1
|
Wang XT, He SR, Lv FW, Wang XT, Hong MX, Cao L, Zhuang GL, Chen C, Zheng J, Long LS, Zheng XY. Ln 3+ Induced Thermally Activated Delayed Fluorescence of Chiral Heterometallic Clusters Ln 2Ag 28. Angew Chem Int Ed Engl 2024; 63:e202410414. [PMID: 38924578 DOI: 10.1002/anie.202410414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
A series of TADF-active compounds: 0D chiral Ln-Ag(I) clusters L-/D-Ln2Ag28-0D (Ln=Eu/Gd) and 2D chiral Ln-Ag(I) cluster-based frameworks L-/D-Ln2Ag28-2D (Ln=Gd) has been synthesized. Atomic-level structural analysis showed that the chiral Ag(I) cluster units {Ag14S12} in L-/D-Ln2Ag28-0D and L-/D-Ln2Ag28-2D exhibited similar configurations, linked by varying numbers of [Ln(H2O)x]3+ (x=6 for 0D, x=3 for 2D) to form the final target compounds. Temperature-dependent emission spectra and decay lifetimes measurement demonstrated the presence of TADF in L-Ln2Ag28-0D (Ln=Eu/Gd) and L-Gd2Ag28-2D. Experimentally, the remarkable TADF properties primarily originated from {Ag14S12} moieties in these compounds. Notably, {Ag14S12} in L-Eu2Ag28-0D and L-Gd2Ag28-2D displayed higher promote fluorescence rate and shorter TADF decay times than L-Gd2Ag28-0D. Combined with theoretical calculations, it was determined that the TADF behaviors of {Ag14S12} cluster units were induced by 4 f perturbation of Ln3+ ions. Specially, while maintaining ΔE(S1-T1) small enough, it can significantly increase k(S1→S0) and reduce TADF decay time by adjusting the type or number of Ln3+ ions, thus achieving the purpose of improving TADF for cluster-based luminescent materials.
Collapse
Affiliation(s)
- Xue-Tao Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Sheng-Rong He
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Fang-Wen Lv
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xue-Ting Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Mei-Xin Hong
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Lingyun Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Gui-Lin Zhuang
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Cheng Chen
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Jun Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - La-Sheng Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Xiu-Ying Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
2
|
Deng H, Wang T, Chen Y, Dou K, Liu X, Zhao C, Zhan H, Yang C, Qin C, Cheng Y. Enhanced Thermally Activated Delayed Fluorescence by Sole Coordination: From an Organic Molecule to Its Zinc Complex. J Phys Chem Lett 2024; 15:7003-7010. [PMID: 38949564 DOI: 10.1021/acs.jpclett.4c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A BPAPTPyC organic molecule containing a sandwich structural chromophore is designed and synthesized to produce blue thermally activated delayed fluorescence (TADF). The chromophore is composed of two di(4-tert-butylphenyl)amino donors and one inserted terpyridyl acceptor hitched at positions 1, 8, and 9 of a single carbazole via the p-phenylene group, in which the multiple space π-π interactions between the donor and acceptor enable the molecule to possess the TADF feature with a high energy emission at 470 nm but a low photoluminescence quantum yield (PLQY) and a small proportion of the delayed component. In contrast, the corresponding Zn(BPAPTPyC)Cl2 complex has a high PLQY and a short lifetime with a red-shifted emission due to the enhanced rigidity and electron accepting ability of the terpyridyl group from coordination. A solution-processed organic light-emitting diode (OLED) based on the complex achieves a maximum external quantum efficiency (EQE) of 17.9% with an emission peak at 585 nm, while an OLED of the organic molecule produces blue emission with a maximum EQE of 2.7%.
Collapse
Affiliation(s)
- Hao Deng
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Wang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yuannan Chen
- College of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Kunkun Dou
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xuejing Liu
- Key Laboratory on Resources Chemicals and Material of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Chenyang Zhao
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hongmei Zhan
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chuanjiang Qin
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yanxiang Cheng
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Li TY, Zheng SJ, Djurovich PI, Thompson ME. Two-Coordinate Thermally Activated Delayed Fluorescence Coinage Metal Complexes: Molecular Design, Photophysical Characters, and Device Application. Chem Rev 2024; 124:4332-4392. [PMID: 38546341 DOI: 10.1021/acs.chemrev.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Since the emergence of the first green light emission from a fluorescent thin-film organic light emitting diode (OLED) in the mid-1980s, a global consumer market for OLED displays has flourished over the past few decades. This growth can primarily be attributed to the development of noble metal phosphorescent emitters that facilitated remarkable gains in electrical conversion efficiency, a broadened color gamut, and vibrant image quality for OLED displays. Despite these achievements, the limited abundance of noble metals in the Earth's crust has spurred ongoing efforts to discover cost-effective electroluminescent materials. One particularly promising avenue is the exploration of thermally activated delayed fluorescence (TADF), a mechanism with the potential to fully harness excitons in OLEDs. Recently, investigations have unveiled TADF in a series of two-coordinate coinage metal (Cu, Ag, and Au) complexes. These organometallic TADF materials exhibit distinctive behavior in comparison to their organic counterparts. They offer benefits such as tunable emissive colors, short TADF emission lifetimes, high luminescent quantum yields, and reasonable stability. Impressively, both vacuum-deposited and solution-processed OLEDs incorporating these materials have achieved outstanding performance. This review encompasses various facets on two-coordinate TADF coinage metal complexes, including molecular design, photophysical characterizations, elucidation of structure-property relationships, and OLED applications.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Shu-Jia Zheng
- Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Song XF, Peng LY, Chen WK, Gao YJ, Cui G. Theoretical studies on thermally activated delayed fluorescence of "carbene-metal-amide" Cu and Au complexes: geometric structures, excitation characters, and mechanisms. Phys Chem Chem Phys 2023; 25:29603-29613. [PMID: 37877743 DOI: 10.1039/d3cp03444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
"Carbene-metal(I)-amide" (CMA) complexes have garnered significant attention due to their remarkable properties and potential TADF applications in organic electronics. However, the atomistic working mechanism is still elusive. Herein, we chose two CMA complexes, i.e., cyclic (alkyl)(amino) carbene-copper[gold](I)-carbazole (CAAC-Cu[Au]-Cz), and employed both DFT and TD-DFT methods, in combination with radiative and nonradiative rate calculations, to investigate geometric and electronic structures of these two complexes in the ground and excited states, including orbital compositions, electronic transitions, absorption and emission spectra, and the luminescence mechanism. It is found that the coplanar or perpendicular conformations are coexistent in the ground state (S0), the lowest excited singlet state (S1), and the triplet state (T1). Both the coplanar and perpendicular S1 and T1 states have similar ligand-to-ligand charge transfer (LLCT) character between CAAC and Cz, and some charge-transfer character between metal atoms and ligands, which is beneficial to minimize the singlet-triplet energy gaps (ΔEST) and increase the spin-orbit coupling (SOC). An interesting three-state (S0, S1, T1) model involving two regions (coplanar and perpendicular) is proposed to rationalize the experimental TADF phenomena in the CMA complexes. In addition to the coplanar ones, the perpendicular S1 and T1 states also play a role in promoting the repopulation of the coplanar S1 exciton, which is a primary source for the delayed fluorescence.
Collapse
Affiliation(s)
- Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yuan-Jun Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, P. R. China.
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
5
|
Yersin H, Czerwieniec R, Monkowius U, Ramazanov R, Valiev R, Shafikov MZ, Kwok WM, Ma C. Intersystem crossing, phosphorescence, and spin-orbit coupling. Two contrasting Cu(I)-TADF dimers investigated by milli- to micro-second phosphorescence, femto-second fluorescence, and theoretical calculations. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Charge-Compensated Derivatives of Nido-Carborane. INORGANICS 2023. [DOI: 10.3390/inorganics11020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This review summarizes data on the main types of charge-compensated nido-carborane derivatives. Compared with organic analogs, onium derivatives of nido-carborane have increased stability due to the stabilizing electron-donor action of the boron cage. Charge-compensated derivatives are considered according to the type of heteroatom bonded to a boron atom.
Collapse
|
7
|
Recent developments of photoactive Cu(I) and Ag(I) complexes with diphosphine and related ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Song X, Peng L, Chen W, Gao Y, Fang W, Cui G. Thermally Activated Delayed Fluorescence of a Dinuclear Platinum(II) Compound: Mechanism and Roles of an Upper Triplet State. Chemistry 2022; 28:e202201782. [DOI: 10.1002/chem.202201782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xiu‐Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, Chemistry College Beijing Normal University Beijing 100875 P.R. China
| | - Ling‐Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, Chemistry College Beijing Normal University Beijing 100875 P.R. China
| | - Wen‐Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, Chemistry College Beijing Normal University Beijing 100875 P.R. China
| | - Yuan‐Jun Gao
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, Chemistry College Beijing Normal University Beijing 100875 P.R. China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, Chemistry College Beijing Normal University Beijing 100875 P.R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, Chemistry College Beijing Normal University Beijing 100875 P.R. China
| |
Collapse
|
9
|
Cai XB, Liang D, Yang M, Wu XY, Lu CZ, Yu R. Efficiently increasing the radiative rate of TADF material with metal coordination. Chem Commun (Camb) 2022; 58:8970-8973. [PMID: 35861256 DOI: 10.1039/d2cc02930h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a simple and straightforward method to reduce dramatically the lifetime of a pure organic thermally activated delayed fluorescence (TADF) material VIA metal coordination is demonstrated. We designed a mononuclear silver complex [Ag(PPh2CH3)(TCzBN-PyPz)]BF4 (1) with a new emissive TCzBN-PyPz ligand. Even though the ligand and the metal complex have very similar emissive efficiencies and maximal peaks, over three orders of magnitude shorter lifetime of 0.59 μs for the complex than 2074 μs for ligand were obtained. Compared to other methods, the present protocol seems to be simple and highly effective.
Collapse
Affiliation(s)
- Xian-Bao Cai
- College of Chemical Engineering, Fuzhou, University, 350116, Fuzhou, P. R. China. .,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Dong Liang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Mingxue Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xiao-Yuan Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Can-Zhong Lu
- College of Chemical Engineering, Fuzhou, University, 350116, Fuzhou, P. R. China. .,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongmin Yu
- College of Chemical Engineering, Fuzhou, University, 350116, Fuzhou, P. R. China. .,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
10
|
Artem'ev AV, Yu. Baranov A, Yu. Bagryanskaya I. Trigonal planar clusters Ag@Ag3 supported by (2-PyCH2)3P ligands. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Yang JG, Song XF, Cheng G, Wu S, Feng X, Cui G, To WP, Chang X, Chen Y, Che CM, Yang C, Li K. Conformational Engineering of Two-Coordinate Gold(I) Complexes: Regulation of Excited-State Dynamics for Efficient Delayed Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13539-13549. [PMID: 35286066 DOI: 10.1021/acsami.2c01776] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbene-Au-amide (CMA) type complexes, in which the amide and carbene ligands act as an electron donor (D) and acceptor (A), respectively, can exhibit strong delayed fluorescence (DF) from a ligand to ligand charge transfer (LLCT) excited state. Although the coplanar donor-acceptor (D-A) conformation has been suggested to be a crucial factor favoring radiative decay of the charge-transfer excited state, the geometric structural factor underpinning the excited-state mechanism of CMA complexes remains an open question. We herein develop a new class of carbene-Au-carbazolate complexes by introducing large aromatic substituents onto the carbazolate ligand, the presence of which are conceived to restrict the rotation of the Au-N bond and thus confine a twisted D-A conformation in both ground and excited states. A highly twisted D-A orientation is found for the complexes in their crystal structures. Photophysical studies reveal that the twisted conformation induces a decrease in the gap (ΔEST) between the lowest singlet excited state (S1) and the triplet manifold (T1) and thus a faster reverse intersystem crossing (RISC) from T1 to S1 at the expense of oscillator strength for an S1 radiative transition. In comparison with the coplanar analogue, the twisted complexes exhibit comparable or improved DF with quantum yields of up to 94% and short emission lifetimes down to sub-microseconds. The tuning of excited-state dynamics has been well interpreted by density functional theory (DFT) and time-dependent DFT (TDDFT) calculations, which unveil much faster RISC rates for twisted complexes. Solution-processed organic light-emitting diodes (OLEDs) based on the new CMA complexes show promising performances with almost negligible efficiency rolloff at a brightness of 1000 cd m-2. This work implies that neither a coplanar ground-state D-A conformation nor a dynamic rotation of the M-N bond is the key to the realization of efficient DF for CMA complexes.
Collapse
Affiliation(s)
- Jian-Gong Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Siping Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Xingyu Feng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Chuluo Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Kai Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
12
|
Wong CY, Tang MC, Li LK, Leung MY, Tang WK, Lai SL, Cheung WL, Ng M, Chan MY, Yam VWW. Carbazolylgold( iii) complexes with thermally activated delayed fluorescence switched on by ligand manipulation as high efficiency organic light-emitting devices with small efficiency roll-offs. Chem Sci 2022; 13:10129-10140. [PMID: 36128251 PMCID: PMC9430534 DOI: 10.1039/d2sc03037c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
A series of carbazolyl ligands has been designed and synthesized through the integration of various electron-donating and electron-accepting motifs, including electron-donating 4-(diphenylamino)aryl and electron-accepting cyano and diphenylphosphine oxide moieties, for the development of a new class of gold(iii) complexes, where the energies of their triplet intraligand and ligand-to-ligand charge transfer excited states can be manipulated for the activation of thermally activated delayed fluorescence (TADF). Upon excitation, these complexes show high photoluminescence quantum yields of up to 80% in solid-state thin films, with short excited state lifetimes down to 1 μs. Vacuum-deposited and solution-processed organic light-emitting devices based on these complexes demonstrate promising electroluminescence (EL) performance with maximum external quantum efficiencies of 15.0% and 11.7%, respectively, and notably small efficiency roll-off values of less than 1% at the practical luminance brightness level of 1000 cd m−2. These distinct EL performances are believed to be due to the occurrence of multichannel radiative decay pathways via both phosphorescence and TADF that significantly shorten the emission lifetimes and hence reduce the occurrence of the detrimental triplet–triplet annihilation in the gold(iii) complexes. Switch on of TADF can be achieved by tuning the excited state energy levels via ligand manipulation of the carbazolylgold(iii) C^C^N complexes. The resulting OLEDs show maximum EQEs of over 11% and efficiency roll-offs of down to less than 1%.![]()
Collapse
Affiliation(s)
- Chun-Yin Wong
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Man-Chung Tang
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lok-Kwan Li
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong, P. R. China
| | - Wai-Kit Tang
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Shiu-Lun Lai
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Wai-Lung Cheung
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Maggie Ng
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Mei-Yee Chan
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- Hong Kong Quantum AI Lab Limited, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong, P. R. China
| |
Collapse
|
13
|
Wu Z, Cui S, Zhao Z, He B, Li XL. Photophysical properties of homobimetallic Cu( i)–Cu( i) and heterobimetallic Cu( i)–Ag( i) complexes of 2-(6-bromo-2-pyridyl)-1 H-imidazo[4,5- f][1,10]phenanthroline. NEW J CHEM 2022. [DOI: 10.1039/d2nj00774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heteronuclear Cu(i)–Ag(i) complexes show dual emission bands and enhanced luminescence compared with their isostructural homobinuclear Cu(i) complexes.
Collapse
Affiliation(s)
- Zhan Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Shu Cui
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Zhenqin Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Bingling He
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiu-Ling Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
14
|
Dinuclear ReI complex based on 1,2,4,5-tetrakis(diphenylphosphino)- pyridine: synthesis and luminescence properties. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Beliaeva M, Belyaev A, Grachova EV, Steffen A, Koshevoy IO. Ditopic Phosphide Oxide Group: A Rigidifying Lewis Base to Switch Luminescence and Reactivity of a Disilver Complex. J Am Chem Soc 2021; 143:15045-15055. [PMID: 34491736 DOI: 10.1021/jacs.1c04413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterodentate phosphines containing anionic organophosphorus groups remain virtually unexplored ligands in the coordination chemistry of coinage metals. A hybrid phosphine-phosphine oxide (o-Ph2PC6H4)2P(O)H (HP3O) readily forms the disilver complex [Ag2(P3O)2] (1) upon deprotonation of the (O)P-H fragment. Due to the electron-rich nature, the anionic phosphide oxide unit in 1 takes part in efficient intermolecular hydrogen bonding, which has an unusual and remarkably strong impact on the photoluminescence of 1, changing the emission from red (644 nm) to green-yellow (539 nm) in the solid. The basicity of the R2(O)P- group and its affinity for both inter- and intramolecular donor-acceptor interactions allow converting 1 into hydrohalogenated (2, 3) and boronated (4) derivatives, which reveal a gradual hypsochromic shift of luminescence, reaching the wavelength of 489 nm. Systematic variable-temperature analysis of the excited state properties suggests that thermally activated delayed fluorescence is involved in the emission process. The long-lived excited states for 1-4, the energy of which is largely regulated by means of the phosphide oxide unit, are potentially suitable for triplet energy transfer photocatalysis. With the highest T1 energy among 1-4, complex 4 demonstrates excellent photocatalytic activity in a [2+2] cycloaddition reaction, which has been realized for the first time for silver(I) compounds.
Collapse
Affiliation(s)
- Mariia Beliaeva
- Department of Chemistry, University of Eastern Finland, Joensuu, 80101, Finland
| | - Andrey Belyaev
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Elena V Grachova
- Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russia
| | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, Joensuu, 80101, Finland
| |
Collapse
|
16
|
P∩N Bridged Cu(I) Dimers Featuring Both TADF and Phosphorescence. From Overview towards Detailed Case Study of the Excited Singlet and Triplet States. Molecules 2021; 26:molecules26113415. [PMID: 34200044 PMCID: PMC8200198 DOI: 10.3390/molecules26113415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
We present an overview over eight brightly luminescent Cu(I) dimers of the type Cu2X2(P∩N)3 with X = Cl, Br, I and P∩N = 2-diphenylphosphino-pyridine (Ph2Ppy), 2-diphenylphosphino-pyrimidine (Ph2Ppym), 1-diphenylphosphino-isoquinoline (Ph2Piqn) including three new crystal structures (Cu2Br2(Ph2Ppy)3 1-Br, Cu2I2(Ph2Ppym)3 2-I and Cu2I2(Ph2Piqn)3 3-I). However, we mainly focus on their photo-luminescence properties. All compounds exhibit combined thermally activated delayed fluorescence (TADF) and phosphorescence at ambient temperature. Emission color, decay time and quantum yield vary over large ranges. For deeper characterization, we select Cu2I2(Ph2Ppy)3, 1-I, showing a quantum yield of 81%. DFT and SOC-TDDFT calculations provide insight into the electronic structures of the singlet S1 and triplet T1 states. Both stem from metal+iodide-to-ligand charge transfer transitions. Evaluation of the emission decay dynamics, measured from 1.2 ≤ T ≤ 300 K, gives ∆E(S1-T1) = 380 cm−1 (47 meV), a transition rate of k(S1→S0) = 2.25 × 106 s−1 (445 ns), T1 zero-field splittings, transition rates from the triplet substates and spin-lattice relaxation times. We also discuss the interplay of S1-TADF and T1-phosphorescence. The combined emission paths shorten the overall decay time. For OLED applications, utilization of both singlet and triplet harvesting can be highly favorable for improvement of the device performance.
Collapse
|
17
|
Sivaev IB, Stogniy MY, Bregadze VI. Transition metal complexes with carboranylphosphine ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Rogovoy MI, Berezin AS, Samsonenko DG, Artem’ev AV. Silver(I)–Organic Frameworks Showing Remarkable Thermo-, Solvato- And Vapochromic Phosphorescence As Well As Reversible Solvent-Driven 3D-to-0D Transformations. Inorg Chem 2021; 60:6680-6687. [DOI: 10.1021/acs.inorgchem.1c00480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Maxim I. Rogovoy
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the RAS, 3 Academician Lavrentyev Ave., Novosibirsk 630090, Russian Federation
| | - Alexey S. Berezin
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the RAS, 3 Academician Lavrentyev Ave., Novosibirsk 630090, Russian Federation
| | - Denis G. Samsonenko
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the RAS, 3 Academician Lavrentyev Ave., Novosibirsk 630090, Russian Federation
| | - Alexander V. Artem’ev
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the RAS, 3 Academician Lavrentyev Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
19
|
Rogovoy MI, Tomilenko AV, Samsonenko DG, Nedolya NA, Rakhmanova MI, Artem’ev AV. New silver(i) thiazole-based coordination polymers: structural and photophysical investigation. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Calvo M, Crespo O, Gimeno MC, Laguna A, Oliván MT, Polo V, Rodríguez D, Sáez-Rocher JM. Tunable from Blue to Red Emissive Composites and Solids of Silver Diphosphane Systems with Higher Quantum Yields than the Diphosphane Ligands. Inorg Chem 2020; 59:14447-14456. [PMID: 32981313 DOI: 10.1021/acs.inorgchem.0c02238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PMMA composites and solids of complexes of formulas [AgX(P-P)]n [n = 1 and 2; X = Cl, NO3, ClO4, CF3COO, and OTf; P-P = dppb, xantphos, (PR2)2C2B10H10 (R = Ph and iPr)] display the whole palette of colors from blue to red upon selection of the anionic ligand (X) and the diphosphane (P-P). The diphosphane seems to play the most important role in tuning the emission energy and thermally activated delayed fluorescence (TADF) behavior. The PMMA composites of the complexes exhibit higher quantum yields than that of the diphosphane ligands and those with dppb are between 28 and 53%. Remarkably, instead of blue-green emissions which dominate the luminescence of silver diphosphane complexes in rigid phases, those with carborane diphosphanes are yellow-orange or orange-red emitters. Theoretical studies have been carried out for complexes with P-P = dppb, X = Cl; P-P = dppic, X = NO3; P-P = dppcc, X = Cl, NO3, and OTf and the mononuclear complexes [AgX(xantphos)] (X = Cl, Br). Optimization of the first excited triplet state was only possible for [AgX(xantphos)] (X = Cl and Br). A mixed MLCT and MC nature could be attributed to the S0 → T1 transition in these three-coordinated complexes.
Collapse
Affiliation(s)
- María Calvo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza-CSIC. E-50009 Zaragoza, Spain
| | - Olga Crespo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza-CSIC. E-50009 Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza-CSIC. E-50009 Zaragoza, Spain
| | - Antonio Laguna
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza-CSIC. E-50009 Zaragoza, Spain
| | - M Teresa Oliván
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza-CSIC. E-50009 Zaragoza, Spain
| | - Víctor Polo
- Departamento de Química Física, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI). Universidad de Zaragoza, Facutad de Ciencias E-50009 Zaragoza, Spain
| | - Diego Rodríguez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza-CSIC. E-50009 Zaragoza, Spain
| | - Jose-M Sáez-Rocher
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza-CSIC. E-50009 Zaragoza, Spain
| |
Collapse
|
21
|
Synthesis and Thermochromic Luminescence of Ag(I) Complexes Based on 4,6-Bis(diphenylphosphino)-Pyrimidine. INORGANICS 2020. [DOI: 10.3390/inorganics8090046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two Ag(I)-based metal-organic compounds have been synthesized exploiting 4,6-bis(diphenylphosphino)pyrimidine (L). The reaction of this ligand with AgNO3 and AgBF4 in acetonitrile produces dinuclear complex, [Ag2L2(MeCN)2(NO3)2] (1) and 1D coordination polymer, [Ag2L(MeCN)3]n(BF4)2n (2), respectively. In complex 1, µ2-P,P′-bridging coordination pattern of the ligand L is observed, whereas its µ4-P,N,N′,P′-coordination mode appears in 2. Both compounds exhibit pronounced thermochromic luminescence expressed by reversible changing of the emission chromaticity from a yellow at 300 K to an orange at 77 K. At room temperature, the emission lifetimes of 1 and 2 are 15.5 and 9.4 µs, the quantum efficiency being 18 and 56%, respectively. On account of temperature-dependent experimental data, the phenomenon was tentatively ascribed to alteration of the emission nature from thermally activated delayed fluorescence at 300 K to phosphoresce at 77 K.
Collapse
|
22
|
Teng T, Li K, Cheng G, Wang Y, Wang J, Li J, Zhou C, Liu H, Zou T, Xiong J, Wu C, Zhang HX, Che CM, Yang C. Lighting Silver(I) Complexes for Solution-Processed Organic Light-Emitting Diodes and Biological Applications via Thermally Activated Delayed Fluorescence. Inorg Chem 2020; 59:12122-12131. [PMID: 32845614 DOI: 10.1021/acs.inorgchem.0c01054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Luminescent coinage metal complexes have shown promising applications as electroluminescent emitters, photocatalysts/photosensitizers, and bioimaging/theranostic agents, rendering them attractive alternatives to transition metal complexes based on iridium, ruthenium, and platinum that have extremely low earth abundance. In comparison to the widely studied Au(I) and Cu(I) complexes, Ag(I) complexes have seldom been explored in this field because of their inferior emission properties. Herein, we report a novel series of [Ag(N^N)(P^P)]PF6 complexes exhibiting highly efficient thermally activated delayed fluorescence by using easily accessible neutral diamine ligands and commercially available ancillary diphosphine chelates. The photoluminescence quantum yields (PLQYs) of the Ag(I) emitters are ≤0.62 in doped films. The high PLQY with a large delayed fluorescence ratio enabled the fabrication of solution-processed organic light-emitting diodes (OLEDs) with a high maximum external quantum efficiency of 8.76%, among the highest values for Ag(I) emitter-based OLEDs. With superior emission properties and an excited state lifetime in the microsecond regime, together with its potent cytotoxicity, the selected Ag(I) complex has been used for simultaneous cell imaging and anticancer treatment in human liver carcinoma HepG2 cells, revealing the potential of luminescent Ag(I) complexes for biological applications such as theranostics.
Collapse
Affiliation(s)
- Teng Teng
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Kai Li
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Jian Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Jiafang Li
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Changjiang Zhou
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - He Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | - Jinfan Xiong
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Chao Wu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Hong-Xing Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Chuluo Yang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
23
|
To WP, Cheng G, Tong GSM, Zhou D, Che CM. Recent Advances in Metal-TADF Emitters and Their Application in Organic Light-Emitting Diodes. Front Chem 2020; 8:653. [PMID: 32850666 PMCID: PMC7411996 DOI: 10.3389/fchem.2020.00653] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
In this contribution, recent advances in new classes of efficient metal-TADF complexes, especially those of Au(I), Au(III), and W(VI), and their application in OLEDs are reviewed. The high performance (EQE = 25%) and long device operational lifetime (LT95 = 5,280 h) achieved in an OLED with tetradentate Au(III) TADF emitter reflect the competitiveness of this class of emitters for use in OLEDs with practical interest. The high EQE of 15.6% achieved in solution-processed OLED with W(VI) TADF emitter represents an alternative direction toward low-cost light-emitting materials. Finally, the design strategy of metal-TADF emitters and their next-stage development are discussed.
Collapse
Affiliation(s)
- Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Glenna So Ming Tong
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Dongling Zhou
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
24
|
Yonemoto DT, Papa CM, Mongin C, Castellano FN. Thermally Activated Delayed Photoluminescence: Deterministic Control of Excited-State Decay. J Am Chem Soc 2020; 142:10883-10893. [PMID: 32497428 DOI: 10.1021/jacs.0c03331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thermally activated photophysical processes are ubiquitous in numerous organic and metal-organic molecules, leading to chromophores with excited-state properties that can be considered an equilibrium mixture of the available low-lying states. Relative populations of the equilibrated states are governed by temperature. Such molecules have been devised as high quantum yield emitters in modern organic light-emitting diode technology and for deterministic excited-state lifetime control to enhance chemical reactivity in solar energy conversion and photocatalytic schemes. The recent discovery of thermally activated photophysics at CdSe nanocrystal-molecule interfaces enables a new paradigm wherein molecule-quantum dot constructs are used to systematically generate material with predetermined photophysical response and excited-state properties. Semiconductor nanomaterials feature size-tunable energy level engineering, which considerably expands the purview of thermally activated photophysics beyond what is possible using only molecules. This Perspective is intended to provide a nonexhaustive overview of the advances that led to the integration of semiconductor quantum dots in thermally activated delayed photoluminescence (TADPL) schemes and to identify important challenges moving into the future. The initial establishment of excited-state lifetime extension utilizing triplet-triplet excited-state equilibria is detailed. Next, advances involving the rational design of molecules composed of both metal-containing and organic-based chromophores that produce the desired TADPL are described. Finally, the recent introduction of semiconductor nanomaterials into hybrid TADPL constructs is discussed, paving the way toward the realization of fine-tuned deterministic control of excited-state decay. It is envisioned that libraries of synthetically facile composites will be broadly deployed as photosensitizers and light emitters for numerous synthetic and optoelectronic applications in the near future.
Collapse
Affiliation(s)
- Daniel T Yonemoto
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Christopher M Papa
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Cedric Mongin
- Laboratoire PPSM, ENS Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan CEDEX, France
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
25
|
Yang J, Han Z, Dong X, Luo P, Mo H, Zang S. Extra Silver Atom Triggers Room‐Temperature Photoluminescence in Atomically Precise Radarlike Silver Clusters. Angew Chem Int Ed Engl 2020; 59:11898-11902. [DOI: 10.1002/anie.202004268] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Jin‐Sen Yang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhen Han
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Xi‐Yan Dong
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
- College of Chemistry and Chemical Engineering Henan Polytechnic University Jiaozuo 454000 China
| | - Peng Luo
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Hui‐Lin Mo
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Shuang‐Quan Zang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
26
|
Yang J, Han Z, Dong X, Luo P, Mo H, Zang S. Extra Silver Atom Triggers Room‐Temperature Photoluminescence in Atomically Precise Radarlike Silver Clusters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jin‐Sen Yang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhen Han
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Xi‐Yan Dong
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
- College of Chemistry and Chemical Engineering Henan Polytechnic University Jiaozuo 454000 China
| | - Peng Luo
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Hui‐Lin Mo
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Shuang‐Quan Zang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
27
|
Water dispersible supramolecular assemblies built from luminescent hexarhenium clusters and silver(I) complex with pyridine-2-ylphospholane for sensorics. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Nine heteroleptic copper(I)/silver(I) complexes prepared from phosphine and diimine ligands: syntheses, structures and terahertz spectra. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Shafikov MZ, Daniels R, Kozhevnikov VN. Unusually Fast Phosphorescence from Ir(III) Complexes via Dinuclear Molecular Design. J Phys Chem Lett 2019; 10:7015-7024. [PMID: 31638816 DOI: 10.1021/acs.jpclett.9b03002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The design and detailed photophysical study of two novel Ir(III) complexes featuring mono- and dinuclear design are presented. Emission quantum yield and decay times in solution are ΦPL = 90% and τ(300 K) = 1.16 μs for the mononuclear complex 5, and ΦPL = 95% and τ(300 K) = 0.44 μs for the dinuclear complex 6. These data indicate an almost 3-fold increase in the phosphorescence rate for dinuclear complex 6 compared to 5. Zero-field splitting (ZFS) of the T1 state also increases from ZFS = 65 cm-1 for the mononuclear complex to ZFS = 205 cm-1 for the dinuclear complex and is accompanied by a drastic shortening of the individual decay times of T1 substates. With the help of TD-DFT calculations, we rationalize that the drastic changes in the T1 state properties in the dinuclear complex originate from an increased number of excited states available for direct spin-orbit coupling (SOC) routes as a result of electronic coupling of Ir-Cl antibonding molecular orbitals of the two coordination sites.
Collapse
Affiliation(s)
- Marsel Z Shafikov
- Institut für Physikalische und Theoretische Chemie , Universität Regensburg , Universitätsstrasse 31 , Regensburg D-93053 , Germany
- Ural Federal University , Mira 19 , Ekaterinburg 620002 , Russia
| | - Ruth Daniels
- Department of Applied Sciences , Northumbria University , Newcastle upon Tyne NE1 8ST , United Kingdom
| | - Valery N Kozhevnikov
- Department of Applied Sciences , Northumbria University , Newcastle upon Tyne NE1 8ST , United Kingdom
| |
Collapse
|
30
|
Luminescent Cu(I) and Ag(I) coordination polymers: Fast phosphorescence or thermally activated delayed fluorescence. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Rogovoy MI, Berezin AS, Kozlova YN, Samsonenko DG, Artem'ev AV. A layered Ag(I)-based coordination polymer showing sky-blue luminescence and antibacterial activity. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Baranov AY, Rakhmanova MI, Samsonenko DG, Malysheva SF, Belogorlova NA, Bagryanskaya IY, Fedin VP, Artem'ev AV. Silver(I) and gold(I) complexes with tris[2-(2-pyridyl)ethyl]phosphine. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Yang Z, Zhao W, Liu W, Wei X, Chen M, Zhang X, Zhang X, Liang Y, Lu C, Yan H. Metal‐Free Oxidative B−N Coupling of
nido
‐Carborane with N‐Heterocycles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongming Yang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Weijia Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wei Liu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xing Wei
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Meng Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiao Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiaolei Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
34
|
Yang Z, Zhao W, Liu W, Wei X, Chen M, Zhang X, Zhang X, Liang Y, Lu C, Yan H. Metal‐Free Oxidative B−N Coupling of
nido
‐Carborane with N‐Heterocycles. Angew Chem Int Ed Engl 2019; 58:11886-11892. [DOI: 10.1002/anie.201904940] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/26/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Zhongming Yang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Weijia Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wei Liu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xing Wei
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Meng Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiao Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiaolei Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
35
|
Shamsieva AV, Musina EI, Gerasimova TP, Fayzullin RR, Kolesnikov IE, Samigullina AI, Katsyuba SA, Karasik AA, Sinyashin OG. Intriguing Near-Infrared Solid-State Luminescence of Binuclear Silver(I) Complexes Based on Pyridylphospholane Scaffolds. Inorg Chem 2019; 58:7698-7704. [DOI: 10.1021/acs.inorgchem.8b03474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Aliia V. Shamsieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Elvira I. Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Tatiana P. Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Ilya E. Kolesnikov
- Center for Optical and Laser Materials Research, Research Park of St. Petersburg State University, Ulianovskaya Street 5, 198504 St. Petersburg, Russian Federation
| | - Aida I. Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Sergey A. Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Andrey A. Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Oleg G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| |
Collapse
|
36
|
Zhang K, Shen Y, Yang X, Liu J, Jiang T, Finney N, Spingler B, Duttwyler S. Atomically Defined Monocarborane Copper(I) Acetylides with Structural and Luminescence Properties Tuned by Ligand Sterics. Chemistry 2019; 25:8754-8759. [DOI: 10.1002/chem.201900584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Kang Zhang
- Department of ChemistryZhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Yunjun Shen
- Department of ChemistryZhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Xiaoli Yang
- Department of ChemistryZhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Jiyong Liu
- Department of ChemistryZhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Tao Jiang
- Department of ChemistryZhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Nathaniel Finney
- School of Pharmaceutical Science and TechnologyTianjin University 92 Weijin Road 300072 Tianjin P. R. China
| | - Bernhard Spingler
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Simon Duttwyler
- Department of ChemistryZhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| |
Collapse
|
37
|
Shen Y, Zhang K, Liang X, Dontha R, Duttwyler S. Highly selective palladium-catalyzed one-pot, five-fold B-H/C-H cross coupling of monocarboranes with alkenes. Chem Sci 2019; 10:4177-4184. [PMID: 31057746 PMCID: PMC6471670 DOI: 10.1039/c9sc00078j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/03/2019] [Indexed: 01/07/2023] Open
Abstract
Palladium-catalyzed dehydrogenative B-H/C-H cross coupling of monocarborane anions with alkenes is reported, allowing for the first time the isolation of selectively penta-alkenylated boron clusters. The reaction cascade is regioselective for the cage positions, leading directly to B2-6 functionalization. Under mild and convenient conditions, styrenes, benzylic alkenes and aliphatic alkenes are demonstrated to be viable coupling partners with exclusive vinyl-type B-C bond formation. Multiple subsequent transformations provide access to directing group-free products, chiral derivatives and penta-alkylated cages. The five-fold coupling, combined with the latter reactions, represents a powerful methodology for the straightforward synthesis of new classes of boron clusters.
Collapse
Affiliation(s)
- Yunjun Shen
- Department of Chemistry , Zhejiang University , 310027 Hangzhou , Zhejiang , P. R. China .
| | - Kang Zhang
- Department of Chemistry , Zhejiang University , 310027 Hangzhou , Zhejiang , P. R. China .
| | - Xuewei Liang
- Department of Chemistry , Zhejiang University , 310027 Hangzhou , Zhejiang , P. R. China .
| | - Rakesh Dontha
- Department of Chemistry , Zhejiang University , 310027 Hangzhou , Zhejiang , P. R. China .
| | - Simon Duttwyler
- Department of Chemistry , Zhejiang University , 310027 Hangzhou , Zhejiang , P. R. China .
| |
Collapse
|
38
|
Rogovoy MI, Samsonenko DG, Rakhmanova MI, Artem'ev AV. Self-assembly of Ag(I)-based complexes and layered coordination polymers bridged by (2-thiazolyl)sulfides. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.01.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Chakkaradhari G, Eskelinen T, Degbe C, Belyaev A, Melnikov AS, Grachova EV, Tunik SP, Hirva P, Koshevoy IO. Oligophosphine-thiocyanate Copper(I) and Silver(I) Complexes and Their Borane Derivatives Showing Delayed Fluorescence. Inorg Chem 2019; 58:3646-3660. [PMID: 30793896 PMCID: PMC6727211 DOI: 10.1021/acs.inorgchem.8b03166] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
The series of chelating phosphine
ligands, which contain bidentate P2 (bis[(2-diphenylphosphino)phenyl] ether, DPEphos; 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene,
Xantphos; 1,2-bis(diphenylphosphino)benzene, dppb), tridentate P3 (bis(2-diphenylphosphinophenyl)phenylphosphine),
and tetradentate P4 (tris(2-diphenylphosphino)phenylphosphine)
ligands, was used for the preparation of the corresponding dinuclear
[M(μ2-SCN)P2]2 (M = Cu, 1, 3, 5; M = Ag, 2, 4, 6) and mononuclear
[CuNCS(P3/P4)] (7, 9) and
[AgSCN(P3/P4)] (8, 10) complexes.
The reactions of P4 with silver
salts in a 1:2 molar ratio produce tetranuclear clusters [Ag2(μ3-SCN)(t-SCN)(P4)]2 (11) and [Ag2(μ3-SCN)(P4)]22+ (12). Complexes 7–11 bearing terminally coordinated SCN ligands were efficiently
converted into derivatives 13–17 with
the weakly coordinating –SCN:B(C6F5)3 isothiocyanatoborate ligand. Compounds 1 and 5–17 exhibit thermally
activated delayed fluorescence (TADF) behavior in the solid state.
The excited states of thiocyanate species are dominated by the ligand
to ligand SCN → π(phosphine) charge transfer transitions
mixed with a variable contribution of MLCT. The boronation of SCN
groups changes the nature of both the S1 and T1 states to (L + M)LCT d,p(M, P) → π(phosphine). The
localization of the excited states on the aromatic systems of the
phosphine ligands determines a wide range of luminescence energies
achieved for the title complexes (λem varies from
448 nm for 1 to 630 nm for 10c). The emission
of compounds 10 and 15, based on the P4 ligand, strongly depends on the
solid-state packing (λem = 505 and 625 nm for two
crystalline forms of 15), which affects structural reorganizations
accompanying the formation of electronically excited states. Copper(I) and silver(I) thiocyanate complexes containing di-, tri-,
and tetraphosphine ligands show efficient TADF in the solid state,
dominated by the ligand to ligand SCN → π(phosphine)
charge transfer, which is changed to d,p(M, P) → π(phosphine)
transitions for the isothiocyanatoborate derivatives. The wide variation
of the emission color from blue (448 nm) to red-orange (630 nm) is
attributed to the nature of the P-donor ligands and the packing effects,
influencing structural distortions in the excited state.
Collapse
Affiliation(s)
| | - Toni Eskelinen
- Department of Chemistry , University of Eastern Finland , 80101 Joensuu , Finland
| | - Cecilia Degbe
- Department of Chemistry , University of Eastern Finland , 80101 Joensuu , Finland
| | - Andrey Belyaev
- Department of Chemistry , University of Eastern Finland , 80101 Joensuu , Finland
| | - Alexey S Melnikov
- Peter the Great St. Petersburg Polytechnic University , Polytechnicheskaya, 29 , 195251 St. Petersburg , Russia
| | - Elena V Grachova
- Institute of Chemistry , St. Petersburg State University , Universitetskiy pr. 26, Petergof , 198504 St. Petersburg , Russia
| | - Sergey P Tunik
- Institute of Chemistry , St. Petersburg State University , Universitetskiy pr. 26, Petergof , 198504 St. Petersburg , Russia
| | - Pipsa Hirva
- Department of Chemistry , University of Eastern Finland , 80101 Joensuu , Finland
| | - Igor O Koshevoy
- Department of Chemistry , University of Eastern Finland , 80101 Joensuu , Finland
| |
Collapse
|
40
|
Li X, Zhang J, Zhao Z, Yu X, Li P, Yao Y, Liu Z, Jin Q, Bian Z, Lu Z, Huang C. Bluish-Green Cu(I) Dimers Chelated with Thiophene Ring-Introduced Diphosphine Ligands for Both Singlet and Triplet Harvesting in OLEDs. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3262-3270. [PMID: 30608118 DOI: 10.1021/acsami.8b15897] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two new Cu(I) dimers chelated with thiophene ring-introduced diphosphine ligands [Cu(μ2-I)dppt1]2 and [Cu(μ2-I)dppt2]2 (dppt1 = 3,4-bis(diphenylphosphino)thiophene, dppt2 = 2,3-bis(diphenylphosphino)thiophene) have been prepared and studied in terms of photoluminescence and electroluminescence properties. Both dimers exhibited two independent radiative decay pathways, which are equilibrated thermally at room temperature: one is thermally activated delay fluorescence (TADF) via the first singlet excited state (S1) decay and the other is phosphorescence via the first triplet excited state (T1) decay. The dual emission mechanism for both singlet and triplet harvesting, as well as excellent photoluminescence properties such as bluish-green emission color (487 and 483 nm), short decay times (9.46 and 7.62 μs), and high photoluminescence quantum yields (69% and 86%) of the two Cu(I) dimers, implies their potential to be highly efficient emitter molecules for organic light emitting diode (OLED) applications. As a result, the optimized OLEDs with [Cu(μ2-I)dppt2]2 showed the highest efficiency, exhibiting a current efficiency up to 32.2 cd A-1, a peak brightness of 3.67 × 103 cd m-2, as well as a maximum external quantum efficiency of 14.5%.
Collapse
Affiliation(s)
- Xiaoyue Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
- Department of Materials Science and Engineering , University of Toronto , Toronto , M5G 3E4 , Canada
| | - Juanye Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
- Department of Materials Science and Engineering , University of Toronto , Toronto , M5G 3E4 , Canada
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
- Department of Materials Science and Engineering , University of Toronto , Toronto , M5G 3E4 , Canada
| | - Xiao Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
- Department of Materials Science and Engineering , University of Toronto , Toronto , M5G 3E4 , Canada
| | - Peicheng Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
- Department of Materials Science and Engineering , University of Toronto , Toronto , M5G 3E4 , Canada
| | - Yuhang Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
- Department of Materials Science and Engineering , University of Toronto , Toronto , M5G 3E4 , Canada
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
- Department of Materials Science and Engineering , University of Toronto , Toronto , M5G 3E4 , Canada
| | - Qionghua Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
- Department of Materials Science and Engineering , University of Toronto , Toronto , M5G 3E4 , Canada
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
- Department of Materials Science and Engineering , University of Toronto , Toronto , M5G 3E4 , Canada
| | - Zhenghong Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
- Department of Materials Science and Engineering , University of Toronto , Toronto , M5G 3E4 , Canada
| | - Chunhui Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering , Peking University , Beijing , 100871 , China
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
- Department of Materials Science and Engineering , University of Toronto , Toronto , M5G 3E4 , Canada
| |
Collapse
|
41
|
Artem'ev AV, Shafikov MZ, Schinabeck A, Antonova OV, Berezin AS, Bagryanskaya IY, Plusnin PE, Yersin H. Sky-blue thermally activated delayed fluorescence (TADF) based on Ag(i) complexes: strong solvation-induced emission enhancement. Inorg Chem Front 2019. [DOI: 10.1039/c9qi01069f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Remarkable solvation-induced emission enhancement is discovered on a new Ag(i) complex showing sky-blue thermally activated delayed fluorescence (TADF).
Collapse
Affiliation(s)
- Alexander V. Artem'ev
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University (National Research University)
| | - Marsel Z. Shafikov
- Universität Regensburg
- Institut für Physikalische Chemie
- 93053 Regensburg
- Germany
- Ural Federal University
| | | | - Olga V. Antonova
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
| | - Alexey S. Berezin
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University (National Research University)
| | - Irina Yu. Bagryanskaya
- Novosibirsk State University (National Research University)
- Novosibirsk 630090
- Russian Federation
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Siberian Branch of Russian Academy of Sciences
| | - Pavel E. Plusnin
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University (National Research University)
| | - Hartmut Yersin
- Universität Regensburg
- Institut für Physikalische Chemie
- 93053 Regensburg
- Germany
| |
Collapse
|
42
|
Shafikov MZ, Czerwieniec R, Yersin H. Ag(i) complex design affording intense phosphorescence with a landmark lifetime of over 100 milliseconds. Dalton Trans 2019; 48:2802-2806. [DOI: 10.1039/c8dt04078h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new Ag(i) complex was designed that shows an unprecedentedly long ambient temperature emission decay time of τ = 110 ms at an emission quantum yield of ΦPL = 50%, as measured for a doped PMMA matrix.
Collapse
Affiliation(s)
- Marsel Z. Shafikov
- Institute fur Physikalische und Theoretische Chemie
- Universität Regensburg
- D-93053 Regensburg
- Germany
- Ural Federal University
| | - Rafał Czerwieniec
- Institute fur Physikalische und Theoretische Chemie
- Universität Regensburg
- D-93053 Regensburg
- Germany
| | - Hartmut Yersin
- Institute fur Physikalische und Theoretische Chemie
- Universität Regensburg
- D-93053 Regensburg
- Germany
| |
Collapse
|
43
|
Artem'ev AV, Ryzhikov MR, Berezin AS, Kolesnikov IE, Samsonenko DG, Bagryanskaya IY. Photoluminescence of Ag(i) complexes with a square-planar coordination geometry: the first observation. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00657e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
First examples of square-planar Ag(i) complexes showing MLCT emission are reported. They demonstrate an interesting thermochromic luminescence with the nano- and microsecond lifetime components.
Collapse
Affiliation(s)
- Alexander V. Artem'ev
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University
| | - Maxim R. Ryzhikov
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University
| | - Alexey S. Berezin
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
| | - Ilya E. Kolesnikov
- Center for Optical and Laser Materials Research
- Saint Petersburg State University
- Saint Petersburg 198504
- Russian Federation
| | - Denis G. Samsonenko
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University
| | - Irina Yu. Bagryanskaya
- Novosibirsk State University
- Novosibirsk 630090
- Russian Federation
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Siberian Branch of Russian Academy of Sciences
| |
Collapse
|
44
|
Schinabeck A, Rau N, Klein M, Sundermeyer J, Yersin H. Deep blue emitting Cu(i) tripod complexes. Design of high quantum yield materials showing TADF-assisted phosphorescence. Dalton Trans 2018; 47:17067-17076. [PMID: 30465052 DOI: 10.1039/c8dt04093a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a previous investigation, it was shown that [Cu(tpym)(PPh3)]PF61 with tpym = tris(2-pyridyl)methane represents a deep blue emitter (λmax = 466 nm) though with a low emission quantum yield ΦPL if doped in a polymer (7%) or dissolved in a fluid solvent (≪1%). In this study, we present new tripod compounds with sterically demanding ligands: [Cu(tpym)(P(o-tol)3)]PF62 and [Cu(tpym)(P(o-butyl-ph)3)]PF63 with P(o-tol)3 = tris(ortho-tolyl)phosphine and P(o-butyl-ph)3 = tris(ortho-n-butylphenyl)phosphine. These compounds show high emission quantum yields even in a fluid solution (dichloromethane) reaching a benchmark value for 3 of ΦPL = 76%. This becomes possible due to the specific design of rigidifying the complexes. Importantly, the deep blue emission color is maintained or even further blue shifted to λmax = 452 nm (compound 3 powder). Compound 2 is characterized photophysically in detail. In particular, it is shown that the lowest excited triplet state T1 experiences very efficient spin-orbit coupling (SOC). Accordingly, the phosphorescence decay rate is as large as 5 × 104 s-1 (20 μs) belonging to the fastest T1→ S0 transition values (shortest decay times) reported so far. Investigations down to T = 1.5 K reveal a large total zero-field splitting (ZFS) of 7 cm-1 (0.9 meV). Although thermally activated delayed fluorescence (TADF) grows in at T≥ 160 K, the phosphorescence of 2 still dominates (60%) over TADF (40%) at ambient temperature. Thus, the compound represents a singlet harvesting-plus-triplet harvesting material, if applied in an OLED.
Collapse
Affiliation(s)
- Alexander Schinabeck
- Universität Regensburg, Institut für Physikalische Chemie, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Nicholas Rau
- Philipps-Universität Marburg, Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften WZMW, Hans Meerwein-Straße 4, 35043 Marburg, Germany.
| | - Marius Klein
- Philipps-Universität Marburg, Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften WZMW, Hans Meerwein-Straße 4, 35043 Marburg, Germany.
| | - Jörg Sundermeyer
- Philipps-Universität Marburg, Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften WZMW, Hans Meerwein-Straße 4, 35043 Marburg, Germany.
| | - Hartmut Yersin
- Universität Regensburg, Institut für Physikalische Chemie, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
45
|
Lin F, Yu JL, Shen Y, Zhang SQ, Spingler B, Liu J, Hong X, Duttwyler S. Palladium-Catalyzed Selective Five-Fold Cascade Arylation of the 12-Vertex Monocarborane Anion by B–H Activation. J Am Chem Soc 2018; 140:13798-13807. [DOI: 10.1021/jacs.8b07872] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Furong Lin
- Department of Chemistry, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People’s Republic of China
| | - Jing-Lu Yu
- Department of Chemistry, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People’s Republic of China
| | - Yunjun Shen
- Department of Chemistry, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People’s Republic of China
| | - Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People’s Republic of China
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jiyong Liu
- Department of Chemistry, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People’s Republic of China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People’s Republic of China
| | - Simon Duttwyler
- Department of Chemistry, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People’s Republic of China
| |
Collapse
|
46
|
Schinabeck A, Leitl MJ, Yersin H. Dinuclear Cu(I) Complex with Combined Bright TADF and Phosphorescence. Zero-Field Splitting and Spin-Lattice Relaxation Effects of the Triplet State. J Phys Chem Lett 2018; 9:2848-2856. [PMID: 29750529 DOI: 10.1021/acs.jpclett.8b00957] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The three-fold bridged dinuclear Cu(I) complex Cu2(μ-I)2(1 N- n-butyl-5-diphenyl-phosphino-1,2,4-triazole)3, Cu2I2(P^N)3, shows bright thermally activated delayed fluorescence (TADF) as well as phosphorescence at ambient temperature with a total quantum yield of 85% at an emission decay time of 7 μs. The singlet (S1)-triplet (T1) energy gap is as small as only 430 cm-1 (53 meV). Spin-orbit coupling induces a short-lived phosphorescence with a decay time of 52 μs ( T = 77 K) and a distinct zero-field splitting (ZFS) of T1 into substates by ∼2.5 cm-1 (0.3 meV). Below T ≈ 10 K, effects of spin-lattice relaxation (SLR) are observed and agree with the size of ZFS. According to the combined phosphorescence and TADF, the overall emission decay time is reduced by ∼13% as compared to the TADF-only process. The compound may potentially be applied in solution-processed OLEDs, exploiting both the singlet and triplet harvesting mechanisms.
Collapse
Affiliation(s)
- Alexander Schinabeck
- Institut für Physikalische Chemie , University of Regensburg , 93040 Regensburg , Germany
| | - Markus J Leitl
- Institut für Physikalische Chemie , University of Regensburg , 93040 Regensburg , Germany
| | - Hartmut Yersin
- Institut für Physikalische Chemie , University of Regensburg , 93040 Regensburg , Germany
| |
Collapse
|
47
|
Gan XM, Yu R, Chen XL, Yang M, Lin L, Wu XY, Lu CZ. A unique tetranuclear Ag(i) complex emitting efficient thermally activated delayed fluorescence with a remarkably short decay time. Dalton Trans 2018; 47:5956-5960. [PMID: 29666869 DOI: 10.1039/c8dt00837j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel tetranuclear Ag(i) complex, [Ag4(μ-DMPTP)2(POP)3][BF4]2 (Ag4N2P3), has been designed to achieve highly efficient thermally activated delayed fluorescence (TADF). Photophysical investigations show that the compound exhibits highly efficient TADF (Φ = 76%) and has a very short ambient-temperature TADF decay time of only 0.65 μs, corresponding to a radiative decay rate of k = Φ/τ = 1.2 × 106 s-1, a value belonging to the fast radiative rates in TADF materials.
Collapse
Affiliation(s)
- Xue-Min Gan
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China.
| | | | | | | | | | | | | |
Collapse
|