1
|
Zurak L, Wolff C, Meier J, Kullock R, Mortensen NA, Hecht B, Feichtner T. Modulation of surface response in a single plasmonic nanoresonator. SCIENCE ADVANCES 2024; 10:eadn5227. [PMID: 39241079 PMCID: PMC11378946 DOI: 10.1126/sciadv.adn5227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
Scattering of light by plasmonic nanoparticles is classically described using bulk material properties with infinitesimally thin boundaries. However, because of the quantum nature of electrons, real interfaces have finite thickness, leading to nonclassical surface effects that influence light scattering in small particles. Electrical gating offers a promising route to control and study these effects, as static screening charges reside at the boundary. We investigate the modulation of the surface response upon direct electrical charging of single plasmonic nanoresonators. By analyzing measured changes in light scattering within the framework of surface response functions, we find the resonance shift well accounted for by modulation of the classical in-plane surface current. Unexpectedly, we also observed a change in the resonance width, indicating reduced losses for negatively charged resonators. This effect is attributed to a nonclassical out-of-plane surface response, extending beyond pure spill-out effects. Our experiments pave the way for electrically driven plasmonic modulators and metasurfaces, leveraging control over nonclassical surface effects.
Collapse
Affiliation(s)
- Luka Zurak
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Germany
| | - Christian Wolff
- POLIMA–Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jessica Meier
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Germany
| | - René Kullock
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Germany
| | - N. Asger Mortensen
- POLIMA–Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Germany
| | - Thorsten Feichtner
- Nano-Optics and Biophotonics Group, Experimental Physics 5, Institute of Physics, University of Würzburg, Germany
| |
Collapse
|
2
|
Ramasamy M, Ha JW. Single-Particle Spectroelectrochemistry: Promoting the Electrocatalytic Activity of Gold Nanorods via Oxygen Plasma Treatment without Structural Deformation. Anal Chem 2024; 96:737-745. [PMID: 38175953 DOI: 10.1021/acs.analchem.3c03850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Understanding of the electrocatalytic activity enhancement in gold nanoparticles is still limited. Herein, we present the effect of the oxygen plasma treatment on the electrochemical activity of gold nanorods (AuNRs). Oxygen plasma treatment resulted in the blueshift and line width narrowing of the localized surface plasmon resonance (LSPR) spectra obtained from individual AuNRs immobilized on an indium tin oxide (ITO) surface. These changes can be attributed to increases in the surface charges of the AuNRs. The formation of a Au-ITO heterojunction provided structural stability to the immobilized AuNRs regardless of the duration of oxygen plasma exposure. The electrocatalytic oxidation of hydrogen peroxide (H2O2) was induced by increases in the free-electron densities on the surfaces of these AuNRs owing to oxygen plasma treatment, and Au did not dissolve under the experimental conditions. However, the potential-dependent LSPR spectra of the individual AuNRs showed similar patterns of LSPR behavior, irrespective of the duration of oxygen plasma treatment and the concentration of H2O2. Therefore, this study based on single-particle spectroelectrochemistry and cyclic voltammetry improves the understanding of the role of oxygen plasma treatment in promoting the catalytic activity of structurally stable AuNRs immobilized on an ITO surface.
Collapse
Affiliation(s)
- Mukunthan Ramasamy
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Ji Won Ha
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| |
Collapse
|
3
|
Peng HF, Chang CK, Gupta R, Huang JJ. Monitoring levodopa oxidation and reduction reactions using surface plasmon resonance on a nanohole array electrode. DISCOVER NANO 2023; 18:145. [PMID: 38015329 PMCID: PMC10684436 DOI: 10.1186/s11671-023-03930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
The traditional method of monitoring the oxidation and reduction of biomedical materials usually relies on electrochemical (EC) measurement techniques. Here, we demonstrate a surface plasmon resonance (SPR) method to monitor the oxidation process. Using levodopa L-dopa as the target analyte, a nanohole sensing plate is embedded in the EC electrode to enhance the oxidation signal and generate SPR. Cyclic voltammetry (CV) measurement was first conducted to understand the baseline of EC response of L-Dopa. Then, the redox reactions were simultaneously monitored through SPR measurements during the CV voltage scan. The results showed that the limit of detection using traditional CV reached 1.47 μM while using EC-SPR, the limit of detection improved to 1.23 μM. Most importantly, we found a strong correlation between CV current profiles and the SPR reflection spectra. Our results facilitate detecting electrochemical reactions using an optical probing method.
Collapse
Affiliation(s)
- Hao-Fang Peng
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Kang Chang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - Rohit Gupta
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - Jian-Jang Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
4
|
Zhang Z, Faez S. Iontronic microscopy of a tungsten microelectrode: "seeing" ionic currents under an optical microscope. Faraday Discuss 2023; 246:426-440. [PMID: 37404127 PMCID: PMC10568260 DOI: 10.1039/d3fd00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 07/06/2023]
Abstract
Optical methods for monitoring electrochemical reactions at an interface are advantageous because of their table-top setup and ease of integration into reactors. Here we apply EDL-modulation microscopy to one of the main components of amperometric measurement devices: a microelectrode. We present experimental measurements of the EDL-modulation contrast from the tip of a tungsten microelectrode at various electrochemical potentials inside a ferrocene-dimethanol Fe(MeOH)2 solution. Using the combination of the dark-field scattering microscope and the lock-in detection technique, we measure the phase and amplitude of local ion-concentration oscillations in response to an AC potential as the electrode potential is scanned through the redox-activity window of the dissolved species. We present the amplitude and phase map of this response, as such this method can be used to study the spatial and temporal variations of the ion-flux due to an electrochemical reaction close to metallic and semiconducting objects of general geometry. We discuss the advantages and possible extensions of using this microscopy method for wide-field imaging of ionic currents.
Collapse
Affiliation(s)
- Zhu Zhang
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584CC Utrecht, The Netherlands.
| | - Sanli Faez
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584CC Utrecht, The Netherlands.
| |
Collapse
|
5
|
Oh H, Searles EK, Chatterjee S, Jia Z, Lee SA, Link S, Landes CF. Plasmon Energy Transfer Driven by Electrochemical Tuning of Methylene Blue on Single Gold Nanorods. ACS NANO 2023; 17:18280-18289. [PMID: 37672688 DOI: 10.1021/acsnano.3c05387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Plasmonic photocatalysis has attracted interest for its potential to generate energy-efficient reactions, but ultrafast internal conversion limits efficient plasmon-based chemistry. Resonance energy transfer (RET) to surface adsorbates offers a way to outcompete internal conversion pathways and also eliminate the need for sacrificial counter-reactions. Herein, we demonstrate RET between methylene blue (MB) and gold nanorods (AuNRs) using in situ single-particle spectroelectrochemistry. During electrochemically driven reversible redox reactions between MB and leucomethylene blue (LMB), we show that the homogeneous line width is broadened when spectral overlap between AuNR scattering and absorption of MB is maximized, indicating RET. Additionally, electrochemical oxidative oligomerization of MB allowed additional dipole coupling to generate RET at lower energies. Time-dependent density functional theory-based simulated absorption provided theoretical insight into the optical properties, as MB molecules were electrochemically oligomerized. Our findings show a mechanism for driving efficient plasmon-assisted processes by RET through the change in the chemical states of surface adsorbates.
Collapse
Affiliation(s)
- Hyuncheol Oh
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Emily K Searles
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Subhojyoti Chatterjee
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zhenyang Jia
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Stephen A Lee
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Ramasamy M, Ha JW. Single-Particle Spectroelectrochemistry: Electrochemical Approaches for Tuning Chemical Interfaces and Plasmon Damping in Single Gold Nanorods. J Phys Chem Lett 2023:5768-5775. [PMID: 37326616 DOI: 10.1021/acs.jpclett.3c01424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The strong adsorption of thiol molecules on gold nanorods (AuNRs) results in localized surface plasmon resonance (LSPR) energy loss via chemical interface damping (CID). This study investigated the CID effect induced by thiophenol (TP) adsorption on single AuNRs and the in situ tuning of LSPR properties and chemical interfaces through electrochemical potential manipulation. The potential-dependent LSPR spectrum of bare AuNRs exhibited redshifts and line width broadening owing to the characteristics of capacitive charging, Au oxidation, and oxidation dissolution. However, TP passivation provided stability to the AuNRs from oxidation in an electrochemical environment. Electrochemical potentials induced electron donation and withdrawal, causing changes in the Fermi level of AuNRs at the Au-TP interface, thereby controlling the LSPR spectrum. Additionally, the desorption of TP molecules from the Au surface was electrochemically achieved at the anodic potentials further away from the capacitive charging region, which can be used to tune chemical interfaces and the CID process in single AuNRs.
Collapse
Affiliation(s)
- Mukunthan Ramasamy
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Ji Won Ha
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| |
Collapse
|
7
|
Searles EK, Gomez E, Lee S, Ostovar B, Link S, Landes CF. Single-Particle Photoluminescence and Dark-Field Scattering during Charge Density Tuning. J Phys Chem Lett 2023; 14:318-325. [PMID: 36603176 DOI: 10.1021/acs.jpclett.2c03566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Single-particle spectroelectrochemistry provides optical insight into understanding physical and chemical changes occurring on the nanoscale. While changes in dark-field scattering during electrochemical charging are well understood, changes to the photoluminescence of plasmonic nanoparticles under similar conditions are less studied. Here, we use correlated single-particle photoluminescence and dark-field scattering to compare their plasmon modulation at applied potentials. We find that changes in the emission of a single gold nanorod during charge density tuning of intraband photoluminescence can be attributed to changes in the Purcell factor and absorption cross section. Finally, modulation of interband photoluminescence provides an additional constructive observable, giving promise for establishing dual channel sensing in spectroelectrochemical measurements.
Collapse
Affiliation(s)
- Emily K Searles
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas77005, United States
| | - Eric Gomez
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas77005, United States
| | - Stephen Lee
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas77005, United States
| | - Behnaz Ostovar
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas77005, United States
| | - Stephan Link
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas77005, United States
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas77005, United States
| |
Collapse
|
8
|
Montaseri H, Nkune NW, Abrahamse H. Active targeted photodynamic therapeutic effect of silver-based nanohybrids on melanoma cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
9
|
Montaseri H, Simelane NWN, Abrahamse H. Zinc Phthalocyanine Tetrasulfonate-Loaded Ag@mSiO2 Nanoparticles for Active Targeted Photodynamic Therapy of Colorectal Cancer. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.928010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer has high morbidity and mortality rate, with a high level of metastasis and recurrence due to the poor therapeutic effects. Photodynamic therapy (PDT) as an emerging clinical modality for cancer treatment provides remarkable advantages over existing treatments by generating reactive oxygen species (ROS) through light irradiating photosensitizers (PSs) in the presence of oxygen. PDT can induce immunity against recurrence and destruction of metastases. The application of nanoparticles (NPs) in targeted cancer therapy is coming to light to circumvent the limitations associated with low physiological solubility and lack of selectivity of the PS towards tumor sites. In this in vitro study, we proved the added value of NP systems on PS efficacy and a tumor-targeting ligand. Using core/shell Ag@mSiO2 NPs loaded with ZnPcS4 PS and folic acid (FA), stronger cellular localization in the human colorectal cancer cell line (Caco-2) was observed compared to the passive NC and free PS. Additionally, light-induced photodynamic activation of the ZnPcS4/Ag@mSiO2-FA nanoconjugate (NC) elicited a strong cytotoxicity effect mediated by post-PDT. The results also revealed that the active NC was able to decrease the cell viability remarkably to 38.0% ± 4.2 *** compared to the passive NC (67.0% ± 7.4*) under 0.125 µM ZnPcS4 (IC50). More importantly, the actively targeted NC-induced apoptosis where cell cycle analysis elaborated on cell death through the G0 phase, indicating the final NC’s efficacy 20 hr post-PDT treatment.
Collapse
|
10
|
Ramasamy M, Ha JW. Influence of Oxygen Plasma Treatment on Structural and Spectral Changes in Gold Nanorods Immobilized on Indium Tin Oxide Surfaces. J Chem Phys 2022; 157:014702. [DOI: 10.1063/5.0097220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oxygen plasma treatment is commonly used to sterilize gold nanoparticles by removing chemical contaminants from their surface while simultaneously inducing surface activation and functionalization of nanoparticles for biological, electrocatalytic, or electrochemical studies. In this study, we investigate the influence of oxygen plasma treatment on structural and localized surface plasmon resonance (LSPR) spectral changes of anisotropic gold nanorods (AuNRs) immobilized on an indium tin oxide (ITO) glass substrate. Unlike AuNRs deposited on a glass slide, no noticeable structural change or deformation of AuNRs on ITO was observed while increasing the oxygen plasma treatment time. This result indicates that ITO provides structural stability to AuNRs immobilized on its surface. Additionally, single-particle scattering spectra of AuNRs showed the broadening of LSPR linewidth within 60 s of oxygen plasma treatment as a result of the plasmon energy loss contributed from plasmon damping to ITO due to the removal of capping material from the AuNR surface. Nevertheless, an increase in the surface charge on the AuNR surface was observed by narrowing the LSPR linewidth after 180 s of plasma treatment. The electrochemical study of AuNRs immobilized on ITO electrodes revealed the surface activation and functionalization of AuNRs by increasing plasma treatment. Hence, in this study, a significant understanding of oxygen plasma treatment on AuNRs immobilized on ITO surfaces is provided.
Collapse
Affiliation(s)
| | - Ji Won Ha
- Chemistry, University of Ulsan, Korea, Republic of (South Korea)
| |
Collapse
|
11
|
Chen Z, Zhang F, Lu Y, Li Y, Liu G, Shan J, Liu Q. Bioelectronic modulation of single-wavelength localized surface plasmon resonance (LSPR) for the detection of electroactive biomolecules. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Valinton JAA, Chung MC, Chen CH. Laser-Accelerated Mass Transport in Oxygen Reduction Via a Graphene-Supported Silver-Iron Oxide Heterojunction. J Phys Chem Lett 2022; 13:4200-4206. [PMID: 35511593 DOI: 10.1021/acs.jpclett.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mass-transport acceleration is essential toward enhanced electrocatalytic performance yet rarely recognized under irradiation, because light is usually reported to improve charge transfer. We studied laser-enhanced mass transport through the heterojunction between Ag and semiconductor Fe2O3 situated on graphene for oxygen reduction reaction. Because of the decreased mass-transport resistance by 59% under 405 nm laser irradiation, the current density can be enhanced by 180%, which is also supported by a theoretical calculation. This laser-enhanced mass transport was attributed to local photothermal heating and the near-field local enhancement. Easier desorption of OH- species occurring between the Fe and Ag centers under the laser accelerates the mass-transport centers.
Collapse
Affiliation(s)
| | - Min-Chuan Chung
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
13
|
Alizar YY, Ha JW. Single-particle spectroelectrochemistry: electrochemical tuning of plasmonic properties via mercury amalgamation in mesoporous silica coated gold nanorods without structural deformation. Analyst 2022; 147:2035-2039. [DOI: 10.1039/d2an00559j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presented the possibility of the in situ tuning of the LSPR properties of AuNRs@mSiO2 by Hg deposition via electrochemical potential manipulations without the disturbance of the structural variations of AuNR cores.
Collapse
Affiliation(s)
- Yola Yolanda Alizar
- Advanced Nano-Bio-Imaging and Spectroscopy Laboratory, Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Ji Won Ha
- Advanced Nano-Bio-Imaging and Spectroscopy Laboratory, Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, South Korea
| |
Collapse
|
14
|
Zhang Y, Guo W, Zhang Y, Wei WD. Plasmonic Photoelectrochemistry: In View of Hot Carriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006654. [PMID: 33977588 DOI: 10.1002/adma.202006654] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Utilizing plasmon-generated hot carriers to drive chemical reactions has emerged as a popular topic in solar photocatalysis. However, a complete description of the underlying mechanism of hot-carrier transfer in photochemical processes remains elusive, particularly for those involving hot holes. Photoelectrochemistry enables to localize hot holes on photoanodes and hot electrons on photocathodes and thus offers an approach to separately explore the hole-transfer dynamics and electron-transfer dynamics. This review summarizes a comprehensive understanding of both hot-hole and hot-electron transfers from photoelectrochemical studies on plasmonic electrodes. Additionally, working principles and applications of spectroelectrochemistry are discussed for plasmonic materials. It is concluded that photoelectrochemistry provides a powerful toolbox to gain mechanistic insights into plasmonic photocatalysis.
Collapse
Affiliation(s)
- Yuchao Zhang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, FL, 32611, USA
| | - Wenxiao Guo
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, FL, 32611, USA
| | - Yunlu Zhang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, FL, 32611, USA
| | - Wei David Wei
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
15
|
Kim JH, Cha S, Kim Y, Son J, Park JE, Oh JW, Nam JM. Nontrivial, Unconventional Electrochromic Behaviors of Plasmonic Nanocubes. NANO LETTERS 2021; 21:7512-7518. [PMID: 34491741 DOI: 10.1021/acs.nanolett.1c01639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasmonic electrochromism, a change in the localized surface plasmon resonance (LSPR) with an applied electric potential, has been attracting increasing attention for the development of spectroscopic tools or optoelectronic systems. There is a consensus on the mechanism of plasmonic electrochromism based on the classical capacitor and the Drude model. However, the electrochromic behaviors of metallic nanoparticles in narrow optical windows have been demonstrated only with small monotonic LSPR shifts, which limits the use of the electrochromism. Here, we observed three distinct electrochromic behaviors of gold nanocubes with a wide potential range through in situ dark-field electrospectroscopy. Interestingly, the nanocubes show a faster frequency shift under the highly negative potential, and this opens the possibility of largely tunable electrochromic LSPR shifts. The reversibility of the electrochemical switching with these cubes are also shown. We attribute this unexpected change beyond classical understandings to the material-specific quantum mechanical electronic structures of the plasmonic materials.
Collapse
Affiliation(s)
- Jae-Ho Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Seungsang Cha
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Yoonhee Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jeong-Eun Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jeong-Wook Oh
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
16
|
Pan S, Li X, Yadav J. Single-nanoparticle spectroelectrochemistry studies enabled by localized surface plasmon resonance. Phys Chem Chem Phys 2021; 23:19120-19129. [PMID: 34524292 DOI: 10.1039/d1cp02801d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review describes recent progress of spectroelectrochemistry (SEC) analysis of single metallic nanoparticles (NPs) which have strong surface plasmon resonance properties. Dark-field scattering (DFS), photoluminescence (PL), and electrogenerated chemiluminescence (ECL) are three commonly used optical methods to detect individual NPs and investigate their local redox activities in an electrochemical cell. These SEC methods are highly dependent on a strong light-scattering cross-section of plasmonic metals and their electrocatalytic characteristics. The surface chemistry and the catalyzed reaction mechanism of single NPs and their chemical transformations can be studied using these SEC methods. Recent progress in the experimental design and fundamental understanding of single-NP electrochemistry and catalyzed reactions using DFS, PL, and ECL is described along with selected examples from recent publications in this field. Perspectives on the challenges and possible solutions for these SEC methods and potential new directions are discussed.
Collapse
Affiliation(s)
- Shanlin Pan
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Xiao Li
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Jeetika Yadav
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
17
|
Montaseri H, Kruger CA, Abrahamse H. Targeted Photodynamic Therapy Using Alloyed Nanoparticle-Conjugated 5-Aminolevulinic Acid for Breast Cancer. Pharmaceutics 2021; 13:pharmaceutics13091375. [PMID: 34575450 PMCID: PMC8471498 DOI: 10.3390/pharmaceutics13091375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) has been investigated as an effective, non-invasive, and alternative tumor-ablative therapy that uses photosensitizers (PSs) and safe irradiation light in the presence of oxygen to generate reactive oxygen species (ROS) to kill malignant cancer cells. However, the off-target activation of the PSs can hinder effective PDT. Therefore, an advanced drug delivery system is required to selectively deliver the PS to the therapeutic region only and reduce off-target side effects in cancer treatment. The integration of laser-initiated PDT with nanotechnology has provided new opportunities in cancer therapy. In this study, plasmonic bimetallic nanoparticles (NPs) were prepared for the targeted PDT (TPDT) of in vitro cultured MCF-7 breast cancer cells. The NPs were functionalized with PEG through Au–thiol linkage to enhance their biocompatibility and subsequently attached to the PS precursor 5-aminolevulinic acid via electrostatic interactions. In order to enhance specific targeting, anti-HER-2 antibodies (Ab) were decorated onto the surface of the nanoconjugate (NC) to fabricate a 5-ALA/Au–Ag-PEG-Ab NC. In vitro studies showed that the synthesized NC can enter MCF-7 cells and localize in the cytoplasm to metabolize 5-ALA to protoporphyrin IX (PpIX). Upon light irradiation, PpIX can efficiently produce ROS for the PDT treatment of MCF-7. Cellular viability studies showed a decrease from 49.8% ± 5.6 ** to 13.8% ± 2.0 *** for free 5-ALA versus the NC, respectively, under equivalent concentrations of the PS (0.5 mM, IC50). These results suggest that the active targeted NC platform has an improved PDT effect on MCF-7 breast cancer cells.
Collapse
|
18
|
Saha P, Rahman MM, Hill CM. Borohydride oxidation electrocatalysis at individual, shape‐controlled Au nanoparticles. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Partha Saha
- Department of Chemistry University of Wyoming Laramie Wyoming USA
| | | | - Caleb M. Hill
- Department of Chemistry University of Wyoming Laramie Wyoming USA
| |
Collapse
|
19
|
Kim Y, Cha S, Kim JH, Oh JW, Nam JM. Electrochromic response and control of plasmonic metal nanoparticles. NANOSCALE 2021; 13:9541-9552. [PMID: 34019053 DOI: 10.1039/d1nr01055g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic electrochromism, the dependence of the colour of plasmonic materials on the applied electrical potential, has been under the spotlight recently as a key element for the development of optoelectronic devices and spectroscopic tools. In this review, we focus on the electrochromic behaviour and underlying mechanistic principles of plasmonic metal nanoparticles, whose localised surface plasmon resonance occurs in the visible part of the electromagnetic spectrum, and present a comprehensive review on the recent progress in understanding and controlling plasmonic electrochromism. The mechanisms underlying the electrochromism of plasmonic metal nanoparticles could be divided into four categories, based on the origin of the LSPR shift: (1) capacitive charging model accompanying variation in the Fermi level, (2) faradaic reactions, (3) non-faradaic reactions, and (4) electrochemically active functional molecule-mediated mechanism. We also review recent attempts to synchronise the simulation with the experimental results and the strategies to overcome the intrinsically diminutive LSPR change of the plasmonic metal nanoparticles. A better understanding and controllability of plasmonic electrochromism provides new insights into and means of the connection between photoelectrochemistry and plasmonics as well as future directions for producing advanced optoelectronic materials and devices.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea.
| | | | | | | | | |
Collapse
|
20
|
Oikawa S, Minamimoto H, Ohnuki A, Murakoshi K. Ultra-fine electrochemical tuning of hybridized plasmon modes for ultimate light confinement. NANOSCALE 2020; 12:11593-11600. [PMID: 32432305 DOI: 10.1039/d0nr02218g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Highly reproducible control of metal plasmonic nanostructures has been achieved via precise tuning of the electrochemical Au dissolution reaction that occurs at the surfaces of well-defined bridged nanodisk dimer structures on an atomic scale. It was found that the scattering intensity is strongly suppressed during the transition from the conductive mode to the gap mode of the localized surface plasmon resonance during the period when the gap is formed and increased between Au nanodisks. The characteristic shift of the plasmon mode during this suppression of the scattering intensity verifies the excitation of the bonding quadrupolar mode, which appears only at sub-nanometer gap distances (d < 1 nm). Electrochemical potential control demonstrates that the scattering suppression states with estimated gap distances of less than 1 nm can be maintained for more than 100 s under ambient conditions. The method and phenomena presented here will be useful in the preparation of plasmonic structures for ultimate light confinement applications.
Collapse
Affiliation(s)
- Shunpei Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| | - Hiro Minamimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| | - Atsuyori Ohnuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| | - Kei Murakoshi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| |
Collapse
|
21
|
Liyanage T, Nagaraju M, Johnson M, Muhoberac BB, Sardar R. Reversible Tuning of the Plasmoelectric Effect in Noble Metal Nanostructures Through Manipulation of Organic Ligand Energy Levels. NANO LETTERS 2020; 20:192-200. [PMID: 31765167 DOI: 10.1021/acs.nanolett.9b03588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ligand-controlled tuning of localized surface plasmon resonance (LSPR) properties of noble metal nanostructures is fundamentally important for various optoelectronic applications such as photocatalysis, photovoltaics, and sensing. Here we demonstrate that the free carrier concentration of gold triangular nanoprisms (Au TNPs) can be tuned up to 12% upon functionalization of their surface with different para-substituted thiophenolate (X-Ph-S-) ligands. We achieve this unprecedentedly large optical response (plasmoelectric effect) in TNPs through the selective manipulation of electronic processes at the Au-thiolate interface. Interestingly, thiophenolates with electron withdrawing (donating) groups (X) produce λLSPR blue (red) shifts with broadening (narrowing) of localized surface plasmon resonance peak (λLSPR) line widths. Surprisingly, these experimental results are opposite to a straightforward application of the Drude model. Utilizing density functional theory calculations, we develop here a frontier molecular orbital approach of Au-thiophenolate interactions in the solid-state to delineate the observed spectral response. Importantly, all the spectroscopic properties are fully reversible by exchanging thiophenolates containing electron withdrawing groups with thiophenolates having electron donating groups, and vice versa. On the basis of the experimental data and calculations, we propose that the delocalization of electrons wave function controls the free carrier concentration of Au and thus the LSPR properties rather than simple electronic properties (inductive and/or resonance effects) of thiophenolates. This is further supported by the experimentally determined work functions, which are tunable over 1.9 eV in the X-Ph-S-passivated Au TNPs. We believe that our unexpected finding has great potential to guide in developing unique noble metal nanostructure-organic ligand hybrid nanoconjugates, which could allow us to bypass the complications associated with off-resonance LSPR activation of noble metal-doped semiconductor nanocrystals for various surface plasmon-driven applications.
Collapse
Affiliation(s)
- Thakshila Liyanage
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| | - Malpuri Nagaraju
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| | - Merrell Johnson
- Department of Physics , Purdue University Fort Wayne , 2101 E. Coliseum Boulevard , Fort Wayne , Indiana 46805 , United States
| | - Barry B Muhoberac
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| |
Collapse
|
22
|
Abstract
Plasmonic photocatalytic reactions have been substantially developed. However, the mechanism underlying the enhancement of such reactions is confusing in relevant studies. The plasmonic enhancements of photocatalytic reactions are hard to identify by processing chemically or physically. This review discusses the noteworthy experimental setups or designs for reactors that process various energy transformation paths for enhancing plasmonic photocatalytic reactions. Specially designed experimental setups can help characterize near-field optical responses in inducing plasmons and transformation of light energy. Electrochemical measurements, dark-field imaging, spectral measurements, and matched coupling of wavevectors lead to further understanding of the mechanism underlying plasmonic enhancement. The discussions herein can provide valuable ideas for advanced future studies.
Collapse
|
23
|
Baumberg JJ, Aizpurua J, Mikkelsen MH, Smith DR. Extreme nanophotonics from ultrathin metallic gaps. NATURE MATERIALS 2019; 18:668-678. [PMID: 30936482 DOI: 10.1038/s41563-019-0290-y] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/16/2019] [Indexed: 05/18/2023]
Abstract
Ultrathin dielectric gaps between metals can trap plasmonic optical modes with surprisingly low loss and with volumes below 1 nm3. We review the origin and subtle properties of these modes, and show how they can be well accounted for by simple models. Particularly important is the mixing between radiating antennas and confined nanogap modes, which is extremely sensitive to precise nanogeometry, right down to the single-atom level. Coupling nanogap plasmons to electronic and vibronic transitions yields a host of phenomena including single-molecule strong coupling and molecular optomechanics, opening access to atomic-scale chemistry and materials science, as well as quantum metamaterials. Ultimate low-energy devices such as robust bottom-up assembled single-atom switches are thus in prospect.
Collapse
Affiliation(s)
- Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Javier Aizpurua
- Materials Physics Center CSIC-UPV/EHU and Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal, Donostia-San Sebastiàn, Spain
| | - Maiken H Mikkelsen
- Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, NC, USA
| | - David R Smith
- Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, NC, USA
| |
Collapse
|
24
|
Willets KA. Supercharging Superlocalization Microscopy: How Electrochemical Charging of Plasmonic Nanostructures Uncovers Hidden Heterogeneity. ACS NANO 2019; 13:6145-6150. [PMID: 31184136 DOI: 10.1021/acsnano.9b04062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Superlocalization microscopy enables the position of single plasmonic nanoparticles to be determined with <25 nm precision, enabling single-nanoparticle tracking and super-resolution imaging experiments to be conducted with sub-diffraction-limited spatial resolution. In many of these applications, the superlocalized position of the nanoparticle is assumed to correspond to the geometric center of the nanoparticle. However, work reported by Wang and co-workers in this issue of ACS Nano suggests that this assumption can be incorrect, based on studies in which electrochemically charging a nanoparticle leads to reproducible shifts in its scattering center. The shift is believed to originate from nonuniform charge accumulation in the nanoparticle, due to the inherent heterogeneity in nanoparticle surface properties. This Perspective explores the implications of this result, both for using this shift to probe dynamic changes in nanoparticle surface chemistry as well as for exploiting nonuniform charge accumulation to promote site-specific chemical reactions.
Collapse
Affiliation(s)
- Katherine A Willets
- Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
25
|
Xiong K, Tordera D, Jonsson MP, Dahlin AB. Active control of plasmonic colors: emerging display technologies. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:024501. [PMID: 30640724 DOI: 10.1088/1361-6633/aaf844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In recent years there has been a growing interest in the use of plasmonic nanostructures for color generation, a technology that dates back to ancient times. Plasmonic structural colors have several attractive features but once the structures are prepared the colors are normally fixed. Lately, several concepts have emerged for actively tuning the colors, which opens up for many new potential applications, the most obvious being novel color displays. In this review we summarize recent progress in active control of plasmonic colors and evaluate them with respect to performance criteria for color displays. It is suggested that actively controlled plasmonic colors are generally less interesting for emissive displays but could be useful for new types of electrochromic devices relying on ambient light (electronic paper). Furthermore, there are several other potential applications such as images to be revealed on demand and colorimetric sensors.
Collapse
Affiliation(s)
- Kunli Xiong
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | | | | | | |
Collapse
|
26
|
Saha P, Hill JW, Walmsley JD, Hill CM. Probing Electrocatalysis at Individual Au Nanorods via Correlated Optical and Electrochemical Measurements. Anal Chem 2018; 90:12832-12839. [DOI: 10.1021/acs.analchem.8b03360] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Partha Saha
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Joshua W. Hill
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Joshua D. Walmsley
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Caleb M. Hill
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
27
|
Hoener BS, Kirchner SR, Heiderscheit TS, Collins SS, Chang WS, Link S, Landes CF. Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry. Chem 2018. [DOI: 10.1016/j.chempr.2018.04.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Liu T, Li M, Wang Y, Fang Y, Wang W. Electrochemical impedance spectroscopy of single Au nanorods. Chem Sci 2018; 9:4424-4429. [PMID: 29896383 PMCID: PMC5956977 DOI: 10.1039/c8sc00983j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022] Open
Abstract
Monochromatic dark-field microscopy coupled with high-frequency potential modulation leads to non-faradaic electrochemical impedance spectroscopy of single Au nanorods.
We propose monochromatic dark-field imaging microscopy (DFM) to measure the non-faradaic electrochemical impedance spectroscopy (EIS) of single Au nanorods (AuNRs). DFM was utilized to monitor the plasmonic scattering of monochromatic incident light by surface-immobilized individual AuNRs. When modulating the surface potential at a certain frequency, non-faradaic charging and discharging of AuNRs altered their electron density, leading to periodical fluctuations in the scattering intensity. Analysis of the amplitude and phase of the optical intensity fluctuation as a function of modulation frequency resulted in the EIS of single AuNRs. High-frequency (>100 Hz) modulation allowed us to differentiate the intrinsic charging effect from other contributions such as the periodic migration and accumulation of counterions in the surrounding medium, because the latter occurred at a longer timescale. As a result, single nanoparticle EIS led to the surface capacitance of single AuNRs being closer to the theoretical value. Since interfacial capacitance has been proven sensitive to molecular interactions, the present work also offers a new platform for single nanoparticle sensing by measuring the single nanoparticle capacitance.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Meng Li
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Yongjie Wang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Yimin Fang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| |
Collapse
|