1
|
Braunscheidel NM, Bachhar A, Mayhall NJ. Accurate and interpretable representation of correlated electronic structure via Tensor Product Selected CI. Faraday Discuss 2024; 254:130-156. [PMID: 39119803 DOI: 10.1039/d4fd00049h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The task of computing wavefunctions that are accurate, yet simple enough mathematical objects to use for reasoning, has long been a challenge in quantum chemistry. The difficulty in drawing physical conclusions from a wavefunction is often related to the generally large number of configurations with similar weights. In Tensor Product Selected Configuration Interaction (TPSCI), we use a locally correlated tensor product state basis, which has the effect of concentrating the weight of a state onto a smaller number of physically interpretable degrees of freedom. In this paper, we apply TPSCI to a series of three molecular systems ranging in separability, one of which is the first application of TPSCI to an open-shell bimetallic system. For each of these systems, we obtain accurate solutions to large active spaces, and analyze the resulting wavefunctions through a series of different approaches including (i) direct inspection of the TPS basis coefficients, (ii) construction of Bloch effective Hamiltonians, and (iii) computation of cluster correlation functions.
Collapse
Affiliation(s)
| | - Arnab Bachhar
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24060, USA.
| | | |
Collapse
|
2
|
Bo Y, Hou Y, Thiel D, Weiß R, Clark T, Ferguson MJ, Tykwinski RR, Guldi DM. Tetracene Dimers: A Platform for Intramolecular Down- and Up-conversion. J Am Chem Soc 2023; 145:18260-18275. [PMID: 37531628 DOI: 10.1021/jacs.3c02417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Photon energy conversion can be accomplished in many different ways, including the two opposing manners, down-conversion (i.e., singlet fission, SF) and up-conversion (i.e., triplet-triplet annihilation up-conversion, TTA-UC). Both processes have the potential to help overcome the detailed balance limit of single-junction solar cells. Tetracene, in which the energies of the lowest singlet excited state and twice the triplet excited state are comparable, exhibits both down- and up-conversion. Here, we have designed meta-diethynylphenylene- and 1,3-diethynyladamantyl-linked tetracene dimers, which feature different electronic coupling, to characterize the interplay between intramolecular SF (intra-SF) and intramolecular TTA-UC (intra-TTA-UC) via steady-state and time-resolved absorption and fluorescence spectroscopy. Furthermore, we have used Pd-phthalocyanine as a sensitizer to enable intra-TTA-UC in the two dimers via indirect photoexcitation in the near-infrared part of the solar spectrum. The work is rounded off by temperature-dependent measurements, which outline key aspects of how thermal effects impact intra-SF and intra-TTA-UC in different dimers.
Collapse
Affiliation(s)
- Yifan Bo
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Yuxuan Hou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Dominik Thiel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - René Weiß
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Quantum interference effects elucidate triplet-pair formation dynamics in intramolecular singlet-fission molecules. Nat Chem 2023; 15:339-346. [PMID: 36585444 DOI: 10.1038/s41557-022-01107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/03/2022] [Indexed: 12/31/2022]
Abstract
Quantum interference (QI)-the constructive or destructive interference of conduction pathways through molecular orbitals-plays a fundamental role in enhancing or suppressing charge and spin transport in organic molecular electronics. Graphical models were developed to predict constructive versus destructive interference in polyaromatic hydrocarbons and have successfully estimated the large conductivity differences observed in single-molecule transport measurements. A major challenge lies in extending these models to excitonic (photoexcited) processes, which typically involve distinct orbitals with different symmetries. Here we investigate how QI models can be applied as bridging moieties in intramolecular singlet-fission compounds to predict relative rates of triplet pair formation. In a series of bridged intramolecular singlet-fission dimers, we found that destructive QI always leads to a slower triplet pair formation across different bridge lengths and geometries. A combined experimental and theoretical approach reveals the critical considerations of bridge topology and frontier molecular orbital energies in applying QI conductance principles to predict rates of multiexciton generation.
Collapse
|
4
|
Singlet fission dynamics modulated by molecular configuration in covalently linked pyrene dimers, Anti- and Syn-1,2-di(pyrenyl)benzene. Commun Chem 2023; 6:16. [PMID: 36698005 PMCID: PMC9845327 DOI: 10.1038/s42004-023-00816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Covalently linked dimers (CLDs) and their structural isomers have attracted much attention as potential materials for improving power conversion efficiencies through singlet fission (SF). Here, we designed and synthesized two covalently ortho-linked pyrene (Py) dimers, anti- and syn-1,2-di(pyrenyl)benzene (Anti-DPyB and Syn-DPyB, respectively), and investigated the effect of molecular configuration on SF dynamics using steady-state and time-resolved spectroscopies. Both Anti-DPyB and Syn-DPyB, which have different Py-stacking configurations, form excimers, which then relax to the correlated triplet pair ((T1T1)) state, indicating the occurrence of SF. Unlike previous studies where the excimer formation inhibited an SF process, the (T1T1)'s of Anti-DPyB and Syn-DPyB are formed through the excimer state. The dissociation of (T1T1)'s to 2T1 in Anti-DPyB is more favorable than in Syn-DPyB. Our results showcase that the molecular configuration of a CLD plays an important role in SF dynamics.
Collapse
|
5
|
Bertels LW, Grimsley HR, Economou SE, Barnes E, Mayhall NJ. Symmetry Breaking Slows Convergence of the ADAPT Variational Quantum Eigensolver. J Chem Theory Comput 2022; 18:6656-6669. [PMID: 36239978 DOI: 10.1021/acs.jctc.2c00709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because quantum simulation of molecular systems is expected to provide the strongest advantage over classical computing methods for systems exhibiting strong electron correlation, it is critical that the performance of VQEs be assessed for strongly correlated systems. For classical simulation, strong correlation often results in symmetry breaking of the Hartree-Fock reference, leading to Löwdin's well-known "symmetry dilemma", whereby accuracy in the energy can be increased by breaking spin or spatial symmetries. Here, we explore the impact of symmetry breaking on the performance of ADAPT-VQE using two strongly correlated systems: (i) the "fermionized" anisotropic Heisenberg model, where the anisotropy parameter controls the correlation in the system, and (ii) symmetrically stretched linear H4, where correlation increases with increasing H-H separation. In both of these cases, increasing the level of correlation of the system leads to spontaneous symmetry breaking (parity and S^2, respectively) of the mean-field solutions. We analyze the role that symmetry breaking in the reference states and orbital mappings of the fermionic Hamiltonians have in the compactness and performance of ADAPT-VQE. We observe that improving the energy of the reference states by breaking symmetry has a deleterious effect on ADAPT-VQE by increasing the length of the ansatz necessary for energy convergence and exacerbating the problem of "gradient troughs".
Collapse
Affiliation(s)
- Luke W Bertels
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Harper R Grimsley
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Sophia E Economou
- Department of Physics, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Edwin Barnes
- Department of Physics, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Nicholas J Mayhall
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| |
Collapse
|
6
|
Abraham V, Mayhall NJ. Revealing the Contest between Triplet-Triplet Exchange and Triplet-Triplet Energy Transfer Coupling in Correlated Triplet Pair States in Singlet Fission. J Phys Chem Lett 2021; 12:10505-10514. [PMID: 34677988 DOI: 10.1021/acs.jpclett.1c03217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the separation of the correlated triplet pair state 1(TT) intermediate is critical for leveraging singlet fission to improve solar cell efficiency. This separation mechanism is dominated by two key interactions: (i) the exchange interaction (K) between the triplets which leads to the spin splitting of the biexciton state into 1(TT),3(TT) and 5(TT) states, and (ii) the triplet-triplet energy transfer integral (t) which enables the formation of the spatially separated (but still spin entangled) state 1(T···T). We develop a simple ab initio technique to compute both the biexciton exchange (K) and biexciton transfer coupling. Our key findings reveal new conditions for successful correlated triplet pair state dissociation. The biexciton exchange interaction needs to be ferromagnetic or negligible to the triplet energy transfer for favorable dissociation. We also explore the effect of chromophore packing to reveal geometries where these conditions are achieved for tetracene.
Collapse
Affiliation(s)
- Vibin Abraham
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Nicholas J Mayhall
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| |
Collapse
|
7
|
Nakamura S, Sakai H, Fuki M, Kobori Y, Tkachenko NV, Hasobe T. Enthalpy-Entropy Compensation Effect for Triplet Pair Dissociation of Intramolecular Singlet Fission in Phenylene Spacer-Bridged Hexacene Dimers. J Phys Chem Lett 2021; 12:6457-6463. [PMID: 34236876 DOI: 10.1021/acs.jpclett.1c01430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hexacene (Hc) is highly promising for singlet fission (SF). However, the number of SFs in Hc is extremely limited. As far as Hc dimers in solution are concerned, there is no report on the observation of the dissociation process from a correlated triplet pair (TT) to an individual one. The emphasis in this study is on the first observation of the quantitative TT generation together with the orientation-dependent photophysical discussions for TT dissociation using para- and meta-phenyl-bridged Hc dimers. Moreover, the activation enthalpies of Hc dimers in TT dissociation are smaller than those of pentacene (Pc) dimers, whereas the relative entropic contributions for Gibbs free energy of activation are much larger than the enthalpic ones in both Hc and Pc dimers. This implies that the vibrational motions are responsible for the intramolecular conformation changes associated with the TT dissociation. Consequently, "enthalpy-entropy compensation" has a large impact on the rate constants and quantum yields.
Collapse
Affiliation(s)
- Shunta Nakamura
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Nikolai V Tkachenko
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33101 Tampere, Finland
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
8
|
Open questions on the photophysics of ultrafast singlet fission. Commun Chem 2021; 4:85. [PMID: 36697779 PMCID: PMC9814646 DOI: 10.1038/s42004-021-00527-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 01/28/2023] Open
|
9
|
Sanz-Rodrigo J, Ricci G, Olivier Y, Sancho-García JC. Negative Singlet–Triplet Excitation Energy Gap in Triangle-Shaped Molecular Emitters for Efficient Triplet Harvesting. J Phys Chem A 2021; 125:513-522. [DOI: 10.1021/acs.jpca.0c08029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- J. Sanz-Rodrigo
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| | - G. Ricci
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solid, Namur Institute of Structured Matter, Université de Namur, B-5000 Namur, Belgium
| | - Y. Olivier
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solid, Namur Institute of Structured Matter, Université de Namur, B-5000 Namur, Belgium
| | - J. C. Sancho-García
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| |
Collapse
|
10
|
Kim S, Ahn DS, Ahn M, Wee KR, Choi J, Ihee H. Charge transfer induced by electronic state mixing in a symmetric X-Y-X-type multi-chromophore system. Phys Chem Chem Phys 2020; 22:28440-28447. [PMID: 33305764 DOI: 10.1039/d0cp05132b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge transfer (CT) from electron donor (D) to acceptor (A) plays an important role in photoelectric or electrochemical devices and is a useful concept for a molecule with D and A well distinguishable. Here, we report our finding that even in a molecule with D and A not resolvable, CT can be induced by electronic state mixing (ESM) in a symmetric multi-chromophore system (MCS), namely 1,4-di(1-pyrenyl)benzene (Py-Benz-Py). Unlike Py and Py-Benz, Py-Benz-Py exhibits unique photophysical properties attributable to the reduction of the energy gap between two electronic states induced by ESM. The ESM for Py-Benz-Py is due to the extended π-conjugation owing to the further introduction of Py into Py-Benz, and consequently leads to the favorable intramolecular CT, followed by the planarization due to the twisting motion between Py and phenyl moieties. Time-resolved spectroscopic data demonstrate that the twisting process of the Py moiety in acetonitrile occurs with two unequal time constants, suggesting the localized CT state and the asynchronous twisting dynamics of two Py moieties unlike the delocalized CT state in nonpolar and low-polarity solvents leading to the synchronous twisting of two Py moieties. This means that the symmetry-breaking CT in MCSs can induce an asynchronous twisting motion. The results reported here support that a molecule without CT can be turned into another molecule with CT induced by ESM and demonstrate that the excited-state relaxation dynamics can be regulated through the ESM induced by introducing the substituents or changing the environmental factors such as solvent polarities.
Collapse
Affiliation(s)
- Siin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
11
|
Chesler R, Khan S, Mazumdar S. Wave Function Based Analysis of Dynamics versus Yield of Free Triplets in Intramolecular Singlet Fission. J Phys Chem A 2020; 124:10091-10099. [PMID: 33258585 DOI: 10.1021/acs.jpca.0c07938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experiments in several intramolecular singlet fission materials have indicated that the triplet-triplet spin biexciton has a much longer lifetime than believed until recently, opening up loss mechanisms that can annihilate the biexciton prior to its dissociation to free triplets. We have performed many-body calculations of excited state wave functions of hypothetical phenylene-linked anthracene molecules to better understand linker-dependent behavior of dimers of larger acenes being investigated as potential singlet fission candidates. The calculations reveal unanticipated features that we show carry over to the real covalently linked pentacene dimers. Dissociation of the correlated triplet-triplet spin biexciton and free triplet generation may be difficult in acene dimers where the formation of the triplet-triplet spin biexciton is truly ultrafast. Conversely, relatively slower biexciton formation may indicate smaller spin biexciton binding energy and greater yield of free triplets. Currently available experimental results appear to support this conclusion. Whether or not the two distinct behaviors are consequences of distinct mechanisms of triplet-triplet generation from the optical singlet is an interesting theoretical question.
Collapse
Affiliation(s)
- Rafi Chesler
- Department of Physics, University of Arizona, Tucson, Arizona 85721, United States
| | - Souratosh Khan
- School of Information, University of Arizona, Tucson, Arizona 85721, United States
| | - Sumit Mazumdar
- Department of Physics, University of Arizona, Tucson, Arizona 85721, United States.,Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States.,College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
12
|
Parenti KR, He G, Sanders SN, Pun AB, Kumarasamy E, Sfeir MY, Campos LM. Bridge Resonance Effects in Singlet Fission. J Phys Chem A 2020; 124:9392-9399. [PMID: 33138366 DOI: 10.1021/acs.jpca.0c08427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major benefit of intramolecular singlet fission (iSF) materials, in which through-bond interactions mediate triplet pair formation, is the ability to control the triplet formation dynamics through molecular engineering. One common design strategy is the use of molecular bridges to mediate interchromophore interactions, decreasing electronic coupling by increasing chromophore-chromophore separation. Here, we report how the judicious choice of aromatic bridges can enhance chromophore-chromophore electronic coupling. This molecular engineering strategy takes advantage of "bridge resonance", in which the frontier orbital energies are nearly degenerate with those of the covalently linked singlet fission chromophores, resulting in fast iSF even at large interchromophore separations. Using transient absorption spectroscopy, we investigate this bridge resonance effect in a series of pentacene and tetracene-bridged dimers, and we find that the rate of triplet formation is enhanced as the bridge orbitals approach resonance. This work highlights the important role of molecular connectivity in controlling the rate of iSF through chemical bonds and establishes critical design principles for future use of iSF materials in optoelectronic devices.
Collapse
Affiliation(s)
- Kaia R Parenti
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States.,Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Samuel N Sanders
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Andrew B Pun
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Elango Kumarasamy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States.,Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
13
|
Kobori Y, Fuki M, Nakamura S, Hasobe T. Geometries and Terahertz Motions Driving Quintet Multiexcitons and Ultimate Triplet–Triplet Dissociations via the Intramolecular Singlet Fissions. J Phys Chem B 2020; 124:9411-9419. [DOI: 10.1021/acs.jpcb.0c07984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shunta Nakamura
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| |
Collapse
|
14
|
Papadopoulos I, Gutiérrez-Moreno D, McCosker PM, Casillas R, Keller PA, Sastre-Santos Á, Clark T, Fernández-Lázaro F, Guldi DM. Perylene-Monoimides: Singlet Fission Down-Conversion Competes with Up-Conversion by Geminate Triplet–Triplet Recombination. J Phys Chem A 2020; 124:5727-5736. [DOI: 10.1021/acs.jpca.0c04091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ilias Papadopoulos
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058 Erlangen, Germany
| | - David Gutiérrez-Moreno
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avdade la Universidad s/n, Elche E-03202, Spain
| | - Patrick M. McCosker
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
- School of Chemistry & Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Rubén Casillas
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Paul A. Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avdade la Universidad s/n, Elche E-03202, Spain
| | - Timothy Clark
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avdade la Universidad s/n, Elche E-03202, Spain
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058 Erlangen, Germany
| |
Collapse
|
15
|
Lewis AM, Berkelbach TC. Ab Initio Linear and Pump-Probe Spectroscopy of Excitons in Molecular Crystals. J Phys Chem Lett 2020; 11:2241-2246. [PMID: 32109074 DOI: 10.1021/acs.jpclett.0c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Linear and nonlinear spectroscopies are powerful tools used to investigate the energetics and dynamics of electronic excited states of both molecules and crystals. While highly accurate ab initio calculations of molecular spectra can be performed relatively routinely, extending these calculations to periodic systems is challenging. Here, we present calculations of the linear absorption spectrum and pump-probe two-photon photoemission spectra of the naphthalene crystal using equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD). Molecular acene crystals are of interest due to the low-energy multiexciton singlet states they exhibit, which have been studied extensively as intermediates involved in singlet fission. Our linear absorption spectrum is in good agreement with experiment, predicting a first exciton absorption peak at 4.4 eV, and our two-photon photoemission spectra capture the qualitative behavior of multiexciton states, whose double-excitation character cannot be captured by current methods. The simulated pump-probe spectra provide support for existing interpretations of two-photon photoemission experiments in closely related acene crystals such as tetracene and pentacene.
Collapse
Affiliation(s)
- Alan M Lewis
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| |
Collapse
|
16
|
Korovina NV, Pompetti NF, Johnson JC. Lessons from intramolecular singlet fission with covalently bound chromophores. J Chem Phys 2020; 152:040904. [PMID: 32007061 DOI: 10.1063/1.5135307] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Molecular dimers, oligomers, and polymers are versatile components in photophysical and optoelectronic architectures that could impact a variety of applications. We present a perspective on such systems in the field of singlet fission, which effectively multiplies excitons and produces a unique excited state species, the triplet pair. The choice of chromophore and the nature of the attachment between units, both geometrical and chemical, play a defining role in the dynamical scheme that evolves upon photoexcitation. Specific final outcomes (e.g., separated and uncorrelated triplet pairs) are being sought through rational design of covalently bound chromophore architectures built with guidance from recent fundamental studies that correlate structure with excited state population flow kinetics.
Collapse
Affiliation(s)
- Nadezhda V Korovina
- National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, USA
| | - Nicholas F Pompetti
- National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, USA
| | - Justin C Johnson
- National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, USA
| |
Collapse
|
17
|
Herrmann C. Electronic Communication as a Transferable Property of Molecular Bridges? J Phys Chem A 2019; 123:10205-10223. [PMID: 31380640 DOI: 10.1021/acs.jpca.9b05618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Electronic communication through molecular bridges is important for different types of experiments, such as single-molecule conductance, electron transfer, superexchange spin coupling, and intramolecular singlet fission. In many instances, the chemical structure of the bridge determines how the two parts it is connecting communicate, and does so in ways that are transferable between these different manifestations (for example, high conductance often correlates with strong antiferromagnetic spin coupling, and low conductance due to destructive quantum interference correlates with ferromagnetic coupling). Defining electronic communication as a transferable property of the bridge can help transfer knowledge between these different areas of research. Examples and limits of such transferability are discussed here, along with some possible directions for future research, such as employing spin-coupled and mixed-valence systems as structurally well-controlled proxies for understanding molecular conductance and for validating first-principles theoretical methodologies, building conceptual understanding for the growing experimental work on intramolecular singlet fission, and developing measures for the transferability of electronic communication as a bridge property.
Collapse
Affiliation(s)
- Carmen Herrmann
- Department of Chemistry , University of Hamburg , Martin-Luther-King-Platz 6 , Hamburg 20146 , Germany
| |
Collapse
|
18
|
Tonami T, Nagami T, Okada K, Yoshida W, Nakano M. Singlet-Fission-Induced Enhancement of Third-Order Nonlinear Optical Properties of Pentacene Dimers. ACS OMEGA 2019; 4:16181-16190. [PMID: 31592485 PMCID: PMC6777123 DOI: 10.1021/acsomega.9b02378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Using quantum chemical calculations and exciton dynamics simulations, we investigate the static second hyperpolarizability γ [the third-order nonlinear optical (NLO) property at the molecular scale] of slip-stacked pentacene dimer models in the correlated-triplet-pair [1(TT)] state created from the singlet excited state in the singlet fission (SF) process. It is found that the SF induces significant (∼20 times at maximum) enhancement of γ/monomer in the 1(TT) state as compared to that in the singlet ground state. The origin of the remarkable enhancement of γ/monomer is revealed by analyzing the γ density distribution and the intermolecular orbital interaction. Furthermore, we clarify molecular packings suitable for highly efficient SF and largely enhanced γ values of a novel class of SF-induced NLO systems, which have promising potential to surpass the conventional NLO systems.
Collapse
Affiliation(s)
- Takayoshi Tonami
- Department
of Materials Engineering Science, Graduate School of Engineering
Science, Center for Spintronics Research Network (CSRN), Graduate School of
Engineering Science, and Quantum Information and Quantum Biology Division, Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takanori Nagami
- Department
of Materials Engineering Science, Graduate School of Engineering
Science, Center for Spintronics Research Network (CSRN), Graduate School of
Engineering Science, and Quantum Information and Quantum Biology Division, Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kenji Okada
- Department
of Materials Engineering Science, Graduate School of Engineering
Science, Center for Spintronics Research Network (CSRN), Graduate School of
Engineering Science, and Quantum Information and Quantum Biology Division, Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Wataru Yoshida
- Department
of Materials Engineering Science, Graduate School of Engineering
Science, Center for Spintronics Research Network (CSRN), Graduate School of
Engineering Science, and Quantum Information and Quantum Biology Division, Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayoshi Nakano
- Department
of Materials Engineering Science, Graduate School of Engineering
Science, Center for Spintronics Research Network (CSRN), Graduate School of
Engineering Science, and Quantum Information and Quantum Biology Division, Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Institute
for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
19
|
Basel BS, Papadopoulos I, Thiel D, Casillas R, Zirzlmeier J, Clark T, Guldi DM, Tykwinski RR. Pentacenes: A Molecular Ruler for Singlet Fission. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Lin HH, Kue KY, Claudio GC, Hsu CP. First Principle Prediction of Intramolecular Singlet Fission and Triplet Triplet Annihilation Rates. J Chem Theory Comput 2019; 15:2246-2253. [DOI: 10.1021/acs.jctc.8b01185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hung-Hsuan Lin
- Institute of Chemistry, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei 115, Taiwan
| | - Karl Y. Kue
- Institute of Chemistry, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Gil C. Claudio
- Institute of Chemistry, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei 115, Taiwan
| |
Collapse
|
21
|
Houck SE, Mayhall NJ. A Combined Spin-Flip and IP/EA Approach for Handling Spin and Spatial Degeneracies: Application to Double Exchange Systems. J Chem Theory Comput 2019; 15:2278-2290. [DOI: 10.1021/acs.jctc.8b01268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shannon E. Houck
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Nicholas J. Mayhall
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
22
|
Kim H, Zimmerman PM. Coupled double triplet state in singlet fission. Phys Chem Chem Phys 2018; 20:30083-30094. [PMID: 30484452 DOI: 10.1039/c8cp06256k] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The highly unusual state, 1(TT), is a coupled, double triplet state that has recently garnered significant attention. This multiexcitonic state can be formed by a quantum transition from a single-photon bright state in a variety of organic semiconducting materials. 1(TT)'s transient nature and similarity to independent triplets, however, has led to significant difficulties in characterization and prediction of its properties. Recent progress describing 1(TT) from theory and experiment are breaking through these difficulties, and have greatly advanced our comprehension of this state. Starting from the early description of 1(TT) in polyenes, this perspective discusses formation mechanisms, spectroscopic signatures, and the scope of intertriplet interactions. When employing singlet fission to generate charge carriers in a solar cell, 1(TT) has a central role. Due to the variety of coupling strengths between triplet states in 1(TT) amongst different chromophores, two different strategies are discussed to enable efficient charge carrier extraction. Continued growth in our understanding of 1(TT) may lead to control over complex quantum states for intriguing applications beyond high-efficiency, organic solar cells.
Collapse
Affiliation(s)
- Hyungjun Kim
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea.
| | | |
Collapse
|
23
|
Korovina NV, Joy J, Feng X, Feltenberger C, Krylov AI, Bradforth SE, Thompson ME. Linker-Dependent Singlet Fission in Tetracene Dimers. J Am Chem Soc 2018; 140:10179-10190. [PMID: 30016102 DOI: 10.1021/jacs.8b04401] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Separation of triplet excitons produced by singlet fission is crucial for efficient application of singlet fission materials. While earlier works explored the first step of singlet fission, the formation of the correlated triplet pair state, the focus of recent studies has been on understanding the second step of singlet fission, the formation of independent triplets from the correlated pair state. We present the synthesis and excited-state dynamics of meta- and para-bis(ethynyltetracenyl)benzene dimers that are analogues to the ortho-bis(ethynyltetracenyl)benzene dimer reported by our groups previously. A comparison of the excited-state properties of these dimers allows us to investigate the effects of electronic conjugation and coupling on singlet fission between the ethynyltetracene units within a dimer. In the para isomer, in which the two chromophores are conjugated, the singlet exciton yields the correlated triplet pair state, from which the triplet excitons can decouple via molecular rotations. In contrast, the meta isomer in which the two chromophores are cross-coupled predominantly relaxes via radiative decay. We also report the synthesis and excited-state dynamics of two para dimers with different bridging units joining the ethynyltetracenes. The rate of singlet fission is found to be faster in the dimer with the bridging unit that has orbitals closer in energy to that of the ethynyltetracene chromophores.
Collapse
Affiliation(s)
- Nadezhda V Korovina
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Jimmy Joy
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Xintian Feng
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Cassidy Feltenberger
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Anna I Krylov
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Stephen E Bradforth
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Mark E Thompson
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
24
|
Japahuge A, Zeng T. Theoretical Studies of Singlet Fission: Searching for Materials and Exploring Mechanisms. Chempluschem 2018; 83:146-182. [PMID: 31957288 DOI: 10.1002/cplu.201700489] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/31/2017] [Indexed: 02/02/2023]
Abstract
In this Review article, a survey is given for theoretical studies in the subject of singlet fission. Singlet fission converts one singlet exciton to two triplet excitons. With the doubled number of excitons and the longer lifetime of the triplets, singlet fission provides an avenue to improve the photoelectric conversion efficiency in organic photovoltaic devices. It has been a subject of intense research in the past decade. Theoretical studies play an essential role in understanding singlet fission. This article presents a Review of theoretical studies in singlet fission since 2006, the year when the research interest in this subject was reignited. Both electronic structure and dynamics studies are covered. Electronic structure studies provide guidelines for designing singlet fission chromophores and insights into the couplings between single- and multi-excitonic states. The latter provides fundamental knowledge for engineering interchromophore conformations to enhance the fission efficiency. Dynamics studies reveal the importance of vibronic couplings in singlet fission.
Collapse
Affiliation(s)
- Achini Japahuge
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S5B6, Canada
| | - Tao Zeng
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S5B6, Canada
| |
Collapse
|