1
|
Lu TF, Wang YS, Tomko JA, Hopkins PE, Zhang HX, Prezhdo OV. Control of Charge Carrier Dynamics in Plasmonic Au Films by TiO x Substrate Stoichiometry. J Phys Chem Lett 2020; 11:1419-1427. [PMID: 32011143 DOI: 10.1021/acs.jpclett.9b03884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic excitations in noble metals have many fascinating properties and give rise to a broad range of applications. We demonstrate, using nonadiabatic molecular dynamics combined with time-domain density functional theory, that the chemical composition and stoichiometry of substrates can have a strong influence on charge dynamics. By changing oxygen content in TiO2, including stoichiometric, oxygen rich, and oxygen poor phases, and Ti metal, one can alter lifetimes of charge carriers in Au by a factor of 5 and control the ratio of electron-to-hole relaxation rates by a factor of 10. Remarkably, a thin TiOx substrate greatly alters charge carrier properties in much thicker Au films. Such large variations stem from the fact that the Ti and O atoms are much lighter than Au, and their vibrations are much faster at dissipating the energy. The control over a particular charge carrier and an energy range depends on the Au and TiOx level alignment, and the interfacial interaction strength. These factors are easily influenced by the TiOx stoichiometry. In particular, oxygen rich and poor TiO2 can be used to control holes and electrons, respectively, while metallic Ti affects both charge carriers. The detailed atomistic analysis of the interfacial and electron-vibrational interactions generates the fundamental understanding of the properties of plasmonic materials needed to design photovoltaic, photocatalytic, optoelectronic, sensing, nanomedical, and other devices.
Collapse
Affiliation(s)
- Teng-Fei Lu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Yi-Siang Wang
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - John A Tomko
- Department of Materials Science and Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Patrick E Hopkins
- Department of Materials Science and Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
- Department of Mechanical and Aerospace Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
- Department of Physics , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
2
|
Wei Y, Fang WH, Long R. Covalent Functionalized Black Phosphorus Greatly Inhibits Nonradiative Charge Recombination: A Time Domain Ab Initio Study. J Phys Chem Lett 2020; 11:478-484. [PMID: 31875400 DOI: 10.1021/acs.jpclett.9b03465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mono- or few-layer black phosphorus (BP) has emerged as a promising photovoltaic and optoelectronic material with realistic applications subjected to instability and short charge carrier lifetime. Experiments show that covalent functionalization can improve the stability, but the underlying mechanism for the prolonged lifetime remains elusive. By performing spin-polarized time domain density functional theory combined with nonadiabatic (NA) molecular dynamics simulations, we demonstrate that BP passivated with both phenyl and nitrophenyl can suppress the nonradiative electron-hole recombination by a factor of 2 and 3, respectively, relative to the pristine system. The slow recombination is due to the interplay between energy gap, NA coupling, and decoherence time, which happens either through a hole-trap-assisted process or in a direct way between a free electron and hole in the spin-up channel. The observations hold in the spin-down channel. The study suggests that the passivating strategy should work for BP and other two-dimensional materials.
Collapse
Affiliation(s)
- Yaqing Wei
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| |
Collapse
|
3
|
Zhang Z, Fang WH, Long R, Prezhdo OV. Exciton Dissociation and Suppressed Charge Recombination at 2D Perovskite Edges: Key Roles of Unsaturated Halide Bonds and Thermal Disorder. J Am Chem Soc 2019; 141:15557-15566. [DOI: 10.1021/jacs.9b06046] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhaosheng Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Gauzzi A, Profeta G, Continenza A, Bernardini F, Massidda S. Disorder-induced localisation and suppression of superconductivity in YSr 2Cu 3O 6+x. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:284001. [PMID: 30947150 DOI: 10.1088/1361-648x/ab1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
By means of ab initio calculations within the local density approximation to density functional theory, we investigate the electronic structure of the 60 K superconductor YSr2Cu3O6+x (YSCO). We focus on the effects of the Sr/Ba substitution and on the main structural modifications induced by this substitution experimentally found in the Sr compound, namely the tetragonal symmetry and the oxygen disorder in the basal plane. In the calculations, this disorder is simulated by using a supercell approach. Due to band structure effects, we find a larger stabilisation free energy of the orthorhombic structure in YBa2Cu3O6+x (YBCO). In YSCO, the tetragonal disordered phase is found to be stabilized by oxygen overdoping (x > 1) and by sufficiently large mass-enhancement factors, [Formula: see text]. The analysis of the atomic site projected density of states suggests that oxygen disorder in the CuO basal planes of YSCO induces hole localisation, which accounts for the large 30 K reduction of [Formula: see text] with respect to YBCO.
Collapse
Affiliation(s)
- Andrea Gauzzi
- IMPMC, Sorbonne Université, UMR7590 CNRS, MNHN, 4, place Jussieu, 75005 Paris, France
| | | | | | | | | |
Collapse
|
5
|
Nam Y, Li L, Lee JY, Prezhdo OV. Strong Influence of Oxygen Vacancy Location on Charge Carrier Losses in Reduced TiO 2 Nanoparticles. J Phys Chem Lett 2019; 10:2676-2683. [PMID: 31066278 DOI: 10.1021/acs.jpclett.9b00987] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oxygen vacancies in TiO2 nanoparticles are important for charge carrier dynamics, with recent studies reporting contradictory results on TiO2 nanoparticle photocatalytic activity. We demonstrate that ground state multiplicity, defect levels, and formation energies depend strongly on vacancy location. Quantum dynamics simulations show that charges are trapped within several picoseconds and recombine over a broad range of time scales from tens of picoseconds to nanoseconds. Specifically, nanoparticles with missing partially coordinated surface oxygens showed fast recombination, while nanoparticles with missing highly coordinated subsurface oxygens or singly coordinated oxygens at tips showed slow recombination, even slower than in the pristine system. The results are rationalized by energy gaps and electron-hole localization, the latter determining nonadiabatic coupling and quantum coherence time. The diverse charge recombination scenarios revealed by the nonadiabatic dynamics simulations rationalize the contradictory experimental results for photocatalytic activity and provide guidelines for rational design of nanoscale metal oxides for solar energy harvesting and utilization.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Linqiu Li
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Jin Yong Lee
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Korea
| | - Oleg V Prezhdo
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
6
|
Zhou X, Tokina MV, Tomko JA, Braun JL, Hopkins PE, Prezhdo OV. Thin Ti adhesion layer breaks bottleneck to hot hole relaxation in Au films. J Chem Phys 2019; 150:184701. [DOI: 10.1063/1.5096901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Xin Zhou
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, People’s Republic of China
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Marina V. Tokina
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - John A. Tomko
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Jeffrey L. Braun
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Patrick E. Hopkins
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Physics, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
7
|
Wei Y, Zhou Z, Fang WH, Long R. Grain Boundary Facilitates Photocatalytic Reaction in Rutile TiO 2 Despite Fast Charge Recombination: A Time-Domain ab Initio Analysis. J Phys Chem Lett 2018; 9:5884-5889. [PMID: 30247916 DOI: 10.1021/acs.jpclett.8b02761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
TiO2 is an excellent photocatalytic and photovoltaic material but suffers low efficiency because of deep trap states giving rise to fast charge and energy losses. Using a combination of time-domain density functional theory and nonadiabatic molecular dynamics, we demonstrate that grain boundaries (GBs), which are common in polycrystalline TiO2, accelerate nonradiative electron-hole recombination by a factor of 3. Despite GBs increase the band gap without creating deep trap states, and accelerate coherence loss, they enhance nonadiabatic electron-phonon coupling, and facilitate the relaxation. Importantly, electrons accumulated at the boundaries together with the relatively long-lived excite state favor photocatalytic reaction. Our study rationalizes the experimental observations and provides valuable perspectives for improving the device performance by defect engineering.
Collapse
Affiliation(s)
- Yaqing Wei
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing , 100875 , P. R. China
| | - Zhaohui Zhou
- Chemical Engineering and Technology, School of Environmental Science and Engineering, and Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education , Chang'an University , Xi'an 710064 , China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing , 100875 , P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing , 100875 , P. R. China
| |
Collapse
|
8
|
Dar SA, Srivastava V, Sakalle UK. High pressure and high temperature investigation of metallic perovskite SnTaO 3. J Mol Model 2018; 24:52. [PMID: 29441416 DOI: 10.1007/s00894-018-3606-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/30/2018] [Indexed: 11/26/2022]
Abstract
High pressure electronic, elastic, mechanical, and thermodynamic properties of cubic perovskite SnTaO3 have been explored with density function theory (DFT), and the quasi-harmonic Debye model has been applied for the incorporation of high temperature. The experimental lattice constant has been used for the optimization of structure. The optimization results present the paramagnetic (PM) nature of the compound. The spin dependent electronic band structures at ambient conditions and under high pressure present the metallic nature with complete uniformity for the majority and minority spin states. The mechanical properties, such as Young's modulus and bulk modulus, have been calculated and suggest an increase in stiffness and hardness of the material under the application of pressure. The thermodynamic properties, such as specific heat and Grüneisen parameter, have been predicted in the temperature range of 0 to 1000 K and pressure range of 0 to 60 Gpa.
Collapse
Affiliation(s)
- Sajad Ahmad Dar
- Department of Physics, Govt. Motilal Vigyan Mahavidyalya College, Bhopal, MP, 462008, India.
| | - Vipul Srivastava
- Department of Physics, NRI Institute of Research & Technology, Bhopal, MP, 462021, India
| | | |
Collapse
|
9
|
Yang Y, Fang WH, Long R. Disparity in Photoexcitation Dynamics between Vertical and Lateral MoS 2/WSe 2 Heterojunctions: Time-Domain Simulation Emphasizes the Importance of Donor-Acceptor Interaction and Band Alignment. J Phys Chem Lett 2017; 8:5771-5778. [PMID: 29129078 DOI: 10.1021/acs.jpclett.7b02779] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) heterojunctions are appealing candidates for optoelectronics and photovoltaics. Using time-domain density functional theory combined with nonadiabatic (NA) molecular dynamics, we show that photoexcitation dynamics exhibit a significant difference in the vertical and lateral MoS2/WSe2 heterojunctions arising from the disparity in the donor-acceptor interaction and fundamental band alignment. The obtained electron transfer time scale in the vertical heterojunction shows excellent agreement with experiment. Hole transfer proceeds 1.5 times slower. The electron-hole recombination is 3 orders of magnitude longer than the charge separation, which favors solar cell applications. On the contrary, the lateral heterojunction shows no band offsets steering charge separation. The excited electron is localized at the interface that attracts holes to form an exciton-like state due to Coulomb interaction, suggesting potential applications in light-emitting devices. The coupled electron and hole wave functions increase NA coupling and the coherence time, accelerating electron-hole recombination by a factor of 3 compared with the vertical case. The atomistic studies advance our understanding of the photoinduced charge-phonon dynamics in TMDs heterojunctions.
Collapse
Affiliation(s)
- Yating Yang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875, People's Republic of China
| |
Collapse
|
10
|
Zhang Z, Long R, Tokina MV, Prezhdo OV. Interplay between Localized and Free Charge Carriers Can Explain Hot Fluorescence in the CH3NH3PbBr3 Perovskite: Time-Domain Ab Initio Analysis. J Am Chem Soc 2017; 139:17327-17333. [DOI: 10.1021/jacs.7b06401] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhaosheng Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, PR China
| | - Marina V. Tokina
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
11
|
Akimov AV. Stochastic and Quasi-Stochastic Hamiltonians for Long-Time Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2017; 8:5190-5195. [PMID: 28985075 DOI: 10.1021/acs.jpclett.7b02185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the condensed-matter environments, the vibronic Hamiltonian that describes nonadiabatic dynamics often appears as an erratic entity, and one may assume it can be generated stochastically. This property is utilized to formulate novel stochastic and quasi-stochastic vibronic Hamiltonian methodologies, which open a new route to long-time excited state dynamics in atomistic solid-state systems at negligible computational cost. Using a model mimicking a typical solid-state material in noisy environment, general conclusions regarding the simulation of nonadiabatic dynamics are obtained: (1) including bath is critical to complete excited state relaxation; (2) a totally stochastic modulation of energies and couplings has a net effect of no bath and inhibits relaxation; (3) including a single or several dominant electron-phonon modes may be insufficient to complete the excited state relaxation; (4) only the multiple modes, even those that have negligible weights, can represent both the deterministic modulation of system's Hamiltonian and stochastic effects of bath.
Collapse
Affiliation(s)
- Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York , Buffalo, New York 14260, United States
| |
Collapse
|
12
|
Wei Y, Zhou Z, Long R. Defects Slow Down Nonradiative Electron-Hole Recombination in TiS 3 Nanoribbons: A Time-Domain Ab Initio Study. J Phys Chem Lett 2017; 8:4522-4529. [PMID: 28876946 DOI: 10.1021/acs.jpclett.7b02099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Layered TiS3 materials hold appealing potential in photovoltaics and optoelectronics due to their excellent electronic and optical properties. Using time domain density functional theory combined with nonadiabatic (NA) molecular dynamics, we show that the electron-hole recombination in pristine TiS3 nanoribbons (NRs) occurs in tens of picoseconds and is over 10-fold faster than the experimental value. By performing an atomistic ab initio simulation with a sulfur vacancy, we demonstrate that a sulfur vacancy greatly reduces electron-hole recombination, achieving good agreement with experiment. Introduction of a sulfur vacancy increases the band gap slightly because the NR's highest occupied molecular orbital is lowered in energy. More importantly, the sulfur vacancy partially diminishes the electron and hole wave functions' overlap and reduces NA electron-phonon coupling, which competes successfully with the longer decoherence time, slowing down recombination. Our study suggests that a rational choice of defects can control nonradiative electron-hole recombination in TiS3 NRs and provides mechanistic principles for photovoltaic and optoelectronic device design.
Collapse
Affiliation(s)
- Yaqing Wei
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875, People's Republic of China
| | - Zhaohui Zhou
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University , Xi'an 710049, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing 100875, People's Republic of China
| |
Collapse
|
13
|
Wei Y, Li L, Fang W, Long R, Prezhdo OV. Weak Donor-Acceptor Interaction and Interface Polarization Define Photoexcitation Dynamics in the MoS 2/TiO 2 Composite: Time-Domain Ab Initio Simulation. NANO LETTERS 2017; 17:4038-4046. [PMID: 28586230 DOI: 10.1021/acs.nanolett.7b00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To realize the full potential of transition metal dichalcogenides interfaced with bulk semiconductors for solar energy applications, fast photoinduced charge separation, and slow electron-hole recombination are needed. Using a combination of time-domain density functional theory with nonadiabatic molecular dynamics, we demonstrate that the key features of the electron transfer (ET), energy relaxation and electron-hole recombination in a MoS2-TiO2 system are governed by the weak van der Waals interfacial interaction and interface polarization. Electric fields formed at the interface allow charge separation to happen already during the photoexcitation process. Those electrons that still reside inside MoS2, transfer into TiO2 slowly and by the nonadiabatic mechanism, due to weak donor-acceptor coupling. The ET time depends on excitation energy, because the TiO2 state density grows with energy, increasing the nonadiabatic transfer rate, and because MoS2 sulfur atoms start to contribute to the photoexcited state at higher energies, increasing the coupling. The ET is slower than electron-phonon energy relaxation because the donor-acceptor coupling is weak, rationalizing the experimentally observed injection of primarily hot electrons. The weak van der Waals MoS2-TiO2 interaction ensures a long-lived charge separated state and a short electron-hole coherence time. The injection is promoted primarily by phonons within the 200-800 cm-1 range. Higher frequency modes are particularly important for the electron-hole recombinations, because they are able to accept large amounts of electronic energy. The predicted time scales for the forward and backward ET, and energy relaxation can be measured by time-resolved spectroscopies. The reported simulations generate a detailed time-domain atomistic description of the complex interplay of the charge and energy transfer processes at the MoS2/TiO2 interface that are of fundamental importance to photovoltaic and photocatalytic applications. The results suggest that even though the photogenerated charge-separated state is long-lived, the slower charge separation, compared to the electron-phonon energy relaxation, can present problems in practical applications.
Collapse
Affiliation(s)
- Yaqing Wei
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing, 100875, People's Republic of China
| | - Linqiu Li
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Weihai Fang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing, 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University , Beijing, 100875, People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|