1
|
Tan J, Pei Q, Zhang L, Ye S. Evidence for a Local Field Effect in Surface Plasmon-Enhanced Sum Frequency Generation Vibrational Spectra. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6099-6105. [PMID: 35499917 DOI: 10.1021/acs.langmuir.2c00457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface plasmon-enhanced vibrational spectroscopy has been demonstrated to be an important highly sensitive diagnostic technique, but its enhanced mechanism is yet to be explored. In this study, we couple femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) with surface plasmon generated by the excitation of localized gold nanorods/nanoparticles and investigate the plasmonically enhanced factors (EFs) of SFG signals from poly(methyl methacrylate) films. Through monitoring the SFG intensity of carbonyl and ester methyl groups, we have established a correlation between EFs and the coupling of localized surface plasmon resonance with SFG and visible beams. It is found that the total enhanced factor is approximately proportional to the square of an enhanced factor of the SFG electromagnetic field and the fourth power of the enhanced factor of the visible electromagnetic field. The local field effect is roughly expressed to be the square of an enhanced factor of the visible electromagnetic field. This finding will help to guide the experimental design of plasmon-enhanced SFG to drastically improve the detection sensitivity and thus provide greater insight into the ultrafast dynamics near plasmonic surfaces.
Collapse
Affiliation(s)
- Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Liang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Fulfer KD, Galle Kankanamge SR, Chen X, Woodard KT, Kuroda DG. Elucidating the mechanism behind the infrared spectral features and dynamics observed in the carbonyl stretch region of organic carbonates interacting with lithium ions. J Chem Phys 2021; 154:234504. [PMID: 34241245 DOI: 10.1063/5.0049742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ultrafast infrared spectroscopy has become a very important tool for studying the structure and ultrafast dynamics in solution. In particular, it has been recently applied to investigate the molecular interactions and motions of lithium salts in organic carbonates. However, there has been a discrepancy in the molecular interpretation of the spectral features and dynamics derived from these spectroscopies. Hence, the mechanism behind spectral features appearing in the carbonyl stretching region was further investigated using linear and nonlinear spectroscopic tools and the co-solvent dilution strategy. Lithium perchlorate in a binary mixture of dimethyl carbonate (DMC) and tetrahydrofuran was used as part of the dilution strategy to identify the changes of the spectral features with the number of carbonates in the first solvation shell since both solvents have similar interaction energetics with the lithium ion. Experiments showed that more than one carbonate is always participating in the lithium ion solvation structures, even at the low concentration of DMC. Moreover, temperature-dependent study revealed that the exchange of the solvent molecules coordinating the lithium ion is not thermally accessible at room temperature. Furthermore, time-resolved IR experiments confirmed the presence of vibrationally coupled carbonyl stretches among coordinated DMC molecules and demonstrated that this process is significantly altered by limiting the number of carbonate molecules in the lithium ion solvation shell. Overall, the presented experimental findings strongly support the vibrational energy transfer as the mechanism behind the off-diagonal features appearing on the 2DIR spectra of solutions of lithium salt in organic carbonates.
Collapse
Affiliation(s)
- Kristen D Fulfer
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | - Xiaobing Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kaylee T Woodard
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
3
|
Fernández-Terán R, Hamm P. A closer look into the distance dependence of vibrational energy transfer on surfaces using 2D IR spectroscopy. J Chem Phys 2020; 153:154706. [PMID: 33092354 DOI: 10.1063/5.0025787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrational energy transfer (VET) between two isotopologues of [Re(dcb)(CO)3Br] immobilized on a TiO2 surface is studied with the help of 2D IR spectroscopy in dependence of surface coverage. To dilute the molecules on the surface, and thereby control the intermolecular distances, two different diluents have been used: a third isotopologue of the same molecule and 4-cyanobenzoic acid. As expected, the VET rate decreases with dilution. For a quantitative investigation of the distance dependence of the VET rate, we analyze the data based on an excitonic model. This model reveals the typical 1/r6-distance dependence for a dimer of a donor and acceptor, similar to the nuclear Overhauser effect in NMR spectroscopy or Förster resonant energy transfer in electronic spectroscopy. However, VET becomes a collective phenomenon on the surface, with the existence of a network of coupled molecules and its disappearance below a percolation threshold, dominating the concentration dependence of the VET rate.
Collapse
Affiliation(s)
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| |
Collapse
|
4
|
Synthesis and characterization of rhenium(I) 4,4′-dicarboxy-2,2′-bipyridine tricarbonyl complexes for solar energy conversion. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Xiang B, Ribeiro RF, Du M, Chen L, Yang Z, Wang J, Yuen-Zhou J, Xiong W. Intermolecular vibrational energy transfer enabled by microcavity strong light–matter coupling. Science 2020; 368:665-667. [DOI: 10.1126/science.aba3544] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/30/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Bo Xiang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Raphael F. Ribeiro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Du
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liying Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zimo Yang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jiaxi Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Xiong
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Petti MK, Ostrander JS, Birdsall ER, Kunz MB, Armstrong ZT, Alperstein AM, Zanni MT. A Proposed Method to Obtain Surface Specificity with Pump-Probe and 2D Spectroscopies. J Phys Chem A 2020; 124:3471-3483. [PMID: 32255629 PMCID: PMC7993518 DOI: 10.1021/acs.jpca.9b11791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Surfaces and interfaces are ubiquitous in nature. From cell membranes, to photovoltaic thin films, surfaces have important function in both biological and materials systems. Spectroscopic techniques have been developed to probe systems like these, such as sum frequency generation (SFG) spectroscopies. The advantage of SFG spectroscopy, a second-order spectroscopy, is that it can distinguish between signals produced from molecules in the bulk versus on the surface. We propose a polarization scheme for third-order spectroscopy experiments, such as pump-probe and 2D spectroscopy, to select for surface signals and not bulk signals. This proposed polarization condition uses one pulse perpendicular compared to the other three to isolate cross-peaks arising from molecules with polar and uniaxial (i.e., biaxial) order at a surface, while removing the signal from bulk isotropic molecules. In this work, we focus on two of these cases: XXXY and YYYX, which differ by the sign of the cross-peak they create. We compare this technique to SFG spectroscopy and vibrational circular dichroism to provide insight to the behavior of the cross-peak signal. We propose that these singularly cross-polarized schemes provide odd-ordered spectroscopies the surface-specificity typically associated with even-ordered techniques.
Collapse
Affiliation(s)
- Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Erin R Birdsall
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Miriam Bohlmann Kunz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary T Armstrong
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ariel M Alperstein
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Dong X, Wang S, Yu P, Yang F, Zhao J, Wu LZ, Tung CH, Wang J. Ultrafast Vibrational Energy Transfer through the Covalent Bond and Intra- and Intermolecular Hydrogen Bonds in a Supramolecular Dimer by Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2020; 124:544-555. [PMID: 31873023 DOI: 10.1021/acs.jpcb.9b10431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, the structural fluctuations and vibrational energy transfer dynamics in a supramolecular homodimer model, which is composed of 2-(9-anthracene)ureido-6-(1-undecyl)-4[1H]-pyrimidinone (UPAn) with quadruple intermolecular and single intramolecular hydrogen bonds (HBs), have been examined using ultrafast two-dimensional infrared (2D IR) and steady-state IR spectroscopies. A less structurally fluctuating intermolecular HB is found between the pyrimidinone C═O and ureido N-H groups. However, a larger structurally fluctuating intramolecular HB is suggested by the equilibrium and dynamical line-shape measurements of the ureido C═O stretch. Further, dynamical time-dependent 2D IR diagonal and off-diagonal signals show that intra- and intermolecular vibrational energy transfer processes occur on the picosecond timescale, where the latter is more efficient due to intermolecular hydrogen bonding interaction and through-space interaction.
Collapse
Affiliation(s)
- Xueqian Dong
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Sumin Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,School of Materials and Chemical Engineering , Xi'an Technological University , Xi'an 710021 , P. R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Li-Zhu Wu
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.,Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Chen-Ho Tung
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.,Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
8
|
Li X, Zhou D, Hao H, Chen H, Weng Y, Bian H. Vibrational Relaxation Dynamics of a Semiconductor Copper(I) Thiocyanate (CuSCN) Film as a Hole-Transporting Layer. J Phys Chem Lett 2020; 11:548-555. [PMID: 31884795 DOI: 10.1021/acs.jpclett.9b03480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The semiconductor CuSCN film, which is typically used as the hole-transporting layer (HTL) in solar cell studies, has been investigated by Fourier transform infrared (FTIR) spectroscopy and ultrafast transient infrared (IR) spectroscopy. A sharp peak at 2175 cm-1 corresponding to the CN vibrational stretching mode in CuSCN was observed, and the peak frequency remained unchanged by varying the thickness of the CuSCN thin film. Vibrational relaxation measurements showed that the 0-1 and 1-2 transitions of CN stretching can be observed at 2175 and 2140 cm-1, respectively. The heat-induced absorption and bleaching peaks (2167 and 2175 cm-1) can be clearly seen at a waiting time of 40 ps. The vibrational relaxation of the CN stretching mode determined from the 1-2 transition exhibited a biexponential decay with time constants of 7.4 ± 0.5 (90%) and 158 ± 50 ps (10%). Importantly, the abnormal anisotropy decay of the CN stretching mode in the CuSCN thin film was also observed for the first time. A detailed analysis showed that the distinct anisotropy decay curve could be described using a triexponential decay function, which was explained by three different processes: resonance energy transfer (∼8 ps), a thermalization process (∼40 ps), and molecular rotation (∼150 ps). The time scale of the thermalization process caused by the vibrational relaxation in CuSCN is at a time scale of 40 ps, which is important for us to understand the thermally activated charge-transport property of the CuSCN film employed as the HTL. Further UV pump-IR probe measurement revealed that the carrier scattering and relaxation processes in the CuSCN film are strongly associated with the vibrational excitation and relaxation dynamics of the CN stretching mode. It is expected that the fundamental understanding of the vibrational relaxation dynamics of the CuSCN thin film should provide helpful insight to elucidate its role as the HTL in solar cell studies at the molecular level.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Hongxing Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yuxiang Weng
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| |
Collapse
|
9
|
Metzger B, Muller E, Nishida J, Pollard B, Hentschel M, Raschke MB. Purcell-Enhanced Spontaneous Emission of Molecular Vibrations. PHYSICAL REVIEW LETTERS 2019; 123:153001. [PMID: 31702318 DOI: 10.1103/physrevlett.123.153001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Infrared (IR) spectroscopy of molecular vibrations provides insight into molecular structure, coupling, and dynamics. However, picosecond scale intermolecular and intramolecular many-body interactions, nonradiative relaxation, absorption, and thermalization typically dominate over IR spontaneous emission. We demonstrate how coupling to a resonant IR antenna can enhance spontaneous emission of molecular vibrations. Using time-domain nanoprobe spectroscopy we observe an up to 50% decrease in vibrational dephasing time T_{2,vib}, based on the coupling-induced population decay with T_{κ}≃550 fs and an associated Purcell factor of >10^{6}. This rate enhancement of the spontaneous emission of antenna-coupled molecular vibrations opens new avenues for IR coherent control, quantum information processing, and quantum chemistry.
Collapse
Affiliation(s)
- Bernd Metzger
- Department of Physics, Department of Chemistry, and JILA, University of Colorado at Boulder, Colorado 80309, USA
| | - Eric Muller
- Department of Physics, Department of Chemistry, and JILA, University of Colorado at Boulder, Colorado 80309, USA
| | - Jun Nishida
- Department of Physics, Department of Chemistry, and JILA, University of Colorado at Boulder, Colorado 80309, USA
| | - Benjamin Pollard
- Department of Physics, Department of Chemistry, and JILA, University of Colorado at Boulder, Colorado 80309, USA
| | - Mario Hentschel
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Markus B Raschke
- Department of Physics, Department of Chemistry, and JILA, University of Colorado at Boulder, Colorado 80309, USA
| |
Collapse
|
10
|
Ge A, Rudshteyn B, Videla PE, Miller CJ, Kubiak CP, Batista VS, Lian T. Heterogenized Molecular Catalysts: Vibrational Sum-Frequency Spectroscopic, Electrochemical, and Theoretical Investigations. Acc Chem Res 2019; 52:1289-1300. [PMID: 31056907 DOI: 10.1021/acs.accounts.9b00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rhenium and manganese bipyridyl tricarbonyl complexes have attracted intense interest for their promising applications in photocatalytic and electrocatalytic CO2 reduction in both homogeneous and heterogenized systems. To date, there have been extensive studies on immobilizing Re catalysts on solid surfaces for higher catalytic efficiency, reduced catalyst loading, and convenient product separation. However, in order for the heterogenized molecular catalysts to achieve the combination of the best aspects of homogeneous and heterogeneous catalysts, it is essential to understand the fundamental physicochemical properties of such heterogeneous systems, such as surface-bound structures of Re/Mn catalysts, substrate-adsorbate interactions, and photoinduced or electric-field-induced effects on Re/Mn catalysts. For example, the surface may act to (un)block substrates, (un)trap charges, (de)stabilize particular intermediates (and thus affect scaling relations), and shift potentials in different directions, just as protein environments do. The close collaboration between the Lian, Batista, and Kubiak groups has resulted in an integrated approach to investigate how the semiconductor or metal surface affects the properties of the attached catalyst. Synthetic strategies to achieve stable and controlled attachment of Re/Mn molecular catalysts have been developed. Steady-state, time-resolved, and electrochemical vibrational sum-frequency generation (SFG) spectroscopic studies have provided insight into the effects of interfacial structures, ultrafast vibrational energy relaxation, and electric field on the Re/Mn catalysts, respectively. Various computational methods utilizing density functional theory (DFT) have been developed and applied to determine the molecular orientation by direct comparison to spectroscopy, unravel vibrational energy relaxation mechanisms, and quantify the interfacial electric field strength of the Re/Mn catalyst systems. This Account starts with a discussion of the recent progress in determining the surface-bound structures of Re catalysts on semiconductor and Au surfaces by a combined vibrational SFG and DFT study. The effects of crystal facet, length of anchoring ligands, and doping of the semiconductor on the bound structures of Re catalysts and of the substrate itself are discussed. This is followed by a summary of the progress in understanding the vibrational relaxation (VR) dynamics of Re catalysts covalently adsorbed on semiconductor and metal surfaces. The VR processes of Re catalysts on TiO2 films and TiO2 single crystals and a Re catalyst tethered on Au, particularly the role of electron-hole pair (EHP)-induced coupling on the VR of the Re catalyst bound on Au, are discussed. The Account also summarizes recent studies in quantifying the electric field strength experienced by the catalytically active site of the Re/Mn catalyst bound on a Au electrode based on a combined electrochemical SFG and DFT study of the Stark tuning of the CO stretching modes of these catalysts. Finally, future research directions on surface-immobilized molecular catalyst systems are discussed.
Collapse
Affiliation(s)
- Aimin Ge
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Benjamin Rudshteyn
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Pablo E. Videla
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Christopher J. Miller
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Clifford P. Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Victor S. Batista
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Wu Y, Yu P, Chen Y, Zhao J, Liu H, Li Y, Wang J. Intensified C≡C Stretching Vibrator and Its Potential Role in Monitoring Ultrafast Energy Transfer in 2D Carbon Material by Nonlinear Vibrational Spectroscopy. J Phys Chem Lett 2019; 10:1402-1410. [PMID: 30848918 DOI: 10.1021/acs.jpclett.9b00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, an intensity-enhanced C≡C stretching infrared (IR) absorption is observed in hexakis[(trimethylsilyl)ethynyl]benzene (HTEB), whose IR transition dipole magnitude becomes comparable to that of a typical C═O stretch, and the enhancement is believed to be due to a joint effect of π-π conjugation and hyperconjugation associated with a terminal trimethylsilyl group. Using dynamical time-dependent two-dimensional infrared (2D IR) spectroscopy, a picosecond intramolecular energy redistribution process is observed between two nondegenerate C≡C stretching modes, whose symmetry breaking is attributed to a noncovalent halogen-bonding interaction between HTEB and solvent CH2Cl2. The rigid structure of HTEB and limited structural dynamics are also inferred from the insignificant initial spectral diffusion value extracted from the 2D IR spectra. This work provides the first nonlinear infrared investigation of the conventionally weak C≡C stretch. The methods outlined are particularly important for detailed understanding of the structure-related processes such as vibrational energy transfer in novel C≡C species containing materials such as graphdiyne.
Collapse
Affiliation(s)
- Yanzhou Wu
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Pengyun Yu
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yanhuan Chen
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Juan Zhao
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Huibiao Liu
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yuliang Li
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jianping Wang
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
12
|
Li J, Zhang Y, Zheng J. Intermolecular energy flows between surface molecules on metal nanoparticles. Phys Chem Chem Phys 2019; 21:4240-4245. [PMID: 30747170 DOI: 10.1039/c8cp05932b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three model systems are designed to investigate energy transport between molecules on metal nanoparticle surfaces. Energy is rapidly transferred from one carbon monoxide (CO) molecule to another CO molecule or an organic molecule on adjacent surface sites of 2 nm Pt particles within a few picoseconds. On the contrary, energy flow from a surface organic molecule to an adjacent CO molecule is significantly slower and, in fact, within experimental sensitivity and uncertainty the transfer is not observed. The energy transport on particle surfaces (about 2 km s-1) is almost ten times faster than inside a molecule (200 m s-1). The seemingly perplexing observations can be well explained by the combination of electron/vibration and vibration/vibration coupling mechanisms, which mediate molecular energy dynamics on metal nanoparticle surfaces: the strong electron/vibration coupling rapidly converts CO vibrational energy into heat that can be immediately sensed by nearby molecules; but the vibration/vibration coupling dissipates the vibrational excitation in the organic molecule as low-frequency intramolecular vibrations that may or may not couple to surface electronic motions.
Collapse
Affiliation(s)
- Jiebo Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | | | | |
Collapse
|
13
|
Liu Q, Zhang Y, Zhang Q, Wei Q, Zhou D, Wu G, Cai K, Yuan K, Bian H. Understanding the intramolecular vibrational energy transfer and structural dynamics of anionic ligands in a photo-catalytic CO 2reduction catalyst. Phys Chem Chem Phys 2019; 21:23026-23035. [DOI: 10.1039/c9cp05029a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The knowledge of intramolecular vibrational energy redistribution (IVR) and structural dynamics of rhenium photo-catalysts is essential for understanding the mechanism of the photo-catalytic process of CO2reduction.
Collapse
Affiliation(s)
- Qianchen Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Yutong Zhang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Qi Zhang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Qianshun Wei
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Kaicong Cai
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou
- China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- China
| |
Collapse
|
14
|
Kiefer LM, Kubarych KJ. Two-dimensional infrared spectroscopy of coordination complexes: From solvent dynamics to photocatalysis. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Introduction to State-of-the-Art Multidimensional Time-Resolved Spectroscopy Methods. Top Curr Chem (Cham) 2018; 376:28. [DOI: 10.1007/s41061-018-0206-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
|
16
|
|
17
|
Paleček D, Tek G, Lan J, Iannuzzi M, Hamm P. Characterization of the Platinum-Hydrogen Bond by Surface-Sensitive Time-Resolved Infrared Spectroscopy. J Phys Chem Lett 2018; 9:1254-1259. [PMID: 29474082 DOI: 10.1021/acs.jpclett.8b00310] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The vibrational dynamics of Pt-H on a nanostructured platinum surface has been examined by ultrafast infrared spectroscopy. Three bands are observed at 1800, 2000, and 2090 cm-1, which are assigned to Pt-CO in a bridged and linear configuration and Pt-H, respectively. Lifetime analysis revealed a time constant of (0.8 ± 0.1) ps for the Pt-H mode, considerably shorter than that of Pt-CO because of its stronger coupling to the metal substrate. Two-dimensional attenuated total reflection infrared spectroscopy provided additional evidence for the assignment based on the anharmonic shift, which is large in the case of Pt-H (90 cm-1), in agreement with the density functional theory calculations. The absorption cross section of Pt-H is smaller than that of the very strong Pt-CO vibration by only a modest factor of ∼1.5-3. Because Pt-H is transiently involved in catalytic water splitting on Pt, the present spectroscopic characterization paves the way for in-operando kinetic studies of such reactions.
Collapse
Affiliation(s)
- David Paleček
- Department of Chemistry , University of Zurich , Zurich , Switzerland
| | - Gökçen Tek
- Department of Chemistry , University of Zurich , Zurich , Switzerland
| | - Jinggang Lan
- Department of Chemistry , University of Zurich , Zurich , Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry , University of Zurich , Zurich , Switzerland
| | - Peter Hamm
- Department of Chemistry , University of Zurich , Zurich , Switzerland
| |
Collapse
|
18
|
Ge A, Rudshteyn B, Zhu J, Maurer RJ, Batista VS, Lian T. Electron-Hole-Pair-Induced Vibrational Energy Relaxation of Rhenium Catalysts on Gold Surfaces. J Phys Chem Lett 2018; 9:406-412. [PMID: 29227669 DOI: 10.1021/acs.jpclett.7b02885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A combination of time-resolved vibrational spectroscopy and density functional theory techniques have been applied to study the vibrational energy relaxation dynamics of the Re(4,4'-dicyano-2,2'-bipyridine)(CO)3Cl (Re(CO)3Cl) catalyst for CO2 to CO conversion bound to gold surfaces. The kinetics of vibrational relaxation exhibits a biexponential decay including an ultrafast initial relaxation and complete recovery of the ground vibrational state. Ab initio molecular dynamics simulations and time-dependent perturbation theory reveal the former to be due to vibrational population exchange between CO stretching modes and the latter to be a combination of intramolecular vibrational relaxation (IVR) and electron-hole pair (EHP)-induced energy transfer into the gold substrate. EHP-induced energy transfer from the Re(CO)3Cl adsorbate into the gold surface occurs on the same time scale as IVR of Re(CO)3Cl in aprotic solvents. Therefore, it is expected to be particularly relevant to understanding the reduced catalytic activity of the homogeneous catalyst when anchored to a metal surface.
Collapse
Affiliation(s)
- Aimin Ge
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Benjamin Rudshteyn
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Yale Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Jingyi Zhu
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Reinhard J Maurer
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Victor S Batista
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Yale Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Kraack JP, Sévery L, Tilley SD, Hamm P. Plasmonic Substrates Do Not Promote Vibrational Energy Transfer at Solid-Liquid Interfaces. J Phys Chem Lett 2018; 9:49-56. [PMID: 29235870 DOI: 10.1021/acs.jpclett.7b02855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intermolecular vibrational energy transfer in monolayers of isotopically mixed rhenium carbonyl complexes at solid-liquid interfaces is investigated with the help of ultrafast 2D Attenuated Total Reflectance Infrared (2D ATR IR) spectroscopy in dependence of plasmonic surface enhancement effects. Dielectric and plasmonic materials are used to demonstrate that plasmonic effects have no impact on the vibrational energy transfer rate in a regime of moderate IR surface enhancement (enhancement factors up to ca. 30). This result can be explained with the common image-dipole picture. The vibrational energy transfer rate thus can be used as a direct observable to determine intermolecular distances on surfaces, regardless of their plasmonic properties.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Laurent Sévery
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - S David Tilley
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
20
|
Yan C, Thomaz JE, Wang YL, Nishida J, Yuan R, Breen JP, Fayer MD. Ultrafast to Ultraslow Dynamics of a Langmuir Monolayer at the Air/Water Interface Observed with Reflection Enhanced 2D IR Spectroscopy. J Am Chem Soc 2017; 139:16518-16527. [DOI: 10.1021/jacs.7b06602] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chang Yan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Joseph E. Thomaz
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yong-Lei Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jun Nishida
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Rongfeng Yuan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - John P. Breen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
21
|
Kraack JP. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top Curr Chem (Cham) 2017; 375:86. [PMID: 29071445 DOI: 10.1007/s41061-017-0172-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|