1
|
Sarkar A, Kumbhakar M. Inter-molecular Interaction Kinetics: Tale of Photon Anti-bunching and Bunching in Fluorescence Correlation Spectroscopy (FCS). Methods Appl Fluoresc 2022; 10. [PMID: 35817064 DOI: 10.1088/2050-6120/ac804b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022]
Abstract
Molecular interactions are fundamental to any chemical or biological processes, and their rates define the operational sequence and control for any desirable product. Here, we deliberate on a recently developed novel fluorescence spectroscopic method, which combines fluorescence photon anti-bunching, photon bunching, time-correlated single-photon counting (TCSPC), and steady-state fluorescence spectroscopy, to study composite chemical reactions with single molecule sensitivity. The proposed method captures the full picture of the multifaceted quenching kinetics, which involves static quenching by ground state complexation and collisional quenching in the excited state under dynamic exchange of fluorophore in a heterogeneous media, and which cannot be seen by steady-state or lifetime measurements alone. Photon correlation in fluorescence correlation spectroscopy (FCS) provides access to interrogate interaction dynamics from picosecond to seconds, stitching all possible stages of dye-quencher interaction in a micellar media. This is not possible with the limited time window available to conventional ensemble techniques like TCSPC, flash photolysis, transient absorption, stop-flow, etc. The basic premises of such unified global analysis and sanctity of extracted parameters critically depends on the minimum but precise description of reaction scheme, for which careful inspection of ensemble spectroscopy data for photo-physical behaviour is very important. Though in this contribution we discussed and demonstrated the merits of photon antibunching and bunching spectroscopy for dye-quencher interaction in cationic cetyltrimethylammonium bromide (CTAB) micellar solution by photo-induced electron transfer mechanism and the influence of micellar charge and microenvironment on the interaction kinetics, but in principal similar arguments are equally applicable to any other interaction mechanisms which alter fluorescence photon correlations, like Förster resonance energy transfer (FRET), proton transfer, isomerisation, etc.
Collapse
Affiliation(s)
- Aranyak Sarkar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, CFB, C-139, Mumbai, Maharashtra, 400085, INDIA
| | - Manoj Kumbhakar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, CFB, C-139, Mumbai, 400085, INDIA
| |
Collapse
|
2
|
Sarkar A, Namboodiri V, Enderlein J, Kumbhakar M. Picosecond to Second Fluorescence Correlation Spectroscopy for Studying Solute Exchange and Quenching Dynamics in Micellar Media. J Phys Chem Lett 2021; 12:7641-7649. [PMID: 34351151 DOI: 10.1021/acs.jpclett.1c02021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous studies have been devoted to understand the reaction kinetics in micelles, where the accessible kinetic time window is often limited by the dynamic range of the employed spectroscopic technique. This is usually accompanied by a selection of probes that comfortably explore time scales where slow solute exchange kinetics is negligible, as compared to the fast excited state reactions. This has led to an undervaluation of the role played by dynamic partitioning of hydrophilic solutes in microheterogeneous media. Here, we employ fluorescence correlation spectroscopy (FCS) and the zwitterionic dye Rhodamine 110 to quantitatively explore the impact of solute exchange on the photoinduced electron transfer between this dye and N,N-dimethylaniline in micellar media. Our study elucidates the coupling and interplay between the kinetics of photophysics, quenching, and solute exchange through a quantitative unified molecular-state quenching-kinetic model that describes the steady-state ensemble and FCS data from subnanosecond photon antibunching to millisecond diffusions.
Collapse
Affiliation(s)
- Aranyak Sarkar
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Vinu Namboodiri
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
| | - Jörg Enderlein
- III. Institute of Physics-Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Manoj Kumbhakar
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
3
|
Khamari L, Pramanik U, Shekhar S, Mohanakumar S, Mukherjee S. Thermal Reversibility and Structural Stability in Lysozyme Induced by Epirubicin Hydrochloride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3456-3466. [PMID: 33703900 DOI: 10.1021/acs.langmuir.1c00179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein we report the binding interactions between lysozyme (Lyz) and an anthracycline drug, epirubicin hydrochloride (EPR), through an extensive spectroscopic approach at both ensemble average and single molecular resolution. Our steady-state and time-resolved fluorescence spectroscopy reveals that the drug-induced fluorescence quenching of the protein proceeds through a static quenching mechanism. Isothermal titration calorimetry (ITC) and steady-state experiments reveal almost similar thermodynamic signatures of the drug-protein interactions. The underlying force that plays pivotal roles in the said interaction is hydrophobic in nature, which is enhanced in the presence of a strong electrolyte (NaCl). Circular dichroism (CD) spectra indicate that there is a marginal increase in the secondary structure of the native protein (α-helical content increases from 26.9 to 31.4% in the presence of 100 μM EPR) upon binding with the drug. Fluorescence correlation spectroscopy (FCS) was used to monitor the changes in structure and conformational dynamics of Lyz upon interaction with EPR. The individual association (Kass = 0.33 × 106 ms-1 M-1) and dissociation (Kdiss = 1.79 ms-1) rate constants and the binding constant (Kb = 1.84 × 105 M-1) values, obtained from fluctuations of fluorescence intensity of the EPR-bound protein, have also been estimated. AutoDock results demonstrate that the drug molecule is encapsulated within the hydrophobic pocket of the protein (in close proximity to both Trp62 and Trp108) and resides ∼20 Å apart from the covalently labelled CPM dye. Förster resonance energy transfer (FRET) studies proved that the distance between the donor (CPM) and the acceptor (EPR) is ∼22 Å, which is very similar to that obtained from molecular docking analysis (∼20 Å). The system also shows temperature-dependent reversible FRET, which may be used as a thermal sensor for the temperature-sensitive biological systems.
Collapse
Affiliation(s)
- Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Ushasi Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Shashi Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Shilpa Mohanakumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| |
Collapse
|
4
|
The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100338] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Bielec K, Bubak G, Kalwarczyk T, Holyst R. Analysis of Brightness of a Single Fluorophore for Quantitative Characterization of Biochemical Reactions. J Phys Chem B 2020; 124:1941-1948. [PMID: 32059107 PMCID: PMC7497653 DOI: 10.1021/acs.jpcb.0c00770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Intrinsic
molecular brightness (MB) is a number of emitted photons
per second per molecule. When a substrate labeled by a fluorophore
and a second unlabeled substrate form a complex in solution, the MB
of the fluorophore changes. Here we use this change to determine the equilibrium constant (K) for the formation of the complex at pM concentrations.
To illustrate this method, we used a reaction of DNA hybridization,
where only one of the strands was fluorescently labeled. We determined K at the substrate concentrations from 80 pM to 30 nM. We
validated this method against Förster resonance energy transfer
(FRET). This method is much simpler than FRET as it requires only
one fluorophore in the complex with a very small (a f̃ew percent)
change in MB.
Collapse
Affiliation(s)
- Krzysztof Bielec
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Grzegorz Bubak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Kalwarczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Holyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
6
|
Sarkar A, Sharma A, Goswami D, Namboodiri V, Enderlein J, Kumbhakar M. Binding Constant Determined from the Angstrom-Scale Change in Hydrodynamic Radius of Transferrin upon Binding with Europium Using Dual-Focus Fluorescence Correlation Spectroscopy. J Phys Chem Lett 2020; 11:1148-1153. [PMID: 31968931 DOI: 10.1021/acs.jpclett.9b03722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Monitoring the binding of a large fluorescently tagged molecule to a small solute by fluorescence correlation spectroscopy (FCS) is rather uncommon because the binding-related change in diffusion coefficient is very small. Here, we use a high-precision variant of FCS, namely, dual-focus FCS (2fFCS), for measuring the angstrom-scale change of the hydrodynamic radius of the bilobal metal transport protein transferrin (Tf) upon binding europium ions. Applying a sequential 1:2 complexation model, we use these measurements for determining the binding constants (K). Our results show a 0.7 Å change of the protein's hydrodynamic radius upon 1:1 Tf-Eu complex formation and a second change of 1.8 Å upon subsequent binding of a second europium ion. More than one unit variation in logK indicates an intrinsic dissimilarity in metal affinity of the C- and N-lobes of Tf, which agrees well with earlier reported ensemble spectroscopy results.
Collapse
Affiliation(s)
- Aranyak Sarkar
- Radiation & Photochemistry Division , Bhabha Atomic Research Center , Mumbai 400085 , India
- Homi Bhabha National Institute , Training School Complex , Anushaktinagar, Mumbai 400094 , India
| | - Arjun Sharma
- Radiation & Photochemistry Division , Bhabha Atomic Research Center , Mumbai 400085 , India
- Homi Bhabha National Institute , Training School Complex , Anushaktinagar, Mumbai 400094 , India
| | - Dibakar Goswami
- Radiation & Photochemistry Division , Bhabha Atomic Research Center , Mumbai 400085 , India
- Bio-oragnic Division , Bhabha Atomic Research Center , Mumbai 400085 , India
| | - Vinu Namboodiri
- Radiation & Photochemistry Division , Bhabha Atomic Research Center , Mumbai 400085 , India
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics , Georg August University , 37077 Göttingen , Germany
| | - Manoj Kumbhakar
- Radiation & Photochemistry Division , Bhabha Atomic Research Center , Mumbai 400085 , India
- Homi Bhabha National Institute , Training School Complex , Anushaktinagar, Mumbai 400094 , India
| |
Collapse
|
7
|
Sharma A, Sarkar A, Goswami D, Bhattacharyya A, Enderlein J, Kumbhakar M. Determining Metal Ion Complexation Kinetics with Fluorescent Ligands by Using Fluorescence Correlation Spectroscopy. Chemphyschem 2019; 20:2093-2102. [PMID: 31240810 DOI: 10.1002/cphc.201900517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Indexed: 11/08/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) has been extensively used to measure equilibrium binding constants (K) or association and dissociation rates in many reversible chemical reactions across chemistry and biology. For the majority of investigated reactions, the binding constant was on the order of ∼100 M-1 , with dissociation constants faster or equal to 103 s-1 , which ensured that enough association/dissociation events occur during the typical diffusion-determined transition time of molecules through the FCS detection volume. However, complexation reactions involving metal ions and chelating ligands exhibit equilibrium constants exceeding 104 M-1 . In the present paper, we explore the applicability of FCS for measuring reaction rates of such complexation reactions, and apply it to binding of iron, europium and uranyl ions to a fluorescent chelating ligand, calcein. For this purpose, we exploit the fact that the ligand fluorescence becomes strongly quenched after binding a metal ion, which results in strong intensity fluctuations that lead to a partial correlation decay in FCS. We also present measurements for the strongly radioactive ions of 241 Am3+ , where the extreme sensitivity of FCS allows us to work with sample concentrations and volumes that exhibit close to negligible radioactivity levels. A general discussion of the applicability of FCS to the investigation of metal-ligand binding reactions concludes our paper.
Collapse
Affiliation(s)
- Arjun Sharma
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Aranyak Sarkar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Dibakar Goswami
- Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India.,Bio-organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Arunasis Bhattacharyya
- Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India.,Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Manoj Kumbhakar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
8
|
Sezgin E, Schneider F, Galiani S, Urbančič I, Waithe D, Lagerholm BC, Eggeling C. Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED-FCS. Nat Protoc 2019; 14:1054-1083. [PMID: 30842616 DOI: 10.1038/s41596-019-0127-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/04/2019] [Indexed: 11/08/2022]
Abstract
Super-resolution microscopy techniques enable optical imaging in live cells with unprecedented spatial resolution. They unfortunately lack the temporal resolution required to directly investigate cellular dynamics at scales sufficient to measure molecular diffusion. These fast time scales are, on the other hand, routinely accessible by spectroscopic techniques such as fluorescence correlation spectroscopy (FCS). To enable the direct investigation of fast dynamics at the relevant spatial scales, FCS has been combined with super-resolution stimulated emission depletion (STED) microscopy. STED-FCS has been applied in point or scanning mode to reveal nanoscale diffusion behavior of molecules in live cells. In this protocol, we describe the technical details of performing point STED-FCS (pSTED-FCS) and scanning STED-FCS (sSTED-FCS) measurements, from calibration and sample preparation to data acquisition and analysis. We give particular emphasis to 2D diffusion dynamics in cellular membranes, using molecules tagged with organic fluorophores. These measurements can be accomplished within 4-6 h by those proficient in fluorescence imaging.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Falk Schneider
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Silvia Galiani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Iztok Urbančič
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Solid State Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Dominic Waithe
- Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Wolfson Imaging Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Institute of Applied Optics, Friedrich-Schiller-University Jena, Jena, Germany.
- Department of Biophysical Imaging, Leibniz Institute of Photonic Technology e.V., Jena, Germany.
| |
Collapse
|