1
|
de Araújo BB, Gonçalves PFB. From skin sensitizers to wastewater: the unknown photo-deactivation process of low-lying excited states of isothiazolinones. A non-adiabatic dynamics investigation. Phys Chem Chem Phys 2024; 26:12799-12805. [PMID: 38619871 DOI: 10.1039/d4cp00998c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Isothiazolinones represent a class of heterocyclic compounds widely used in various applications, including as biocides in cosmetics, detergents, and paints, as well as in industrial wastewater treatment. Indeed, the presence of isothiazolinones in the environment and their associated potential health hazards have raised significant concerns. In this study, a non-adiabatic dynamics investigation was conducted using state-of-the-art methodologies to explore the photochemistry of isothiazolinones. A simplified model, isothiazol-3(2H)-one (ISO), was employed to represent this compound class. The study validated the model and demonstrated that ISO can return to its ground state through the cleavage of the S-N or S-C bonds, with no significant energy barrier observed. Non-adiabatic dynamics simulations provided insights into the time scales and detailed processes of isothiazolinone photodissociation. The preferred route for deactivation was found to be the cleavage of the S-N bond. This research enhances our understanding of the photodeactivation processes of isothiazolinones and their potential environmental impact.
Collapse
Affiliation(s)
- Bruno Bercini de Araújo
- Grupo de Química Teórica, Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves 9500, CP 15003, CEP 91501970, Porto Alegre, Brazil.
| | - Paulo Fernando Bruno Gonçalves
- Grupo de Química Teórica, Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves 9500, CP 15003, CEP 91501970, Porto Alegre, Brazil.
| |
Collapse
|
2
|
Talbot JJ, Head-Gordon M, Cotton SJ. The symmetric quasi-classical model using on-the-fly time-dependent density functional theory within the Tamm–Dancoff approximation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2153761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Justin J. Talbot
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen J. Cotton
- Department of Chemistry, University of California, Berkeley, CA, USA
| |
Collapse
|
3
|
Marlton SJP, McKinnon BI, Greißel P, Shiels OJ, Ucur B, Trevitt AJ. Picosecond excited-state lifetimes of protonated indazole and benzimidazole: The role of the N-N bond. J Chem Phys 2021; 155:184302. [PMID: 34773941 DOI: 10.1063/5.0071847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Certain chemical groups give rise to characteristic excited-state deactivation mechanisms. Here, we target the role of a protonated N-N chemical group in the excited-state deactivation of protonated indazole by comparison to its isomer that lacks this group, protonated benzimidazole. Gas-phase protonated indazole and protonated benzimidazole ions are investigated at room temperature using picosecond laser pump-probe photodissociation experiments in a linear ion-trap. Excited state lifetimes are measured across a range of pump energies (4.0-5.4 eV). The 1ππ* lifetimes of protonated indazole range from 390 ± 70 ps using 4.0 eV pump energy to ≤18 ps using 4.6 eV pump energy. The 1ππ* lifetimes of protonated benzimidazole are systematically longer, ranging from 3700 ± 1100 ps at 4.6 eV pump energy to 400 ± 200 ps at 5.4 eV. Based on these experimental results and accompanying quantum chemical calculations and potential energy surfaces, the shorter lifetimes of protonated indazole are attributed to πσ* state mediated elongation of the protonated N-N bond.
Collapse
Affiliation(s)
- Samuel J P Marlton
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Benjamin I McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Phillip Greißel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Oisin J Shiels
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Boris Ucur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
4
|
Xie BB, Liu BL, Tang XF, Tang D, Shen L, Fang WH. Nonadiabatic dynamics simulation of photoinduced ring-opening reaction of 2(5 H)-thiophenone with internal conversion and intersystem crossing. Phys Chem Chem Phys 2021; 23:9867-9877. [PMID: 33908501 DOI: 10.1039/d1cp00281c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the present work, the quantum trajectory mean-field approach, which is able to overcome the overcoherence problem, was generalized to simulate internal conversion and intersystem crossing processes simultaneously. The photoinduced ring-opening and subsequent rearrangement reactions of isolated 2(5H)-thiophenone were studied based on geometry optimizations on critical structures and nonadiabatic dynamics simulations using this method. Upon 267 nm irradiation, the molecule is initially populated in the 1ππ* state. After a sudden rupture of one C-S bond within 100 fs in this state, the lowest two singlet excited states and the lowest two triplet excited states become quasi-degenerated, and then the intersystem crossing processes between singlet and triplet states accompanied by rearrangement reactions can be observed several times. Compared with our previous nonadiabatic simulations in the absence of intersystem crossing (ChemPhotoChem, 2019, 3, 897-906), some new nonadiabatic relaxation pathways involving triplet states and different ring-opening products were identified. The present work provides new mechanistic insights into the photoinduced ring-opening of thio-substituted heterocyclic molecules and reveals the importance of nonadiabatic dynamics simulation that is able to deal with multiple electronic states with different spin multiplicities.
Collapse
Affiliation(s)
- Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | | | | | | | | | | |
Collapse
|
5
|
Xu L, Zhang Q, Zhang T, Yang D. Theoretical insights into elaborating and regulating excited state dynamics for the novel 6-cyano-2-(2′-hydroxyphenyl)imidazo[1,2a]pyridine system in polar and nonpolar solvents. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1662958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Lei Xu
- College of Physics and Electronics, North China University of Water Resources and Electronic Power, Zhengzhou, People’s Republic of China
| | - Qiaoli Zhang
- College of Physics and Electronics, North China University of Water Resources and Electronic Power, Zhengzhou, People’s Republic of China
| | - Tianjie Zhang
- College of Physics and Electronics, North China University of Water Resources and Electronic Power, Zhengzhou, People’s Republic of China
| | - Dapeng Yang
- College of Physics and Electronics, North China University of Water Resources and Electronic Power, Zhengzhou, People’s Republic of China
- State Key Laboratory of Molecular Reaction Dynamics, Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People’s Republic of China
| |
Collapse
|
6
|
Zhang YH, Sun XW, Zhang TS, Liu XY, Cui G. Nonadiabatic Dynamics Simulations on Early-Time Photochemistry of Spirobenzopyran. J Phys Chem A 2020; 124:2547-2559. [PMID: 32187492 DOI: 10.1021/acs.jpca.0c00791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoinduced ring-opening, decay, and isomerization of spirobenzopyran have been explored by the OM2/MRCI nonadiabatic dynamics simulations based on Tully's fewest-switches surface hopping scheme. The efficient S1 to S0 internal conversion as observed in experiments is attributed to the existence of two efficient excited-state decay pathways. The first one is related to the C-N dissociation, and the second one is done to the C-O dissociation. The C-O dissociation pathway is dominant, and more than 90% trajectories decay to the S0 state via the C-O bond-fission related S1/S0 conical intersections. Near these regions in the S0 state, trajectories can either return to spirobenzopyran or proceed to various intermediates including merocyanine via a series of bond rotations. Our nonadiabatic dynamics simulations also demonstrate that the hydrogen-out-of-plane (HOOP) motion is important for efficient and ultrafast excited-state deactivation. On the other hand, we have also found that the replacement of methyl groups by hydrogen atoms in spirobenzopyran can artificially introduce different intramolecular hydrogen transfers leading to hydrogen-transferred intermediates. This finding is important for the community and demonstrates that such a kind of structural truncation, sometimes, could be problematic, leading to incorrect photodynamics. Our present work provides valuable insights into the photodynamics of spirobenzopyran, which could be helpful for the design of spiropyran-based photochromic materials.
Collapse
Affiliation(s)
- Ya-Hui Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xin-Wei Sun
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
7
|
Smith B, Akimov AV. Modeling nonadiabatic dynamics in condensed matter materials: some recent advances and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:073001. [PMID: 31661681 DOI: 10.1088/1361-648x/ab5246] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review focuses on recent developments in the field of nonadiabatic molecular dynamics (NA-MD), with particular attention given to condensed-matter systems. NA-MD simulations for small molecular systems can be performed using high-level electronic structure (ES) calculations, methods accounting for the quantization of nuclear motion, and using fewer approximations in the dynamical methodology itself. Modeling condensed-matter systems imposes many limitations on various aspects of NA-MD computations, requiring approximations at various levels of theory-from the ES, to the ways in which the coupling of electrons and nuclei are accounted for. Nonetheless, the approximate treatment of NA-MD in condensed-phase materials has gained a spin lately in many applied studies. A number of advancements of the methodology and computational tools have been undertaken, including general-purpose methods, as well as those tailored to nanoscale and condensed matter systems. This review summarizes such methodological and software developments, puts them into the broader context of existing approaches, and highlights some of the challenges that remain to be solved.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States of America
| | | |
Collapse
|
8
|
Symonds CC, Makhov DV, Cole-Filipiak NC, Green JA, Stavros VG, Shalashilin DV. Ultrafast photodissociation dynamics of pyrazole, imidazole and their deuterated derivatives using ab initio multiple cloning. Phys Chem Chem Phys 2019; 21:9987-9995. [DOI: 10.1039/c9cp00039a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fully quantum nonadiabatic dynamics calculation of photodissociation of azoles shows good agreement with experiment and foreshadows the predictive ability of the method.
Collapse
Affiliation(s)
| | - Dmitry V. Makhov
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- School of Mathematics
| | | | | | | | | |
Collapse
|
9
|
Cooper GA, Hansen CS, Karsili TNV, Ashfold MNR. Photofragment Translational Spectroscopy Studies of H Atom Loss Following Ultraviolet Photoexcitation of Methimazole in the Gas Phase. J Phys Chem A 2018; 122:9869-9878. [DOI: 10.1021/acs.jpca.8b09859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Graham A. Cooper
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Christopher S. Hansen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tolga N. V. Karsili
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | | |
Collapse
|
10
|
Cao J. The position of the N atom in the pentacyclic ring of heterocyclic molecules affects the excited-state decay: A case study of isothiazole and thiazole. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Ai Y, Xing J, Zhang A, Zhao C, Liu Y, Xie B, Chen W, Cui G, Lu Z, Wang X. Computational Study on the Excited-State Decay of 5-Methylcytosine and 5-Hydroxymethylcytosine: The Common Form of DNA Methylation and Its Oxidation Product. J Phys Chem B 2018; 122:10424-10434. [DOI: 10.1021/acs.jpcb.8b07830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | | | - Binbin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | | | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | | | - Xiangke Wang
- NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
12
|
Xu C, Gu FL, Zhu C. An excited-state Wolff rearrangement reaction of 5-diazo Meldrum's acid: an ab initio on-the-fly nonadiabatic dynamics simulation. Phys Chem Chem Phys 2018; 20:22681-22688. [PMID: 30137106 DOI: 10.1039/c8cp04164d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A global switching on-the-fly trajectory surface hopping dynamics simulation at the 3SA-CASSCF(12,11)/6-31G* quantum level has been employed to probe the photo-induced Wolff rearrangement (WR) reaction of 5-diazo Meldrum's acid (DMA) within three low-lying electronic excited states. The present simulation predicted that the branching ratios for relaxing back to the ground state, isomerizing to diazirine, and reaction to ketene I via carbene I are 69% ± 0.1, 3% ± 0.4, and 28% ± 0.1, which are in excellent agreement with those obtained by the femtosecond spectroscopy experiment, 67%, 3% and 30%, respectively. In particular, the present simulation revealed that the major WR reaction to ketene I pathway is stepwise via the excited-state to carbene I (17.8% ± 0.2) and via the ground-state to carbene I (8.7% ± 0.2), and the minor pathway is concerted synchronous (1.5% ± 0.6). The photo-induced WR reaction of DMA has been quantitatively interpreted in terms of the distribution of extended seam surfaces as a function of CN dissociation bonds for two important conical intersections within three low-lying electronic excited states. Ultrafast dynamic time constants have been estimated to be about 500 fs ± 120 fs and 180 fs ± 80 fs for the stepwise and the concerted WR reaction to ketene I which are also in good agreement with those determined by the experiment. Therefore, the photo-induced excited-state WR reaction mechanism has been quantitatively revealed by the present real-time dynamics simulation.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment of South China Normal University, Guangzhou 51006, P. R. China.
| | | | | |
Collapse
|
13
|
Liu XY, Fang YG, Xie BB, Fang WH, Cui G. QM/MM nonadiabatic dynamics simulations on photoinduced Wolff rearrangements of 1,2,3-thiadiazole. J Chem Phys 2018; 146:224302. [PMID: 29166059 DOI: 10.1063/1.4984589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photoinduced rearrangement reaction mechanism of 1,2,3-thiadiazole remains experimentally elusive. Two possible mechanisms have been proposed to date. The first is a stepwise mechanism via a thiocarbene intermediate; the second is an excited-state concerted rearrangement mechanism. Herein we have adopted both the electronic structure calculations and nonadiabatic dynamics simulations to study the photoinduced rearrangement reactions of 1,2,3-thiadiazole in the S2, S1, and S0 states in solution. On the basis of QM(CASPT2)/MM [quantum mechanics(complete active space self-consistent field second-order perturbation theory)/molecular mechanics] calculations, we have found that (1) the thiocarbene intermediate is not stable; thus, the stepwise mechanism should be unfavorable; (2) the excited-state decay from the S2 via S1 to S0 state is ultrafast and completed within ca. 200 fs; therefore, both the S2 and S1 states should not have a long enough time for the excited-state rearrangements. Instead, we have computationally proposed a modified photoinduced rearrangement mechanism. Upon irradiation, the S2 state is first populated (114.0 kcal/mol), followed by an ultrafast S2 → S1 → S0 excited-state decay along the S-N bond fission, which eventually leads to a very "hot" intermediate with the S-N bond broken (18.3 kcal/mol). Then, thermal rearrangements to thioketene, thiirene, and ethynethiol occur in a concerted asynchronous way. This mechanistic scenario has been verified by full-dimensional trajectory-based nonadiabatic dynamics simulations at the QM(CASPT2)/MM level. Finally, our present computational work provides experimentally interesting mechanistic insights into the photoinduced rearrangement reactions of cyclic and acyclic diazo compounds.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bin-Bin Xie
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Wu Z, Zhang G, Sharman E, Cui P, Jiang J. Structure-dependent luminescence of tetra-(4-pyridylphenyl)ethylene: a first-principles study. Phys Chem Chem Phys 2018; 20:41-45. [DOI: 10.1039/c7cp06643k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relationship between the molecular structure and fluorescence properties of TPPE was investigated by TDDFT calculations.
Collapse
Affiliation(s)
- Ziye Wu
- School of Chemistry and Materials Science
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China (USTC)
- Hefei
- China
| | - Guozhen Zhang
- School of Chemistry and Materials Science
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China (USTC)
- Hefei
- China
| | - Edward Sharman
- Department of Neurology
- University of California
- Irvine
- USA
| | - Peng Cui
- School of Chemistry and Materials Science
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China (USTC)
- Hefei
- China
| | - Jun Jiang
- School of Chemistry and Materials Science
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China (USTC)
- Hefei
- China
| |
Collapse
|
15
|
Xie BB, Cui CX, Fang WH, Cui G. Photoinduced Curtius rearrangements of fluorocarbonyl azide, FC(O)N 3: a QM/MM nonadiabatic dynamics simulation. Phys Chem Chem Phys 2018; 20:19363-19372. [DOI: 10.1039/c8cp02651c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Upon either photolysis or pyrolysis, carbonyl azide can eliminate molecular nitrogen along with the formation of isocyanate.
Collapse
Affiliation(s)
- Bin-Bin Xie
- Hangzhou Institute of Advanced Studies
- Zhejiang Normal University
- Hangzhou 311231
- P. R. China
- Key Laboratory of Theoretical and Computational Photochemistry
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering
- Henan Institute of Science and Technology
- Xinxiang 453003
- P. R. China
| | - Wei-Hai Fang
- Hangzhou Institute of Advanced Studies
- Zhejiang Normal University
- Hangzhou 311231
- P. R. China
- Key Laboratory of Theoretical and Computational Photochemistry
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| |
Collapse
|
16
|
Xu C, Gu FL, Zhu C. Ultrafast intersystem crossing for nitrophenols: ab initio nonadiabatic molecular dynamics simulation. Phys Chem Chem Phys 2018; 20:5606-5616. [DOI: 10.1039/c7cp08601f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrafast intersystem crossing mechanisms for two p- and m-nitrophenol groups (PNP and MNP) have been investigated using ab initio nonadiabatic molecular dynamics simulations at the 6SA-CASSCF level of theory.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry & Environment of South China Normal University
- Guangzhou 51006
- P. R. China
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry & Environment of South China Normal University
- Guangzhou 51006
- P. R. China
| | - Chaoyuan Zhu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry & Environment of South China Normal University
- Guangzhou 51006
- P. R. China
- Department of Applied Chemistry, Institute of Molecular Science and Center for Interdisciplinary Molecular Science, National Chiao-Tung University
- Hsinchu 30010
| |
Collapse
|
17
|
Bai S, Barbatti M. Spatial Factors for Triplet Fusion Reaction of Singlet Oxygen Photosensitization. J Phys Chem Lett 2017; 8:5456-5460. [PMID: 29058918 DOI: 10.1021/acs.jpclett.7b02574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
First-principles quantum-chemical description of photosensitized singlet oxygen generation kinetics is challenging because of the intrinsic complexity of the underlying triplet fusion process in a floppy molecular complex with open-shell character. With a quantum-chemical kinetic model specifically tailored to deal with this problem, the reaction rates are investigated as a function of intermolecular incidence direction, orientation, and distance between O2 and the photosensitizer. The adopted photosensitizer, 6-azo-2-thiothymine, combines practical interest and prototypical variability. The study quantitatively determined maximum singlet oxygen generation rates for 15 incidence/orientation directions, showing that they span 5 orders of magnitude between the largest and the smallest rate. Such information may provide a hands-on guideline for the experimental molecular design of new photosensitizers as well as further higher-level theoretical research.
Collapse
Affiliation(s)
- Shuming Bai
- Aix Marseille Univ, CNRS, ICR , Marseille, France
| | | |
Collapse
|
18
|
Bai S, Barbatti M. Divide-to-Conquer: A Kinetic Model for Singlet Oxygen Photosensitization. J Chem Theory Comput 2017; 13:5528-5538. [DOI: 10.1021/acs.jctc.7b00619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuming Bai
- Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France
| | | |
Collapse
|