1
|
Rana SS, Manna S, Choudhury J. Annulated oxazolium anion-π + AIEgens. Chem Commun (Camb) 2024; 60:10942-10945. [PMID: 39258465 DOI: 10.1039/d4cc03079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A new class of anion-π+ AIEgens based on ring-fused annulated oxazolium architectures is reported, which can be readily synthesized via a single-step dual C-H activation annulative π-extension (APEX) protocol from simple oxazolium salts. The crucial and decisive role of anion-π+ interactions in their solid-state structural arrangement was analyzed to correlate their tunable AIE features and solid-state quantum yields.
Collapse
Affiliation(s)
- Samim Sohel Rana
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | - Surajit Manna
- Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur 760010, Odisha, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| |
Collapse
|
2
|
Belousov A, Maslov I, Orekhov P, Khorn P, Kuzmichev P, Baleeva N, Motov V, Bogorodskiy A, Krasnova S, Mineev K, Zinchenko D, Zernii E, Ivanovich V, Permyakov S, Hofkens J, Hendrix J, Cherezov V, Gensch T, Mishin A, Baranov M, Mishin A, Borshchevskiy V. Monitoring GPCR conformation with GFP-inspired dyes. iScience 2024; 27:110466. [PMID: 39156645 PMCID: PMC11326922 DOI: 10.1016/j.isci.2024.110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/15/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Solvatochromic compounds have emerged as valuable environment-sensitive probes for biological research. Here we used thiol-reactive solvatochromic analogs of the green fluorescent protein (GFP) chromophore to track conformational changes in two proteins, recoverin and the A2A adenosine receptor (A2AAR). Two dyes showed Ca2+-induced fluorescence changes when attached to recoverin. Our best-performing dye, DyeC, exhibited agonist-induced changes in both intensity and shape of its fluorescence spectrum when attached to A2AAR; none of these effects were observed with other common environment-sensitive dyes. Molecular dynamics simulations showed that activation of the A2AAR led to a more confined and hydrophilic environment for DyeC. Additionally, an allosteric modulator of A2AAR induced distinct fluorescence changes in the DyeC spectrum, indicating a unique receptor conformation. Our study demonstrated that GFP-inspired dyes are effective for detecting structural changes in G protein-coupled receptors (GPCRs), offering advantages such as intensity-based and ratiometric tracking, redshifted fluorescence spectra, and sensitivity to allosteric modulation.
Collapse
Affiliation(s)
- Anatoliy Belousov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Ivan Maslov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Philipp Orekhov
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Sechenov University, Moscow 119146, Russia
| | - Polina Khorn
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Pavel Kuzmichev
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Nadezhda Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladislav Motov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | - Svetlana Krasnova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- National Research University Higher School of Economics, Moscow 101000, Russia
| | - Konstantin Mineev
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry Zinchenko
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Evgeni Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | - Sergei Permyakov
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino 142292, Russia
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Plank Institute for Polymer Research, Mainz, Germany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Vadim Cherezov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Thomas Gensch
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Alexander Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Mikhail Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Alexey Mishin
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valentin Borshchevskiy
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| |
Collapse
|
3
|
Wickramasinghe NI, Corbin B, Kanakarathna DY, Pang Y, Abeywickrama CS, Wijesinghe KJ. Bright NIR-Emitting Styryl Pyridinium Dyes with Large Stokes' Shift for Sensing Applications. BIOSENSORS 2023; 13:799. [PMID: 37622885 PMCID: PMC10452306 DOI: 10.3390/bios13080799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Two NIR-emitting donor-π-acceptor (D-π-A) type regioisomeric styryl pyridinium dyes (1a-1b) were synthesized and studied for their photophysical performance and environment sensitivity. The two regioisomers, 1a and 1b, exhibited interesting photophysical properties including, longer wavelength excitation (λex ≈ 530-560 nm), bright near-infrared emission (λem ≈ 690-720 nm), high-fluorescence quantum yields (ϕfl ≈ 0.24-0.72) large Stokes' shift (∆λ ≈ 150-240 nm) and high-environmental sensitivity. Probe's photophysical properties were studied in different environmental conditions such as polarity, viscosity, temperature, and concentration. Probes (1a-1b) exhibited noticeable changes in absorbance, emission and Stokes' shift while responding to the changes in physical environment. Probe 1b exhibited a significant bathochromic shift in optical spectra (∆λ ≈ 20-40 nm) compared to its isomer 1a, due to the regio-effect. Probes (1a-1b) exhibited an excellent ability to visualize bacteria (Bacillus megaterium, Escherichia coli), and yeast (Saccharomyces cerevisiae) via fluorescence microscopy.
Collapse
Affiliation(s)
| | - Brian Corbin
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Devni Y. Kanakarathna
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | | | - Kaveesha J. Wijesinghe
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka
| |
Collapse
|
4
|
Perfilov MM, Zaitseva ER, Baleeva NS, Kublitski VS, Smirnov AY, Bogdanova YA, Krasnova SA, Myasnyanko IN, Mishin AS, Baranov MS. Meta-CF 3-Substituted Analogues of the GFP Chromophore with Remarkable Solvatochromism. Int J Mol Sci 2023; 24:9923. [PMID: 37373071 DOI: 10.3390/ijms24129923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In this work, we have shown that the introduction of a trifluoromethyl group into the me-ta-position of arylidene imidazolones (GFP chromophore core) leads to a dramatic increase in their fluorescence in nonpolar and aprotic media. The presence of a pronounced solvent-dependent gradation of fluorescence intensity makes it possible to use these substances as fluorescent polarity sensors. In particular, we showed that one of the created compounds could be used for selective labeling of the endoplasmic reticulum of living cells.
Collapse
Affiliation(s)
- Maxim M Perfilov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Elvira R Zaitseva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Vadim S Kublitski
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, Moscow 121205, Russia
| | - Yulia A Bogdanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Svetlana A Krasnova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Alexander S Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| |
Collapse
|
5
|
Sokolov AI, Gorshkova AA, Baleeva NS, Baranov MS. Keto-Analogs of Arylidene-Imidazolones as Fluorogenic Dyes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
We report a series of (Z)-2-acetyl-4-benzyliden-1-methyl-1Н-imidazol-5(4Н)-ones with a pronounced solvent-dependent intensity of fluorescence variation. The introduction of the 2-acetyl group allows one to shift the absorption and emission maxima to the long-wavelength region. We have shown that these compounds can be used for staining the endoplasmic reticulum for fluorescent microscopy.
Collapse
|
6
|
Patron M, Tarasenko D, Nolte H, Kroczek L, Ghosh M, Ohba Y, Lasarzewski Y, Ahmadi ZA, Cabrera-Orefice A, Eyiama A, Kellermann T, Rugarli EI, Brandt U, Meinecke M, Langer T. Regulation of mitochondrial proteostasis by the proton gradient. EMBO J 2022; 41:e110476. [PMID: 35912435 PMCID: PMC9379554 DOI: 10.15252/embj.2021110476] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m‐AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+/H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m‐AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m‐AAA protease. The m‐AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.
Collapse
Affiliation(s)
- Maria Patron
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Daryna Tarasenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Lara Kroczek
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mausumi Ghosh
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Yohsuke Ohba
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Zeinab Alsadat Ahmadi
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Akinori Eyiama
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Tim Kellermann
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Elena I Rugarli
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Singh D, Rajput D, Kanvah S. Fluorescent probes for targeting endoplasmic reticulum: design strategies and their applications. Chem Commun (Camb) 2022; 58:2413-2429. [PMID: 35089303 DOI: 10.1039/d1cc06944f] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advances in developing organic fluorescent probes and fluorescence imaging techniques have enhanced our understanding of cell biology. The endoplasmic reticulum (ER) is a dynamic structure that plays a crucial role in protein synthesis, post-translational modifications, and lipid metabolism. The malfunction of ER contributes to several physiological and pathological conditions. Therefore, the investigations on the imaging and role of ER have attracted a lot of attention. Due to their simplicity, synthetic tunability, photostability, high quantum yields, easier cellular uptake, and lower cytotoxicity, organic fluorophores offer invaluable tools for the precision targeting of various cellular organelles and probe ER dynamics. The precision staining is made possible by incorporating specific functional groups having preferential and local organelle biomolecular interactions. For instance, functional moieties such as methyl sulfonamide, sulfonylurea, and pentafluorophenyl assist in ER targeting and thus have become essential tools to probe a deeper understanding of their dynamics. Furthermore, dual-function fluorescent probes that simultaneously image ER and detect specific physiological parameters or biological analytes were achieved by introducing special recognition or chemically reactive sites. This article attempts to comprehensively capture various design strategies currently employed by researchers utilizing small organic molecules to target the ER and detect specific analytes.
Collapse
Affiliation(s)
- Deepmala Singh
- Department of Chemistry, Indian Institute of Technology, Gandhinagar Palaj, Gandhinagar, Gujarat-382055, India.
| | - Deeksha Rajput
- Department of Chemistry, Indian Institute of Technology, Gandhinagar Palaj, Gandhinagar, Gujarat-382055, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology, Gandhinagar Palaj, Gandhinagar, Gujarat-382055, India.
| |
Collapse
|
8
|
Wang Y, Xia B, Huang Q, Luo T, Zhang Y, Timashev P, Guo W, Li F, Liang X. Practicable Applications of Aggregation-Induced Emission with Biomedical Perspective. Adv Healthc Mater 2021; 10:e2100945. [PMID: 34418321 DOI: 10.1002/adhm.202100945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Considerable efforts have been made into developing aggregation-induced emission fluorogens (AIEgens)-containing nano-therapeutic systems due to the excellent properties of AIEgens. Compared to other fluorescent molecules, AIEgens have advantages including low background, high signal-to-noise ratio, good sensitivity, and resistance to photobleaching, in addition to being exempt from concentration quenching or aggregation-caused quenching effects. The present review outlines the major developments in the biomedical applications of AIEgens-containing systems. From a literature survey, the recent AIE works are reviewed and the reasons why AIEgens are chosen in various biomedical applications are highlighted. The research activities on AIEgens-containing systems are increasing rapidly, therefore, the present review is timely.
Collapse
Affiliation(s)
- Yuqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino‐Danish Center for Education and Research Sino‐Danish College of University of Chinese Academy of Sciences Beijing 100049 China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qianqian Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino‐Danish Center for Education and Research Sino‐Danish College of University of Chinese Academy of Sciences Beijing 100049 China
| | - Ting Luo
- School of Medicine Nankai University Tianjin 300071 China
- Department of Interventional Ultrasound Chinese PLA General Hospital Beijing 100853 China
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies Institute for Regenerative Medicine Sechenov University Moscow 119991 Russia
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies Institute for Regenerative Medicine Sechenov University Moscow 119991 Russia
| | - Weisheng Guo
- Translational Medicine Center Key Laboratory of Molecular Target and Clinical Pharmacology School of Pharmaceutical Sciences and The Second Affiliated Hospital Guangzhou Medical University Guangzhou 510260 China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
| | - Xing‐Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Singh R, Chen DG, Wang CH, Lan YC, Liu YH, Chou PT, Chen CT. Tailoring C-6-Substituted Coumarin Scaffolds for Novel Photophysical Properties and Stimuli-Responsive Chromism. J Phys Chem B 2021; 125:11557-11565. [PMID: 34633826 DOI: 10.1021/acs.jpcb.1c08133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A judicious strategy was utilized to envision the substantial regio-positional effects of substituents on the photophysical properties of the 2H-chromen-2-one-3-benzothiazole scaffold-based push-pull framework, named 6-X-CUMs. Among them, 6-NEt2-CUM reveals prominent excited-state intramolecular charge transfer with a large change of dipole moment (Δμ ∼ 18.23 D), hence displaying remarkable emission solvatochromism from the green (536 nm in cyclohexane) to far-red region (714 nm in dimethyl sulfoxide) and a high-temperature sensitivity (-0.23 nm °C-1). These, together with unique basicity and acido-/vaporchromism upon acidification elucidated by NMR and photospectroscopic studies, show stark contrast to the conventional 7-NEt2-CUM. The new series of these tailored 6-X-CUMs represents a new dimension in tailoring the photophysical properties for the development of a promising class of multistimuli-responsive materials.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Deng-Gao Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Chun-Hsiang Wang
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Yi-Cheng Lan
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Chao-Tsen Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| |
Collapse
|
10
|
Myasnyanko IN, Gavrikov AS, Zaitseva SO, Smirnov AY, Zaitseva ER, Sokolov AI, Malyshevskaya KK, Baleeva NS, Mishin AS, Baranov MS. Color Tuning of Fluorogens for FAST Fluorogen‐Activating Protein. Chemistry 2021; 27:3986-3990. [DOI: 10.1002/chem.202004760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/16/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Ivan N. Myasnyanko
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexey S. Gavrikov
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Snizhana O. Zaitseva
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Elvira R. Zaitseva
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Anatolii I. Sokolov
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Kseniya K. Malyshevskaya
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander S. Mishin
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University Ostrovitianov 1 Moscow 117997 Russia
| |
Collapse
|
11
|
Zhi X, Qian Y. A novel red-emission phenothiazine fluorescent protein chromophore based on oxygen‒chlorine bond (O–Cl) formation for real-time detection of hypochlorous acid in cells. Talanta 2021; 222:121503. [DOI: 10.1016/j.talanta.2020.121503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 01/30/2023]
|
12
|
Olutas M, Sagırlı A. Solvatochromic and solid-state emissive azlactone-based AIEE-active organic dye: Synthesis, photophysical properties and color-conversion LED application. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Raucci U, Perrella F, Donati G, Zoppi M, Petrone A, Rega N. Ab-initio molecular dynamics and hybrid explicit-implicit solvation model for aqueous and nonaqueous solvents: GFP chromophore in water and methanol solution as case study. J Comput Chem 2020; 41:2228-2239. [PMID: 32770577 DOI: 10.1002/jcc.26384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022]
Abstract
Solute-solvent interactions are proxies for understanding how the electronic density of a chromophore interacts with the environment in a more exhaustive way. The subtle balance between polarization, electrostatic, and non-bonded interactions need to be accurately described to obtain good agreement between simulations and experiments. First principles approaches providing accurate configurational sampling through molecular dynamics may be a suitable choice to describe solvent effects on solute chemical-physical properties and spectroscopic features, such as optical absorption of dyes. In this context, accurate energy potentials, obtained by hybrid implicit/explicit solvation methods along with employing nonperiodic boundary conditions, are required to represent bulk solvent around a large solute-solvent cluster. In this work, a novel strategy to simulate methanol solutions is proposed combining ab initio molecular dynamics, a hybrid implicit/explicit flexible solvent model, nonperiodic boundary conditions, and time dependent density functional theory. As case study, the robustness of the proposed protocol has been gauged by investigating the microsolvation and electronic absorption of the anionic green fluorescent protein chromophore in methanol and aqueous solution. Satisfactory results are obtained, reproducing the microsolvation layout of the chromophore and, as a consequence, the experimental trends shown by the optical absorption in different solvents.
Collapse
Affiliation(s)
- Umberto Raucci
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
| | - Fulvio Perrella
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
| | - Greta Donati
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy.,Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, Fisciano, Italy
| | - Maria Zoppi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
| | - Alessio Petrone
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy
| | - Nadia Rega
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S. Angelo, Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Naples, Italy
| |
Collapse
|
14
|
Lin CY, Boxer SG. Mechanism of Color and Photoacidity Tuning for the Protonated Green Fluorescent Protein Chromophore. J Am Chem Soc 2020; 142:11032-11041. [PMID: 32453950 DOI: 10.1021/jacs.0c02796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The neutral or A state of the green fluorescent protein (GFP) chromophore is a remarkable example of a photoacid naturally embedded in the protein environment and accounts for the large Stokes shift of GFP in response to near UV excitation. Its color tuning mechanism has been largely overlooked, as it is less preferred for imaging applications than the redder anionic or B state. Past studies, based on site-directed mutagenesis or solvatochromism of the isolated chromophore, have concluded that its color tuning range is much narrower than its anionic counterpart. However, as we performed extensive investigation on more GFP mutants, we found that the color of the neutral chromophore can be more sensitive to protein electrostatics than can the anionic counterpart. Electronic Stark spectroscopy reveals a fundamentally different electrostatic color tuning mechanism for the neutral state of the chromophore that demands a three-form model as compared to that of the anionic state, which requires only two forms ( J. Am. Chem. Soc. 2019, 141, 15250-15265). Specifically, an underlying zwitterionic charge-transfer state is required to explain its sensitivity to electrostatics. As the Stokes shift is tightly linked to excited-state proton transfer (ESPT) of the protonated chromophore, we infer design principles of the GFP chromophore as a photoacid through the color tuning mechanisms of both protonation states. The three-form model could also be applied to similar biological and nonbiological dyes and complements the failure of the two-form model for donor-acceptor systems with localized ground-state electronic distributions.
Collapse
Affiliation(s)
- Chi-Yun Lin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Singh A, Karmakar S, Abraham IM, Rambabu D, Dave D, Manjithaya R, Maji TK. Unraveling the Effect on Luminescent Properties by Postsynthetic Covalent and Noncovalent Grafting of gfp Chromophore Analogues in Nanoscale MOF-808. Inorg Chem 2020; 59:8251-8258. [PMID: 32490672 DOI: 10.1021/acs.inorgchem.0c00625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we demonstrate mimicking of photophysical properties of native green fluorescent protein (gfp) by immobilizing the gfp chromophore analogues in nanoscale MOF-808 and further exploring the bioimaging applications. The two virtually nonfluorescent gfp chromophore analogues carrying different functionalities, BDI-AE (COOH/COOMe) and BDI-EE (COOMe/COOMe) were immobilized in nanosized MOF-808 via postsynthetic modification. An 1H NMR and IR study confirms that BDI-AE was coordinated in NMOF-808, whereas BDI-EE was just noncovalently encapsulated. Interestingly, the extremely weakly fluorescent monomers BDI-AE and BDI-EE (QY = 0.01-0.03%, lifetime = 0.01-0.03 ns) showed a 102-fold increase in quantum efficiency with a significantly longer excited-state lifetime (QY = 1.8-5.6%, lifetime 0.89-1.49 ns) after immobilization in the NMOF-808 scaffold. Moreover, BDI-AE@MOF-808 has 4 times higher quantum efficiency as well as longer excited-state lifetime in comparison to BDI-EE@NMOF-808 due to the rigidity imposed in the chromophore upon coordination with Zr4+ in the former case. Further, a cell viability test performed for BDI-AE@NMOF-808 in HeLa cells confirmed the nontoxic nature of the material and, more importantly, bioimaging applications have also been explored successfully.
Collapse
Affiliation(s)
- Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sanchita Karmakar
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Irine Maria Abraham
- Molecular Biology & Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Darsi Rambabu
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Dhwanit Dave
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Ravi Manjithaya
- Molecular Biology & Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
16
|
Zaitseva ER, Smirnov AY, Mishin AS, Baranov MS. Synthesis and Optical Properties of the New Acetylene Kaede Chromophore Analog. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020030231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Deng H, Yu C, Yan D, Zhu X. Dual-Self-Restricted GFP Chromophore Analogues with Significantly Enhanced Emission. J Phys Chem B 2020; 124:871-880. [PMID: 31928005 DOI: 10.1021/acs.jpcb.9b11329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tremendous gap of fluorescence emission of synthetic green fluorescent protein (GFP) chromophore to the protein itself makes it impossible to use for applications in molecular and cellular imaging. Here, we developed an efficient methodology to enhance the photoluminescence response of synthetic GFP chromophore analogues by constructing dual-self-restricted chromophores. Single self-restricted chromophores were first generated with 2,5-dimethoxy substitution on the aromatic ring, which were further modified with phenyl or 2,5-dimethoxy phenyl to form dual-self-restricted chromophores. These two chromophores showed an obvious solvatofluorochromic color palette across blue to yellow with a maximum emission Stokes shift of 95 nm and dramatically enhanced fluorescence emission in various aprotic solvents, especially in hexane, where the QY reached around 0.6. Importantly, in acetonitrile and dimethyl sulfoxide, the fluorescence QYs of both chromophores were over 0.22, which were the highest reported so far in high polar organic solvents. Meanwhile, the fluorescence lifetimes also improved obviously with the maximum of around 4.5 ns. Theoretical calculations revealed a more favorable Mülliken atomic charge translocation over the double-bond bridge and illustrated much higher energy barriers for the Z/E photoisomerization together with larger bond orders compared with the GFP core chromophore, p-HBDI. Our work significantly improved the fluorescence emission of synthetic GFP chromophore analogues in polar solvents while reserved the multicolor emitting function, providing a solid molecular motif for engineering high-performance fluorescent probes.
Collapse
Affiliation(s)
- Hongping Deng
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , People's Republic of China
| |
Collapse
|
18
|
Zaitseva SO, Zaitseva ER, Smirnov AY, Baleeva NS, Baranov MS. Synthesis and Optical Properties of the New Kaede Chromophore Analog. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Sayresmith NA, Saminathan A, Sailer JK, Patberg SM, Sandor K, Krishnan Y, Walter MG. Photostable Voltage-Sensitive Dyes Based on Simple, Solvatofluorochromic, Asymmetric Thiazolothiazoles. J Am Chem Soc 2019; 141:18780-18790. [PMID: 31660737 DOI: 10.1021/jacs.9b08959] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A family of asymmetric thiazolo[5,4-d]thiazole (TTz) fluorescent dye sensors has been developed, and their photophysical sensing properties are reported. The π-conjugated, TTz-bridged compounds are synthesized via a single-step, double condensation/oxidation of dithiooxamide and two different aromatic aldehydes: one with strong electron-donating characteristics and one with strong electron-accepting characteristics. The four reported dyes include electron-donating moieties (N,N-dibutylaniline and N,N-diphenylaniline) matched with three different electron-accepting moieties (pyridine, benzoic acid, and carboxaldehyde). The asymmetric TTz derivatives exhibit strong solvatofluorochromism with Stokes shifts between 0.269 and 0.750 eV (2270 and 6050 cm-1) and transition dipole moments (Δμ = 13-18 D) that are among the highest reported for push-pull dyes. Fluorescence quantum yields are as high as 0.93 in nonpolar solvents, and the fluorescence lifetimes (τF) vary from 1.50 to 3.01 ns depending on the solvent polarity. In addition, thermofluorochromic studies and spectrophotometric acid titrations were performed and indicate the possibility of using these dyes as temperature and/or acid sensors. In vitro cell studies indicate good cell membrane localization, negligible cytotoxicity, promising voltage sensitivities, and photostabilities that are 4 times higher than comparable dyes. Their ease of synthesis and purification, remarkable photophysical properties, and chemically sensitive TTz π-bridge make these asymmetric dye derivatives attractive for environmental and biological sensing or similar molecular optoelectronic applications.
Collapse
Affiliation(s)
- Nickolas A Sayresmith
- Department of Chemistry , University of North Carolina at Charlotte , Charlotte , North Carolina 28223 , United States
| | - Anand Saminathan
- Department of Chemistry and Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior , University of Chicago , Chicago , Illinois 60637 , United States
| | - Joshua K Sailer
- Department of Chemistry , University of North Carolina at Charlotte , Charlotte , North Carolina 28223 , United States
| | - Shannon M Patberg
- Department of Chemistry , University of North Carolina at Charlotte , Charlotte , North Carolina 28223 , United States
| | - Kristin Sandor
- Department of Chemistry , University of North Carolina at Charlotte , Charlotte , North Carolina 28223 , United States
| | - Yamuna Krishnan
- Department of Chemistry and Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior , University of Chicago , Chicago , Illinois 60637 , United States
| | - Michael G Walter
- Department of Chemistry , University of North Carolina at Charlotte , Charlotte , North Carolina 28223 , United States
| |
Collapse
|
20
|
Baleeva NS, Khavroshechkina AV, Zaitseva ER, Myasnyanko IN, Zagudaylova MB, Baranov MS. Naphthalene derivatives of a conformationally locked GFP chromophore with large stokes shifts. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.150963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Povarova NV, Zaitseva SO, Baleeva NS, Smirnov AY, Myasnyanko IN, Zagudaylova MB, Bozhanova NG, Gorbachev DA, Malyshevskaya KK, Gavrikov AS, Mishin AS, Baranov MS. Red-Shifted Substrates for FAST Fluorogen-Activating Protein Based on the GFP-Like Chromophores. Chemistry 2019; 25:9592-9596. [PMID: 31111975 DOI: 10.1002/chem.201901151] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/14/2019] [Indexed: 11/10/2022]
Abstract
A genetically encoded fluorescent tag for live cell microscopy is presented. This tag is composed of previously published fluorogen-activating protein FAST and a novel fluorogenic derivative of green fluorescent protein (GFP)-like chromophore with red fluorescence. The reversible binding of the novel fluorogen and FAST is accompanied by three orders of magnitude increase in red fluorescence (580-650 nm). The proposed dye instantly stains target cellular proteins fused with FAST, washes out in a minute timescale, and exhibits higher photostability of the fluorescence signal in confocal and widefield microscopy, in contrast with previously published fluorogen:FAST complexes.
Collapse
Affiliation(s)
- Natalia V Povarova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Snizhana O Zaitseva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Marina B Zagudaylova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Nina G Bozhanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Dmitriy A Gorbachev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Blvd 30, Moscow, 121205, Russia
| | - Kseniya K Malyshevskaya
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoy Blvd 30, Moscow, 121205, Russia
| | - Alexey S Gavrikov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander S Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow, 117997, Russia
| |
Collapse
|
22
|
Baleeva NS, Zaitseva SO, Mineev KS, Khavroshechkina AV, Zagudaylova MB, Baranov MS. Enamine–azide [2+3]-cycloaddition as a method to introduce functional groups into fluorescent dyes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Jana P, Patel N, Mukherjee T, Soppina V, Kanvah S. A “turn-on” Michler's ketone–benzimidazole fluorescent probe for selective detection of serum albumins. NEW J CHEM 2019. [DOI: 10.1039/c9nj01972c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Enhanced emission and selective binding with albumins.
Collapse
Affiliation(s)
- Palash Jana
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Palaj
- India
| | - Nishaben Patel
- Department of Biological Engineering
- Indian Institute of Technology Gandhinagar
- Palaj
- India
| | | | - Virupakshi Soppina
- Department of Biological Engineering
- Indian Institute of Technology Gandhinagar
- Palaj
- India
| | - Sriram Kanvah
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Palaj
- India
| |
Collapse
|
24
|
Ni JS, Lee MMS, Zhang P, Gui C, Chen Y, Wang D, Yu ZQ, Kwok RTK, Lam JWY, Tang BZ. SwissKnife-Inspired Multifunctional Fluorescence Probes for Cellular Organelle Targeting Based on Simple AIEgens. Anal Chem 2018; 91:2169-2176. [DOI: 10.1021/acs.analchem.8b04736] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jen-Shyang Ni
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Shenzhen 518057, China
| | - Michelle M. S. Lee
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Pengfei Zhang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen engineering Laboratory of nanomedicine and nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chen Gui
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yuncong Chen
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Dong Wang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Shenzhen 518057, China
- Center for AIE Research, College of Materials Science and Engineering, Department of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhen-Qiang Yu
- Center for AIE Research, College of Materials Science and Engineering, Department of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
25
|
Zaitseva SO, Golodukhina SV, Baleeva NS, Levina EA, Smirnov AY, Zagudaylova MB, Baranov MS. Azidoacetic Acid Amides in the Synthesis of Substituted Arylidene‐1‐
H
‐imidazol‐5‐(4
H
)‐ones. ChemistrySelect 2018. [DOI: 10.1002/slct.201801349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Snizhana O. Zaitseva
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Svetlana V. Golodukhina
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Nadezhda S. Baleeva
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Evgenia A. Levina
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Marina B. Zagudaylova
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic ChemistryRussian Academy of Sciences, Miklukho-Maklaya 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1 117997 Moscow Russia
| |
Collapse
|
26
|
Ren TB, Xu W, Zhang W, Zhang XX, Wang ZY, Xiang Z, Yuan L, Zhang XB. A General Method To Increase Stokes Shift by Introducing Alternating Vibronic Structures. J Am Chem Soc 2018; 140:7716-7722. [DOI: 10.1021/jacs.8b04404] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Wei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Xing-Xing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Zhi-Yao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Zhen Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|