among the 2,5-substituted molecules and highest CHD branching ratio; its CHD quantum yield can be increased up to more than 64%, by excitation of DIHT on the red tail of its absorption spectrum, whereas the Z/E-isomerization is reduced below 5% and side reactions practically vanish. This makes DIHT the best candidate for applications in molecular switches.
Collapse
Affiliation(s)
- Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA.
| | | | | | | |
Collapse
|
15
|
Thompson T, Tapavicza E. First-Principles Prediction of Wavelength-Dependent Product Quantum Yields. J Phys Chem Lett 2018; 9:4758-4764. [PMID: 30048134 PMCID: PMC6211794 DOI: 10.1021/acs.jpclett.8b02048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present a method to predict wavelength-dependent product quantum yields (PQYs) for photochemical reactions and applied it to Z/E-isomerization and several ring-closing reactions of Z-2,5-dimethyl-1,3,5-hexatriene and truncated previtamin D. Using branching ratios from surface hopping molecular dynamics, individual trajectories are correlated with the absorption spectra of their initial structures. The wavelength-dependent PQYs are computed by dividing the average spectrum of the initial structures of the product-forming trajectories by the average spectrum of all initial structures. Accurate absorption spectra are calculated using the correlated ADC(2) method with an implicit solvent. Calculations reproduce the experimentally found trend of increasing six-ring formation and decreasing Z/E-isomerization on the red side of the spectrum. Over all seven reactions studied, the mean absolute error (MAE) between experimental and calculated PQYs (MAE) amounts to 8.1%, and the largest MAE is 18.6%. For four reactions, predicted values agree quantitatively with experiments within 5.6%.
Collapse
Affiliation(s)
- Travis Thompson
- Department of Chemistry and Biochemistry , California State University, Long Beach , 1250 Bellflower Blvd. , Long Beach , California 90840 , United States
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry , California State University, Long Beach , 1250 Bellflower Blvd. , Long Beach , California 90840 , United States
| |
Collapse
|
16
|
Han Y, Anderson K, Hobbie EK, Boudjouk P, Kilin DS. Unraveling Photodimerization of Cyclohexasilane from Molecular Dynamics Studies. J Phys Chem Lett 2018; 9:4349-4354. [PMID: 30004709 DOI: 10.1021/acs.jpclett.8b01691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photoinduced reactions of a pair of cyclohexasilane (CHS) monomers are explored by time-dependent excited-state molecular dynamics (TDESMD) calculations. In TDESMD trajectories, one observes vivid reaction events including dimerization and fragmentation. A general reaction pathway is identified as (i) ring-opening formation of a dimer, (ii) rearrangement induced by bond breaking, and (iii) decomposition through the elimination of small fragments. The identified pathway supports the chemistry proposed for the fabrication of silicon-based materials using CHS as a precursor. In addition, we find dimers have smaller HOMO-LUMO gaps and exhibit a red shift and line-width broadening in the computed photoluminescence spectra compared with a pair of CHS monomers.
Collapse
Affiliation(s)
- Yulun Han
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| | - Kenneth Anderson
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| | - Erik K Hobbie
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| | - Philip Boudjouk
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| | - Dmitri S Kilin
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58102 , United States
| |
Collapse
|
17
|
Lystrom L, Zhang Y, Tretiak S, Nelson T. Site-Specific Photodecomposition in Conjugated Energetic Materials. J Phys Chem A 2018; 122:6055-6061. [DOI: 10.1021/acs.jpca.8b04381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Levi Lystrom
- Theoretical Division, Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Yu Zhang
- Theoretical Division, Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division, Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie Nelson
- Theoretical Division, Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
18
|
Sifain AE, Bjorgaard JA, Nelson TR, Nebgen BT, White AJ, Gifford BJ, Gao DW, Prezhdo OV, Fernandez-Alberti S, Roitberg AE, Tretiak S. Photoexcited Nonadiabatic Dynamics of Solvated Push–Pull π-Conjugated Oligomers with the NEXMD Software. J Chem Theory Comput 2018; 14:3955-3966. [DOI: 10.1021/acs.jctc.8b00103] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Brendan J. Gifford
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - David W. Gao
- Los Alamos High School, Los Alamos, New Mexico 87544, United States
| | | | | | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | |
Collapse
|
19
|
Han Y, Rasulev B, Kilin DS. Photofragmentation of Tetranitromethane: Spin-Unrestricted Time-Dependent Excited-State Molecular Dynamics. J Phys Chem Lett 2017; 8:3185-3192. [PMID: 28618779 DOI: 10.1021/acs.jpclett.7b01330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, the photofragmentation dynamics of tetranitromethane (TNM) is explored by a spin-unrestricted time-dependent excited-state molecular dynamics (u-TDESMD) algorithm based on Rabi oscillations and principles similar to trajectory surface hopping, with a midintensity field approximation. The leading order process is represented by the molecule undergoing cyclic excitations and de-excitations. During excitation cycles, the nuclear kinetic energy is accumulated to overcome the dissociation barriers in the reactant and a sequence of intermediates. The dissociation pathway includes the ejection of NO2 groups followed by the formation of NO and CO. The simulated mass spectra at the ab initio level, based on the bond length in possible fragments, are extracted from simulation trajectories. The recently developed methodology has the potential to model and monitor photoreactions with open-shell intermediates and radicals.
Collapse
Affiliation(s)
- Yulun Han
- Department of Chemistry, University of South Dakota , Vermillion, South Dakota 57069, United States
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108, United States
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Dmitri S Kilin
- Department of Chemistry, University of South Dakota , Vermillion, South Dakota 57069, United States
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108, United States
| |
Collapse
|
20
|
Muuronen M, Parker SM, Berardo E, Le A, Zwijnenburg MA, Furche F. Mechanism of photocatalytic water oxidation on small TiO 2 nanoparticles. Chem Sci 2017; 8:2179-2183. [PMID: 28507672 PMCID: PMC5407260 DOI: 10.1039/c6sc04378j] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/05/2016] [Indexed: 12/28/2022] Open
Abstract
We present the first unconstrained nonadiabatic molecular dynamics (NAMD) simulations of photocatalytic water oxidation by small hydrated TiO2 nanoparticles using Tully surface hopping and time-dependent density functional theory. The results indicate that ultrafast electron-proton transfer from physisorbed water to the photohole initiates the photo-oxidation on the S1 potential energy surface. The new mechanism readily explains the observation of mobile hydroxyl radicals in recent experiments. Two key driving forces for the photo-oxidation reaction are identified: localization of the electron-hole pair and stabilization of the photohole by hydrogen bonding interaction. Our findings illustrate the scope of recent advances in NAMD methods and emphasize the importance of explicit simulation of electronic excitations.
Collapse
Affiliation(s)
- Mikko Muuronen
- Department of Chemistry , University of California , 1102 Natural Sciences II , Irvine , CA 92697-2025 , USA . ; ; ; Tel: +1 949 824-5051
| | - Shane M Parker
- Department of Chemistry , University of California , 1102 Natural Sciences II , Irvine , CA 92697-2025 , USA . ; ; ; Tel: +1 949 824-5051
| | - Enrico Berardo
- Department of Chemistry , Imperial College London , South Kensington , London , SW7 2AZ , UK
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK
| | - Alexander Le
- Department of Chemistry , University of California , 1102 Natural Sciences II , Irvine , CA 92697-2025 , USA . ; ; ; Tel: +1 949 824-5051
| | - Martijn A Zwijnenburg
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK
| | - Filipp Furche
- Department of Chemistry , University of California , 1102 Natural Sciences II , Irvine , CA 92697-2025 , USA . ; ; ; Tel: +1 949 824-5051
| |
Collapse
|
21
|
Cisneros C, Thompson T, Baluyot N, Smith AC, Tapavicza E. The role of tachysterol in vitamin D photosynthesis – a non-adiabatic molecular dynamics study. Phys Chem Chem Phys 2017; 19:5763-5777. [DOI: 10.1039/c6cp08064b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To investigate the role of tachysterol in the regulation of vitamin D photosynthesis, we studied its absorption properties and photodynamics by ab initio methods and non-adiabatic molecular dynamics.
Collapse
Affiliation(s)
- Cecilia Cisneros
- Department of Chemistry and Biochemistry
- California State University
- Long Beach
- Long Beach
- USA
| | - Travis Thompson
- Department of Chemistry and Biochemistry
- California State University
- Long Beach
- Long Beach
- USA
| | - Noel Baluyot
- Department of Chemistry and Biochemistry
- California State University
- Long Beach
- Long Beach
- USA
| | - Adam C. Smith
- Department of Chemistry and Biochemistry
- California State University
- Long Beach
- Long Beach
- USA
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry
- California State University
- Long Beach
- Long Beach
- USA
| |
Collapse
|