1
|
Rutman Moshe K, Rosenberg D, Sternbach I, Fleischer S. The Manifestations of "l-Doubling" in Gas-Phase Rotational Dynamics. J Phys Chem Lett 2024; 15:12449-12454. [PMID: 39665423 DOI: 10.1021/acs.jpclett.4c02918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The "l-Doubling" phenomenon emanates from the coupling between molecular rotations and perpendicular vibrations (bending modes) in polyatomic molecules. This elusive phenomenon has been largely discarded in laser-induced molecular alignment. Here we explore and unveil the ramifications of l-Doubling on the coherent rotational dynamics of linear triatomic molecules at ambient temperatures and above. The observed l-Doubling dynamics may be wrongly considered as collisional decay throughout the first few hundreds of picoseconds past excitation, highlighting the importance of correct assimilation of l-Doubling in current research of dissipative rotational dynamics and in coherent rotational dynamics in general.
Collapse
Affiliation(s)
- Kfir Rutman Moshe
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv University Center for Light-Matter-Interaction, Tel Aviv 6997801, Israel
| | - Dina Rosenberg
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv University Center for Light-Matter-Interaction, Tel Aviv 6997801, Israel
| | - Inbar Sternbach
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv University Center for Light-Matter-Interaction, Tel Aviv 6997801, Israel
| | - Sharly Fleischer
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv University Center for Light-Matter-Interaction, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Wang P, He L, Deng Y, Sun S, Lan P, Lu P. Unveiling Nonsecular Collisional Dissipation of Molecular Alignment. PHYSICAL REVIEW LETTERS 2024; 133:033202. [PMID: 39094146 DOI: 10.1103/physrevlett.133.033202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/17/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024]
Abstract
We conducted a joint theoretical and experimental study to investigate the collisional dissipation of molecular alignment. By comparing experimental measurements to the quantum simulations, the nonsecular effect in the collision dissipation of molecular alignment was unveiled from the gas-density-dependent decay rates of the molecular alignment revival signals. Different from the conventional perspective that the nonsecular collisional effect rapidly fades within the initial few picoseconds following laser excitation, our simulations of the time-dependent decoherence process demonstrated that this effect can last for tens of picoseconds in the low-pressure regime. This extended timescale allows for the distinct identification of the nonsecular effect from molecular alignment signals. Our findings present the pioneering evidence that nonsecular molecular collisional dissipation can endure over an extended temporal span, challenging established concepts and strengthening our understanding of molecular dynamics within dissipative environments.
Collapse
|
3
|
Lu C, Xu L, Zhou L, Shi M, Lu P, Li W, Dörner R, Lin K, Wu J. Intermolecular interactions probed by rotational dynamics in gas-phase clusters. Nat Commun 2024; 15:4360. [PMID: 38777851 PMCID: PMC11111446 DOI: 10.1038/s41467-024-48822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The rotational dynamics of a molecule is sensitive to neighboring atoms or molecules, which can be used to probe the intermolecular interactions in the gas phase. Here, we real-time track the laser-driven rotational dynamics of a single N2 molecule affected by neighboring Ar atoms using coincident Coulomb explosion imaging. We find that the alignment trace of N-N axis decays fast and only persists for a few picoseconds when an Ar atom is nearby. We show that the decay rate depends on the rotational geometry of whether the Ar atom stays in or out of the rotational plane of the N2 molecule. Additionally, the vibration of the van der Waals bond is found to be excited through coupling with the rotational N-N axis. The observations are well reproduced by solving the time-dependent Schrödinger equation after taking the interaction potential between the N2 and Ar into consideration. Our results demonstrate that environmental effects on a molecular level can be probed by directly visualizing the rotational dynamics.
Collapse
Affiliation(s)
- Chenxu Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Long Xu
- Department of Physics, Xiamen University, Xiamen, China
| | - Lianrong Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Menghang Shi
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Wenxue Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Kang Lin
- School of Physics, Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China.
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.
| |
Collapse
|
4
|
Lian Z, Luo S, Qi H, Chen Z, Shu CC, Hu Z. Visualizing ultrafast weak-field-induced rotational revivals of air molecules at room temperature. OPTICS LETTERS 2023; 48:411-414. [PMID: 36638470 DOI: 10.1364/ol.480833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The ability to observe quantum coherence and interference is crucial for understanding quantum effects in nonlinear optical spectroscopy and is of fundamental interest in quantum mechanics. Here, we present an experimental study combined with theoretical analysis and numerical simulations to identify the underlying process behind the rotational revivals induced by a pair of time-delayed ultrafast femtosecond laser pulses for air molecules under ambient conditions. Our time-resolved two-dimensional alignment measurements confirm that one-step non-resonant Raman transitions from initial states of mixed molecules play a dominant role, showing a signature of weak-field-induced rotational revivals. Furthermore, we demonstrate that such rotational revival spectra can simultaneously measure the entire pure rotational Raman spectra and observe the quantum interference between two transition pathways from a given initial state. This work provides a powerful tool to observe, control, and identify the rotational dynamics of mixed molecular samples under weak-field excitations.
Collapse
|
5
|
Damari R, Beer A, Flaxer E, Fleischer S. Enhanced molecular orientation via NIR-delay-THz scheme: Experimental results at room temperature. J Chem Phys 2023; 158:014201. [PMID: 36610970 DOI: 10.1063/5.0132656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Light-induced orientation of gas phase molecules is a long-pursued goal in physics and chemistry. Here, we experimentally demonstrate a six-fold increase in the terahertz-induced orientation of iodomethane (CH3I) molecules at room temperature, provided by rotational pre-excitation with a moderately intense near-IR pulse. The paper highlights the underlying interference of multiple coherent transition pathways within the rotational coherence manifold and is analyzed accordingly. Our experimental and theoretical results provide desirable and practical means for all-optical experiments on oriented molecular ensembles.
Collapse
Affiliation(s)
- Ran Damari
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Beer
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eli Flaxer
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sharly Fleischer
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Damari R, Beer A, Rosenberg D, Fleischer S. Molecular orientation echoes via concerted terahertz and near-IR excitations. OPTICS EXPRESS 2022; 30:44464-44471. [PMID: 36522870 DOI: 10.1364/oe.474024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
A new and efficient method for orientation echo spectroscopy is presented and realized experimentally. The excitation scheme utilizes concerted rotational excitations by both ultrashort terahertz and near-IR pulses and its all-optical detection is enabled by the molecular orientation-induced second harmonic method [J. Phys. Chem. A126, 3732 (2022)10.1021/acs.jpca.2c03237]. This method provides practical means for orientation echo spectroscopy of gas phase molecules and highlights the intriguing underlying physics of coherent rotational dynamics induced by judiciously-orchestrated interactions with both resonant (terahertz) and nonresonant (NIR) fields.
Collapse
|
7
|
Gronborg KC, Giles SM, Garrett-Roe S. Rotationally-Resolved Two-Dimensional Infrared Spectroscopy of CO 2(g): Rotational Wavepackets and Angular Momentum Transfer. J Phys Chem Lett 2022; 13:8185-8191. [PMID: 36005741 DOI: 10.1021/acs.jpclett.2c02184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Angular momentum transfer and wavepacket dynamics of CO2(g) were measured on the picosecond time scale using polarization-resolved two-dimensional infrared (2D-IR) spectroscopy. The dynamics of rotational levels up to Jmax ≈ 50 are observed simultaneously at room temperature. Rotational wavepackets launched by the pump pulses cause oscillations in the intensity of individual peaks and beating patterns in the 2D-IR spectra. The structure of the rotationally resolved 2D-IR spectrum is explained using nonlinear response function theory. Spectral diffusion of the rotationally resolved 2D-IR peaks reveals information about angular momentum transfer. We demonstrate the ability to directly measure inelastic angular momentum dynamics simultaneously across the ∼50 thermally excited rotational levels over several hundred picoseconds.
Collapse
Affiliation(s)
- Kai C Gronborg
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania15260, United States
| | - Sydney M Giles
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania15260, United States
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania15260, United States
| |
Collapse
|
8
|
Beer A, Damari R, Chen Y, Fleischer S. Molecular Orientation-Induced Second-Harmonic Generation: Deciphering Different Contributions Apart. J Phys Chem A 2022; 126:3732-3738. [PMID: 35654048 PMCID: PMC9207934 DOI: 10.1021/acs.jpca.2c03237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/15/2022] [Indexed: 12/04/2022]
Abstract
We demonstrate and explore an all-optical technique for direct monitoring of the orientation dynamics in gas-phase molecular ensembles. The technique termed "MOISH" utilizes the transiently lifted inversion symmetry of polar gas media and provides a sensitive and spatially localized probing of the second-harmonic generation signal that is directly correlated with the orientation of the gas. Our experimental results reveal selective electronic and nuclear dynamical contributions to the overall nonlinear optical signal and decipher them apart using the "reporter gas" approach. "MOISH" provides new crucial means for implementing advanced coherent rotational control via concerted excitation by both terahertz and optical fields.
Collapse
Affiliation(s)
- Amit Beer
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv
University Center for Light-Matter-Interaction, Tel Aviv 6997801, Israel
| | - Ran Damari
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv
University Center for Light-Matter-Interaction, Tel Aviv 6997801, Israel
| | - Yun Chen
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sharly Fleischer
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv
University Center for Light-Matter-Interaction, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Wang P, He L, He Y, Hu J, Sun S, Lan P, Lu P. Rotational echo spectroscopy for accurate measurement of molecular alignment. OPTICS LETTERS 2022; 47:1033-1036. [PMID: 35230283 DOI: 10.1364/ol.451011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
We measure the molecular alignment induced in gas using molecular rotational echo spectroscopy. Our results show that the echo intensity and the time interval between the local extremas of the echo responses depend sensitively on the pump intensities and the initial molecular rotational temperature, respectively. This allows us to accurately extract these experimental parameters from the echo signals and then further determine the molecular alignment in experiments. The accuracy of our method has been verified by comparing the simulation with the extracted parameters from the molecular alignment experiment performed with a femtosecond pump pulse.
Collapse
|
10
|
Lian Z, Qi H, Li J, Bo J, Deng J, Liu X, Luo S, Li SY, Fei D, Chen Z, Hu Z. Tracing the Coherent Manipulation of Rotational Dynamics by Shaped Femtosecond Pulse-Induced Two-Dimensional Rotational Coherent Spectrum. J Phys Chem A 2021; 125:770-776. [PMID: 33433217 DOI: 10.1021/acs.jpca.0c09244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The temporal delayed orthogonal pulse pairs generated by the phase shaping technique are used to study the coherent control of the rotational wave packet dynamics in air. By continuously changing the intrapulse delay of the pump pulse, we measured the corresponding revival signals and obtained a two-dimensional rotational coherent spectrum (2D RCS). An additive property of the rotational dynamics is observed from the revival signals. Moreover, combining with the coherent control model, we find that the 2D RCS can be used to demonstrate the control over the underlying Raman rotational excitation. A beat frequency-dependent oscillation of each rotational transition is obtained. The transition process is revealed from the Fourier transformation about the pump delay. The scheme of this work can be used for further control and detection of the rotational wave packet and can be extended to other molecular dynamic researches.
Collapse
Affiliation(s)
- Zhenzhong Lian
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.,Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun 130012, China
| | - Hongxia Qi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.,Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun 130012, China
| | - Juan Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Jinqiu Bo
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Jiannan Deng
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xinyi Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Sizuo Luo
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Su-Yu Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Dehou Fei
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zhou Chen
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.,Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun 130012, China
| | - Zhan Hu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.,Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun 130012, China
| |
Collapse
|
11
|
Wang P, He L, He Y, Sun S, Liu R, Wang B, Lan P, Lu P. Multilevel quantum interference in the formation of high-order fractional molecular alignment echoes. OPTICS EXPRESS 2021; 29:663-673. [PMID: 33726297 DOI: 10.1364/oe.411218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
We theoretically investigate the formation of the high-order fractional alignment echo in OCS molecule and systematically study the dependence of echo intensity on the intensities and time delay of the two excitation pulses. Our simulations reveal an intricate dependence of the intensity of high-order fractional alignment echo on the laser conditions. Based on the analysis with rotational density matrix, this intricate dependence is further demonstrated to arise from the interference of multiple quantum pathways that involve multilevel rotational transitions. Our result provides a comprehensive multilevel picture of the quantum dynamics of high-order fractional alignment echo in molecular ensembles, which will facilitate the development of "rotational echo spectroscopy."
Collapse
|
12
|
Chatterley AS, Christiansen L, Schouder CA, Jørgensen AV, Shepperson B, Cherepanov IN, Bighin G, Zillich RE, Lemeshko M, Stapelfeldt H. Rotational Coherence Spectroscopy of Molecules in Helium Nanodroplets: Reconciling the Time and the Frequency Domains. PHYSICAL REVIEW LETTERS 2020; 125:013001. [PMID: 32678640 DOI: 10.1103/physrevlett.125.013001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/03/2020] [Indexed: 05/20/2023]
Abstract
Alignment of OCS, CS_{2}, and I_{2} molecules embedded in helium nanodroplets is measured as a function of time following rotational excitation by a nonresonant, comparatively weak ps laser pulse. The distinct peaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and centrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For CS_{2} and I_{2}, they are the first experimental results reported. The alignment dynamics calculated from the gas-phase rotational Schrödinger equation, using the experimental in-droplet B and D values, agree in detail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in helium droplets introduced here should apply to a range of molecules and complexes.
Collapse
Affiliation(s)
- Adam S Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Lars Christiansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Anders V Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Benjamin Shepperson
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Igor N Cherepanov
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Giacomo Bighin
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Robert E Zillich
- Institute for Theoretical Physics, Johannes Kepler Universität Linz, Altenbergerstraße 69, A-4040 Linz, Austria
| | - Mikhail Lemeshko
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Chatterley AS, Baatrup MO, Schouder CA, Stapelfeldt H. Laser-induced alignment dynamics of gas phase CS 2 dimers. Phys Chem Chem Phys 2020; 22:3245-3253. [PMID: 31995073 DOI: 10.1039/c9cp06260b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rotational dynamics of gas phase carbon disulfide (CS2) dimers were induced by a moderately intense, circularly polarized alignment laser pulse and measured as a function of time by Coulomb explosion imaging with an intense fs probe pulse. For the alignment pulse, two different temporal intensity profiles were used: a truncated pulse with a 150 ps turn-on and a 8 ps turn-off, or a 'kick' pulse with a duration of 1.3 ps. For both types of pulse, rich rotational dynamics with characteristic full and fractional revivals were recorded, showing that the intermolecular carbon-carbon axis periodically aligns along the propagation direction of the laser pulses. The truncated pulse gave the strongest alignment, which we rationalize as being due to a flat relative phase between the components in the rotational wave packet generated. Fourier analysis of the alignment dynamics gave well-spaced peaks which were fit to determine the rotational constant, B, and the centrifugal constant, DJ, for the ground state of the dimer. Our results agree with values from high-resolution IR spectroscopy. Numerical simulations of the alignment accurately reproduced the experimental dynamics when the truncated pulse or a low intensity kick pulse was used, but failed to reproduce the dynamics induced by a high intensity kick pulse. We posit that the discrepancy is due to excitation of the intermolecular torsional motion by the kick pulse.
Collapse
Affiliation(s)
| | - Mia O Baatrup
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Constant A Schouder
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
14
|
Wang B, He L, He Y, Zhang Y, Shao R, Lan P, Lu P. All-optical measurement of high-order fractional molecular echoes by high-order harmonic generation. OPTICS EXPRESS 2019; 27:30172-30181. [PMID: 31684267 DOI: 10.1364/oe.27.030172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
An all-optical measurement of high-order fractional molecular echoes is demonstrated by using high-order harmonic generation (HHG). Excited by a pair of time-delayed short laser pulses, the signatures of full and high order fractional (1/2 and 1/3) alignment echoes are observed in the HHG signals measured from CO 2 molecules at various time delays of the probe pulse. By increasing the time delay of the pump pulses, much higher order fractional (1/4) alignment echo is also observed in N 2O molecules. With an analytic model based on the impulsive approximation, the spatiotemporal dynamics of the echo process are retrieved from the experiment. Compared to the typical molecular alignment revivals, high-order fractional molecular echoes are demonstrated to dephase more rapidly, which will open a new route towards the ultrashort-time measurement. The proposed HHG method paves an efficient way for accessing the high-order fractional echoes in molecules.
Collapse
|
15
|
Iwamoto Y, Tanimura Y. Open quantum dynamics of a three-dimensional rotor calculated using a rotationally invariant system-bath Hamiltonian: Linear and two-dimensional rotational spectra. J Chem Phys 2019; 151:044105. [DOI: 10.1063/1.5108609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuki Iwamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
16
|
Zhang H, Lavorel B, Billard F, Hartmann JM, Hertz E, Faucher O, Ma J, Wu J, Gershnabel E, Prior Y, Averbukh IS. Rotational Echoes as a Tool for Investigating Ultrafast Collisional Dynamics of Molecules. PHYSICAL REVIEW LETTERS 2019; 122:193401. [PMID: 31144959 DOI: 10.1103/physrevlett.122.193401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Indexed: 06/09/2023]
Abstract
We show that recently discovered rotational echoes of molecules provide an efficient tool for studying collisional molecular dynamics in high-pressure gases. Our study demonstrates that rotational echoes enable the observation of extremely fast collisional dissipation, at timescales of the order of a few picoseconds, and possibly shorter. The decay of the rotational alignment echoes in CO_{2} gas and CO_{2}-He mixture up to 50 bar was studied experimentally, delivering collision rates that are in good agreement with the theoretical expectations. The suggested measurement protocol may be used in other high-density media, and potentially in liquids.
Collapse
Affiliation(s)
- H Zhang
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon, France
| | - B Lavorel
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon, France
| | - F Billard
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon, France
| | - J-M Hartmann
- Laboratoire de Météorologie Dynamique/IPSL, CNRS, École polytechnique, Sorbonne Université, École Normale Supérieure, PSL Research University, F-91120 Palaiseau, France
| | - E Hertz
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon, France
| | - O Faucher
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon, France
| | - Junyang Ma
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Erez Gershnabel
- AMOS and Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yehiam Prior
- AMOS and Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilya Sh Averbukh
- AMOS and Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
17
|
Rosenberg D, Damari R, Fleischer S. Echo Spectroscopy in Multilevel Quantum-Mechanical Rotors. PHYSICAL REVIEW LETTERS 2018; 121:234101. [PMID: 30576185 DOI: 10.1103/physrevlett.121.234101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 06/09/2023]
Abstract
We study the dynamics of rotational echoes in gas phase molecular ensembles and their dependence on the delay and intensity of the excitation pulses. We explore the unique dynamics of alignment echoes that arise from the multilevel nature of the molecular rotors and impose severe difficulties in utilizing echo responses for rotational spectroscopy. We show experimentally and theoretically that judicious control of both the delay and intensity of the second pulse enables multilevel "rotational echo spectroscopy." The proposed methodology paves the way to rotational spectroscopy in high-density gas samples.
Collapse
Affiliation(s)
- Dina Rosenberg
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv University center for Light-Matter-Interaction, Tel Aviv 6997801, Israel
| | - Ran Damari
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv University center for Light-Matter-Interaction, Tel Aviv 6997801, Israel
| | - Sharly Fleischer
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel-Aviv University center for Light-Matter-Interaction, Tel Aviv 6997801, Israel
| |
Collapse
|