1
|
Giarrusso S, Neugarten R, Baerends EJ, Giesbertz KJH. Secondary Kinetic Peak in the Kohn-Sham Potential and Its Connection to the Response Step. J Chem Theory Comput 2022; 18:4762-4773. [PMID: 35895974 DOI: 10.1021/acs.jctc.2c00332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We consider a prototypical 1D model Hamiltonian for a stretched heteronuclear molecule and construct individual components of the corresponding KS potential, namely, the kinetic, the N - 1, and the conditional potentials. These components show very special features, such as peaks and steps, in regions where the density is drastically low. Some of these features are quite well-known, whereas others, such as a secondary peak in the kinetic potential or a second bump in the conditional potential, are less or not known at all. We discuss these features building on the analytical model treated in Giarrusso et al. J. Chem. Theory Comput. 2018, 14, 4151. In particular, we provide an explanation for the underlying mechanism which determines the appearance of both peaks in the kinetic potential and elucidate why these peaks delineate the region over which the plateau structure, due to the N - 1 potential, stretches. We assess the validity of the Heitler-London Ansatz at large but finite internuclear distance, showing that, if optimal orbitals are used, this model is an excellent approximation to the exact wave function. Notably, we find that the second natural orbital presents an extra node very far out on the side of the more electronegative atom.
Collapse
Affiliation(s)
- Sara Giarrusso
- Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Roeland Neugarten
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Evert Jan Baerends
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Klaas J H Giesbertz
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Shi Y, Chávez VH, Wasserman A. n2v
: A density‐to‐potential inversion suite. A sandbox for creating, testing, and benchmarking density functional theory inversion methods. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuming Shi
- Department of Physics and Astronomy Purdue University West Lafayette Indiana USA
| | - Victor H. Chávez
- Department of Chemistry Purdue University West Lafayette Indiana USA
| | - Adam Wasserman
- Department of Physics and Astronomy Purdue University West Lafayette Indiana USA
- Department of Chemistry Purdue University West Lafayette Indiana USA
| |
Collapse
|
3
|
Gedeon J, Schmidt J, Hodgson MJP, Wetherell J, Benavides-Riveros CL, Marques MAL. Machine learning the derivative discontinuity of density-functional theory. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1088/2632-2153/ac3149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Machine learning is a powerful tool to design accurate, highly non-local, exchange-correlation functionals for density functional theory. So far, most of those machine learned functionals are trained for systems with an integer number of particles. As such, they are unable to reproduce some crucial and fundamental aspects, such as the explicit dependency of the functionals on the particle number or the infamous derivative discontinuity at integer particle numbers. Here we propose a solution to these problems by training a neural network as the universal functional of density-functional theory that (a) depends explicitly on the number of particles with a piece-wise linearity between the integer numbers and (b) reproduces the derivative discontinuity of the exchange-correlation energy. This is achieved by using an ensemble formalism, a training set containing fractional densities, and an explicitly discontinuous formulation.
Collapse
|
4
|
Ensemble Density Functional Theory of Neutral and Charged Excitations : Exact Formulations, Standard Approximations, and Open Questions. Top Curr Chem (Cham) 2021; 380:4. [PMID: 34825294 DOI: 10.1007/s41061-021-00359-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Recent progress in the field of (time-independent) ensemble density-functional theory (DFT) for excited states are reviewed. Both Gross-Oliveira-Kohn (GOK) and N-centered ensemble formalisms, which are mathematically very similar and allow for an in-principle-exact description of neutral and charged electronic excitations, respectively, are discussed. Key exact results, for example, the equivalence between the infamous derivative discontinuity problem and the description of weight dependencies in the ensemble exchange-correlation density functional, are highlighted. The variational evaluation of orbital-dependent ensemble Hartree-exchange (Hx) energies is discussed in detail. We show in passing that state-averaging individual exact Hx energies can lead to severe (although solvable) v-representability issues. Finally, we explore the possibility of using the concept of density-driven correlation, which has been introduced recently and does not exist in regular ground-state DFT, for improving state-of-the-art correlation density-functional approximations for ensembles. The present review reflects the efforts of a growing community to turn ensemble DFT into a rigorous and reliable low-cost computational method for excited states. We hope that, in the near future, this contribution will stimulate new formal and practical developments in the field.
Collapse
|
5
|
De Vriendt X, Lemmens L, De Baerdemacker S, Bultinck P, Acke G. Quantifying Delocalization and Static Correlation Errors by Imposing (Spin)Population Redistributions through Constraints on Atomic Domains. J Chem Theory Comput 2021; 17:6808-6818. [PMID: 34597030 DOI: 10.1021/acs.jctc.1c00326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The failure of many density functional approximations can be traced to their behavior under fractional (spin)population redistributions in the asymptotic limit toward infinite bonding distances, which should obey the flat-plane conditions. However, such errors can only be characterized sufficiently in terms of those redistributions if exact energies are available for many possible (spin)population redistributions at different bonding distances. In this study, we propose to model such redistributions by imposing (spin)populations on atomic domains by constraining full configuration interaction wave functions. The resulting N-representable descriptions of small hydrogen chains at different bonding distances allow us to computationally illustrate the effects of the flat-plane conditions in the limit to infinite bond distances, leading to more chemical insight into those flat-plane conditions. As the proposed methodology is able to capture the effects of the flat plane conditions, it could be used to generate the reference data that is required to measure the extent to which approximate methods violate the requirements of the exact functional, leading to a quantification of the delocalization and static correlation error of such methods.
Collapse
Affiliation(s)
- Xeno De Vriendt
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium
| | - Laurent Lemmens
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium
| | - Stijn De Baerdemacker
- Department of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Patrick Bultinck
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium
| | - Guillaume Acke
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 S3, B-9000 Ghent, Belgium
| |
Collapse
|
6
|
Mosquera MA. Density Functional Calculations Based on the Exponential Ansatz. J Phys Chem A 2021; 125:8751-8763. [PMID: 34582684 DOI: 10.1021/acs.jpca.1c07113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work explores the application of the singles-based exponential ansatz to density functional calculations. In contrast to the standard approach where Kohn-Sham (KS) orbitals are determined prior to computing molecular quantities of interest, we consider the single-reference Hartree-Fock wave function as a starting point. Applying the exponential ansatz to this single reference gives an auxiliary wave function that is employed to calculate the electronic properties of the system. This wave function is determined self-consistently through the standard KS Hamiltonian but evaluated over the Hartree-Fock molecular orbital basis. By using spin-symmetry breaking, we recover size-consistent results free of unphysical fractional charges in the dissociation limit. Our method shows consistency with standard KS density functional calculations when the system geometry is similar to the equilibrium one or in repulsive configurations. For moderately long distances between atoms, not at dissociation, because of self-interaction the exponential ansatz may give instabilities in the form of large cluster amplitudes. To avoid these, this work introduces a relatively simple regularization method that preserves size-consistency and penalizes high amplitudes of the cluster operator, whereas the results remain physically meaningful. We also present the time-dependent extension of our theory and show that it can feature quantum states where multiple electrons are excited.
Collapse
Affiliation(s)
- Martín A Mosquera
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718, United States
| |
Collapse
|
7
|
Shi Y, Wasserman A. Inverse Kohn-Sham Density Functional Theory: Progress and Challenges. J Phys Chem Lett 2021; 12:5308-5318. [PMID: 34061541 DOI: 10.1021/acs.jpclett.1c00752] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inverse Kohn-Sham (iKS) methods are needed to fully understand the one-to-one mapping between densities and potentials on which density functional theory is based. They can contribute to the construction of empirical exchange-correlation functionals and to the development of techniques for density-based embedding. Unlike the forward Kohn-Sham problems, numerical iKS problems are ill-posed and can be unstable. We discuss some of the fundamental and practical difficulties of iKS problems with constrained-optimization methods on finite basis sets. Various factors that affect the performance are systematically compared and discussed, both analytically and numerically, with a focus on two of the most practical methods: the Wu-Yang method (WY) and the partial differential equation constrained optimization (PDE-CO). Our analysis of the WY and PDE-CO highlights the limitation of finite basis sets. We introduce new ideas to make iKS problems more tractable, provide an overall strategy for performing numerical density-to-potential inversions, and discuss challenges and future directions.
Collapse
Affiliation(s)
- Yuming Shi
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Adam Wasserman
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Kocák J, Kraisler E, Schild A. Charge-Transfer Steps in Density Functional Theory from the Perspective of the Exact Electron Factorization. J Phys Chem Lett 2021; 12:3204-3209. [PMID: 33761257 DOI: 10.1021/acs.jpclett.1c00467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When a molecule dissociates, the exact Kohn-Sham (KS) and Pauli potentials may form step structures. Reproducing these steps correctly is central for the description of dissociation and charge-transfer processes in density functional theory (DFT): The steps align the KS eigenvalues of the dissociating subsystems relative to each other and determine where electrons localize. While the step height can be calculated from the asymptotic behavior of the KS orbitals, this provides limited insight into what causes the steps. We give an explanation of the steps with an exact mapping of the many-electron problem to a one-electron problem, the exact electron factorization (EEF). The potentials appearing in the EEF have a clear physical meaning that translates to the DFT potentials by replacing the interacting many-electron system with the KS system. With a simple model of a diatomic, we illustrate that the steps are a consequence of spatial electron entanglement and are the result of a charge transfer. From this mechanism, the step height can immediately be deduced. Moreover, two methods to approximately reproduce the potentials during dissociation are proposed. One is based on the states of the dissociated system, while the other one is based on an analogy to the Born-Oppenheimer treatment of a molecule. The latter method also shows that the steps connect adiabatic potential energy surfaces. The view of DFT from the EEF thus provides a better understanding of how many-electron effects are encoded in a one-electron theory and how they can be modeled.
Collapse
Affiliation(s)
- Jakub Kocák
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Eli Kraisler
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Axel Schild
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Kraisler E, Hodgson MJP, Gross EKU. From Kohn-Sham to Many-Electron Energies via Step Structures in the Exchange-Correlation Potential. J Chem Theory Comput 2021; 17:1390-1407. [PMID: 33595312 PMCID: PMC8363072 DOI: 10.1021/acs.jctc.0c01093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Accurately
describing excited states within Kohn–Sham (KS)
density functional theory (DFT), particularly those which induce ionization
and charge transfer, remains a great challenge. Common exchange-correlation
(xc) approximations are unreliable for excited states owing, in part,
to the absence of a derivative discontinuity in the xc energy (Δ),
which relates a many-electron energy difference to the corresponding
KS energy difference. We demonstrate, analytically and numerically,
how the relationship between KS and many-electron energies leads to
the step structures observed in the exact xc potential in four scenarios:
electron addition, molecular dissociation, excitation of a finite
system, and charge transfer. We further show that steps in the potential
can be obtained also with common xc approximations, as simple as the
LDA, when addressed from the ensemble perspective. The article therefore
highlights how capturing the relationship between KS and many-electron
energies with advanced xc approximations is crucial for accurately
calculating excitations, as well as the ground-state density and energy
of systems which consist of distinct subsystems.
Collapse
Affiliation(s)
- Eli Kraisler
- Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9091401 Jerusalem, Israel
| | - M J P Hodgson
- Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom.,Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
| | - E K U Gross
- Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, 9091401 Jerusalem, Israel
| |
Collapse
|
10
|
Sagredo F, Burke K. Confirmation of the PPLB Derivative Discontinuity: Exact Chemical Potential at Finite Temperatures of a Model System. J Chem Theory Comput 2020; 16:7225-7231. [PMID: 33237784 DOI: 10.1021/acs.jctc.0c00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The landmark 1982 work of Perdew, Parr, Levy, and Balduz (often called PPLB) laid the foundation for our modern understanding of the role of the derivative discontinuity in density functional theory, which drives much development to account for its effects. A simple model for the chemical potential at vanishing temperature played a crucial role in their argument. We investigate the validity of this model in the simplest nontrivial system to which it can be applied and which can be easily solved exactly, the Hubbard dimer. We find exact agreement in the crucial zero-temperature limit and show the model remains accurate for a significant range of temperatures. We identify how this range depends on the strength of correlations. We extend the model to approximate free energies accounting for the derivative discontinuity, a feature missing in standard semilocal approximations. We provide a correction to this approximation to yield even more accurate free energies. We discuss the relevance of these results for warm dense matter.
Collapse
Affiliation(s)
- Francisca Sagredo
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, United States.,Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
11
|
Callow TJ, Pearce BJ, Pitts T, Lathiotakis NN, Hodgson MJP, Gidopoulos NI. Improving the exchange and correlation potential in density-functional approximations through constraints. Faraday Discuss 2020; 224:126-144. [PMID: 32940317 DOI: 10.1039/d0fd00069h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review and expand on our work to impose constraints on the effective Kohn-Sham (KS) potential of local and semi-local density-functional approximations. Constraining the minimisation of the approximate total energy density-functional invariably leads to an optimised effective potential (OEP) equation, the solution of which yields the KS potential. We review briefly our previous work on this and demonstrate with numerous examples that despite the well-known mathematical issues of the OEP with finite basis sets, our OEP equations are numerically robust. We demonstrate that appropriately constraining the 'screening charge' which corresponds to the Hartree, exchange and correlation potential not only corrects its asymptotic behaviour but also allows the exchange and correlation potential to exhibit a non-zero derivative discontinuity, a feature of the exact KS potential that is necessary for the accurate prediction of band-gaps in solids but very hard to capture with semi-local approximations.
Collapse
Affiliation(s)
- Timothy J Callow
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Wetherell J, Costamagna A, Gatti M, Reining L. Insights into one-body density matrices using deep learning. Faraday Discuss 2020; 224:265-291. [PMID: 32936199 DOI: 10.1039/d0fd00061b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The one-body reduced density matrix (1-RDM) of a many-body system at zero temperature gives direct access to many observables, such as the charge density, kinetic energy and occupation numbers. It would be desirable to express it as a simple functional of the density or of other local observables, but to date satisfactory approximations have not yet been found. Deep learning is the state of the art approach to performing high dimensional regressions and classification tasks, and is becoming widely used in the condensed matter community to develop increasingly accurate density functionals. Autoencoders are deep learning models that perform efficient dimensionality reduction, allowing the distillation of data to the fundamental features needed to represent it. By training autoencoders on a large data-set of 1-RDMs from exactly solvable real-space model systems, and performing principal component analysis, the machine learns to what extent the data can be compressed and hence how it is constrained. We gain insight into these machine learned constraints and employ them to inform approximations to the 1-RDM as a functional of the charge density. We exploit known physical properties of the 1-RDM in the simplest possible cases to perform feature engineering, where we inform the structure of the models from known mathematical relations, allowing us to integrate existing understanding into the machine learning methods. By comparing various deep learning approaches we gain insight into what physical features of the density matrix are most amenable to machine learning, utilising both known and learned characteristics.
Collapse
Affiliation(s)
- Jack Wetherell
- Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA/DRF/IRAMIS, Institut Polytechnique de Paris, F-91128 Palaiseau, France.
| | | | | | | |
Collapse
|
13
|
Śmiga S, Constantin LA. Unveiling the Physics Behind Hybrid Functionals. J Phys Chem A 2020; 124:5606-5614. [PMID: 32551627 PMCID: PMC7590981 DOI: 10.1021/acs.jpca.0c04156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/16/2020] [Indexed: 11/30/2022]
Abstract
We show that accurate exchange-correlation hybrid functionals give very physically optimized effective-correlation potentials, capable of correctly describing the quantum oscillations of atoms and molecules. Based on this analysis and on understanding the error cancellation between semilocal exchange and correlation functionals, we propose a very simple, semilocal correlation potential model compatible with the exact exchange of density functional theory, which performs remarkably well for charge densities and orbital energies.
Collapse
Affiliation(s)
- Szymon Śmiga
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Lucian A. Constantin
- Center
for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano (LE), Italy
- Istituto
di Nanoscienze, Consiglio Nazionale delle
Ricerche CNR-NANO, 41125 Modena, Italy
| |
Collapse
|
14
|
Lehtola S, Visscher L, Engel E. Efficient implementation of the superposition of atomic potentials initial guess for electronic structure calculations in Gaussian basis sets. J Chem Phys 2020; 152:144105. [DOI: 10.1063/5.0004046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Susi Lehtola
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), FI-00014 Helsinki, Finland
| | - Lucas Visscher
- Division of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Eberhard Engel
- Center for Scientific Computing, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 1, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Affiliation(s)
- Susi Lehtola
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), FI-00014 Helsinki, Finland
| |
Collapse
|
16
|
Giarrusso S, Gori-Giorgi P. Exchange-Correlation Energy Densities and Response Potentials: Connection between Two Definitions and Analytical Model for the Strong-Coupling Limit of a Stretched Bond. J Phys Chem A 2020; 124:2473-2482. [PMID: 32118422 PMCID: PMC7104238 DOI: 10.1021/acs.jpca.9b10538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We
analyze in depth two widely used definitions (from the theory
of conditional probability amplitudes and from the adiabatic connection
formalism) of the exchange-correlation energy density and of the response
potential of Kohn–Sham density functional theory. We introduce
a local form of the coupling-constant-dependent Hohenberg–Kohn functional, showing that
the difference between the two definitions is due to a corresponding
local first-order term in the coupling constant, which disappears
globally (when integrated over all space), but not locally. We also
design an analytic representation for the response potential in the
strong-coupling limit of density functional theory for a model single
stretched bond.
Collapse
Affiliation(s)
- Sara Giarrusso
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, Amsterdam, 1081HV, The Netherlands
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, Amsterdam, 1081HV, The Netherlands
| |
Collapse
|
17
|
Kraisler E. Asymptotic Behavior of the Exchange‐Correlation Energy Density and the Kohn‐Sham Potential in Density Functional Theory: Exact Results and Strategy for Approximations. Isr J Chem 2020. [DOI: 10.1002/ijch.201900103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eli Kraisler
- Fritz Haber Center for Molecular Dynamics and Institute of Chemistry The Hebrew University of Jerusalem 9091401 Jerusalem Israel
| |
Collapse
|
18
|
Gerolin A, Grossi J, Gori-Giorgi P. Kinetic Correlation Functionals from the Entropic Regularization of the Strictly Correlated Electrons Problem. J Chem Theory Comput 2020; 16:488-498. [PMID: 31855421 PMCID: PMC6964418 DOI: 10.1021/acs.jctc.9b01133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 11/29/2022]
Abstract
In this work, we study the entropic regularization of the strictly correlated electrons formalism, discussing the implications for density functional theory and establishing a link with earlier works on quantum kinetic energy and classical entropy. We carry out a very preliminary investigation (using simplified models) on the use of the solution of the entropic regularized problem to build approximations for the kinetic correlation functional at large coupling strengths. We also analyze lower and upper bounds to the Hohenberg-Kohn functional using the entropic regularized strictly correlated electrons problem.
Collapse
Affiliation(s)
- Augusto Gerolin
- Department of Theoretical
Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Juri Grossi
- Department of Theoretical
Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Paola Gori-Giorgi
- Department of Theoretical
Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
19
|
Kronik L, Kümmel S. Piecewise linearity, freedom from self-interaction, and a Coulomb asymptotic potential: three related yet inequivalent properties of the exact density functional. Phys Chem Chem Phys 2020; 22:16467-16481. [DOI: 10.1039/d0cp02564j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three properties of the exact energy functional of DFT are important in general and for spectroscopy in particular, but are not necessarily obeyed by approximate functionals. We explain what they are, why they are important, and how they are related yet inequivalent.
Collapse
Affiliation(s)
- Leeor Kronik
- Department of Materials and Interfaces
- Weizmann Institute of Science
- Rehovoth 76100
- Israel
| | - Stephan Kümmel
- Theoretical Physics IV
- University of Bayreuth
- 95440 Bayreuth
- Germany
| |
Collapse
|
20
|
Mordovina U, Reinhard TE, Theophilou I, Appel H, Rubio A. Self-Consistent Density-Functional Embedding: A Novel Approach for Density-Functional Approximations. J Chem Theory Comput 2019; 15:5209-5220. [PMID: 31490684 PMCID: PMC6785802 DOI: 10.1021/acs.jctc.9b00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 11/29/2022]
Abstract
In the present work, we introduce a self-consistent density-functional embedding technique, which leaves the realm of standard energy-functional approaches in density functional theory and targets directly the density-to-potential mapping that lies at its heart. Inspired by the density matrix embedding theory, we project the full system onto a set of small interacting fragments that can be solved accurately. Based on the rigorous relation of density and potential in density functional theory, we then invert the fragment densities to local potentials. Combining these results in a continuous manner provides an update for the Kohn-Sham potential of the full system, which is then used to update the projection. We benchmark our approach for molecular bond stretching in one and two dimensions and show that, in these cases, the scheme converges to accurate approximations for densities and Kohn-Sham potentials. We demonstrate that the known steps and peaks of the exact exchange-correlation potential are reproduced by our method with remarkable accuracy.
Collapse
Affiliation(s)
- Uliana Mordovina
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Teresa E. Reinhard
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Iris Theophilou
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Heiko Appel
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United
States
| |
Collapse
|
21
|
Hellgren M, Gould T. Strong Correlation and Charge Localization in Kohn–Sham Theories with Fractional Orbital Occupations. J Chem Theory Comput 2019; 15:4907-4914. [DOI: 10.1021/acs.jctc.9b00477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Hellgren
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 place Jussieu, 75005 Paris, France
| | - Tim Gould
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
22
|
Mosquera MA, Jones LO, Borca CH, Ratner MA, Schatz GC. Domain Separation in Density Functional Theory. J Phys Chem A 2019; 123:4785-4795. [DOI: 10.1021/acs.jpca.9b01173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martín A. Mosquera
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O. Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Carlos H. Borca
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mark A. Ratner
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Gould T, Pittalis S, Toulouse J, Kraisler E, Kronik L. Asymptotic behavior of the Hartree-exchange and correlation potentials in ensemble density functional theory. Phys Chem Chem Phys 2019; 21:19805-19815. [DOI: 10.1039/c9cp03633d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show that the Hartree-exchange and correlation potentials of ensemble systems can have unexpected features, including non-vanishing asymptotic constants and non-trivial screening of electrons. These features are demonstrated here on Li, C, and F.
Collapse
Affiliation(s)
- Tim Gould
- Qld Micro- and Nanotechnology Centre
- Griffith University
- Nathan
- Australia
| | | | - Julien Toulouse
- Laboratoire de Chimie Théorique
- Sorbonne Université and CNRS
- F-75005 Paris
- France
| | - Eli Kraisler
- Fritz Haber Center for Molecular Dynamics and Institute of Chemistry
- The Hebrew University of Jerusalem
- 9091401 Jerusalem
- Israel
| | - Leeor Kronik
- Department of Materials and Interfaces
- Weizmann Institute of Science
- Rehovoth 76100
- Israel
| |
Collapse
|
24
|
Unified construction of Fermi, Pauli and exchange-correlation potentials. ADVANCES IN QUANTUM CHEMISTRY 2019. [DOI: 10.1016/bs.aiq.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
25
|
Giarrusso S, Vuckovic S, Gori-Giorgi P. Response Potential in the Strong-Interaction Limit of Density Functional Theory: Analysis and Comparison with the Coupling-Constant Average. J Chem Theory Comput 2018; 14:4151-4167. [PMID: 29906106 PMCID: PMC6096453 DOI: 10.1021/acs.jctc.8b00386] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using the formalism of the conditional amplitude, we study the response part of the exchange-correlation potential in the strong-coupling limit of density functional theory, analyzing its peculiar features and comparing it with the response potential averaged over the coupling constant for small atoms and for the hydrogen molecule. We also use a simple one-dimensional model of a stretched heteronuclear molecule to derive exact properties of the response potential in the strong-coupling limit. The simplicity of the model allows us to unveil relevant features also of the exact Kohn-Sham potential and its different components, namely the appearance of a second peak in the correlation kinetic potential on the side of the most electronegative atom.
Collapse
Affiliation(s)
- Sara Giarrusso
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW , Vrije Universiteit , De Boelelaan 1083 , 1081HV Amsterdam , The Netherlands
| | - Stefan Vuckovic
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW , Vrije Universiteit , De Boelelaan 1083 , 1081HV Amsterdam , The Netherlands
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW , Vrije Universiteit , De Boelelaan 1083 , 1081HV Amsterdam , The Netherlands
| |
Collapse
|
26
|
Lou B, Jing W, Lou L, Zhang Y, Yin M, Duan CK. Hybrid Density Functional Study of the Local Structures and Energy Levels of CaAl 2O 4:Ce 3. J Phys Chem A 2018; 122:4306-4312. [PMID: 29648832 DOI: 10.1021/acs.jpca.8b01913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
First-principles calculations were carried out for the electronic structures of Ce3+ in calcium aluminate phosphors, CaAl2O4, and their effects on luminescence properties. Hybrid density functional approaches were used to overcome the well-known underestimation of band gaps of conventional density functional approaches and to calculate the energy levels of Ce3+ ions more accurately. The obtained 4f-5d excitation and emission energies show good consistency with measured values. A detailed energy diagram of all three sites is obtained, which explains qualitatively all of the luminescent phenomena. With the results of energy levels calculated by combining the hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06) and the constraint occupancy approach, we are able to construct a configurational coordinate diagram to analyze the processes of capture of a hole or an electron and luminescence. This approach can be applied for systematic high-throughput calculations in predicting Ce3+ activated luminescent materials with a moderate computing requirement.
Collapse
Affiliation(s)
- Bibo Lou
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Weiguo Jing
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Liren Lou
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Yongfan Zhang
- Department of Chemistry , Fuzhou University , Fuzhou , Fujian 350002 , People's Republic of China
| | - Min Yin
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| | - Chang-Kui Duan
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences , University of Science and Technology of China , Hefei , Anhui 230026 , People's Republic of China
| |
Collapse
|