1
|
Yehia S, Wang J, Brudvig GW, Gunner MR, Brooks BR, Amin M. An analysis of the structural changes of the oxygen evolving complex of Photosystem II in the S 1 and S 3 states revealed by serial femtosecond crystallography. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149531. [PMID: 39694218 DOI: 10.1016/j.bbabio.2024.149531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Photosystem II (PSII) is a unique natural catalyst that converts solar energy into chemical energy using earth abundant elements in water at physiological pH. Understanding the reaction mechanism will aid the design of biomimetic artificial catalysts for efficient solar energy conversion. The Mn4O5Ca cluster cycles through five increasingly oxidized intermediates before oxidizing two water molecules into O2 and releasing protons to the lumen and electrons to drive PSII reactions. The Mn coordination and OEC electronic structure changes through these intermediates. Thus, obtaining a high-resolution structure of each catalytic intermediate would help reveal the reaction mechanism. While valuable structural information was obtained from conventional X-ray crystallography, time-resolution of conventional X-ray crystallography limits the analysis of shorted-lived reaction intermediates. Serial Femtosecond X-ray crystallography (SFX), which overcomes the radiation damage by using ultra short laser pulse for imaging, has been used extensively to study the water splitting intermediates in PSII. Here, we review the state of the art and our understanding of the water splitting reaction before and after the advent of SFX. Furthermore, we analyze the likely Mn coordination in multiple XFEL structures prepared in the dark-adapted S1 state and those following two-flashes which are poised in the penultimate S3 oxidation state based on Mn coordination chemistry. Finally, we summarize the major contributions of the SFX to our understanding of the structures of the S1 and S3 states.
Collapse
Affiliation(s)
- Salma Yehia
- Department of Biotechnology and Biomolecular Chemistry, Faculty of Science, Cairo University, Giza 11221, Egypt
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - M R Gunner
- Department of Physics, City College of New York, NY 10031, USA
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhamed Amin
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Capone M, Parisse G, Narzi D, Guidoni L. Unravelling Mn 4Ca cluster vibrations in the S 1, S 2 and S 3 states of the Kok-Joliot cycle of photosystem II. Phys Chem Chem Phys 2024; 26:20598-20609. [PMID: 39037338 PMCID: PMC11290063 DOI: 10.1039/d4cp01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Vibrational spectroscopy serves as a powerful tool for characterizing intermediate states within the Kok-Joliot cycle. In this study, we employ a QM/MM molecular dynamics framework to calculate the room temperature infrared absorption spectra of the S1, S2, and S3 states via the Fourier transform of the dipole time auto-correlation function. To better analyze the computational data and assign spectral peaks, we introduce an approach based on dipole-dipole correlation function of cluster moieties of the reaction center. Our analysis reveals variation in the infrared signature of the Mn4Ca cluster along the Kok-Joliot cycle, attributed to its increasing symmetry and rigidity resulting from the rising oxidation state of the Mn ions. Furthermore, we successfully assign the debated contributions in the frequency range around 600 cm-1. This computational methodology provides valuable insights for deciphering experimental infrared spectra and understanding the water oxidation process in both biological and artificial systems.
Collapse
Affiliation(s)
- Matteo Capone
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Gianluca Parisse
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Daniele Narzi
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Leonardo Guidoni
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| |
Collapse
|
3
|
Li H, Nakajima Y, Nango E, Owada S, Yamada D, Hashimoto K, Luo F, Tanaka R, Akita F, Kato K, Kang J, Saitoh Y, Kishi S, Yu H, Matsubara N, Fujii H, Sugahara M, Suzuki M, Masuda T, Kimura T, Thao TN, Yonekura S, Yu LJ, Tosha T, Tono K, Joti Y, Hatsui T, Yabashi M, Kubo M, Iwata S, Isobe H, Yamaguchi K, Suga M, Shen JR. Oxygen-evolving photosystem II structures during S 1-S 2-S 3 transitions. Nature 2024; 626:670-677. [PMID: 38297122 PMCID: PMC10866707 DOI: 10.1038/s41586-023-06987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of Si states (i = 0-4) at the Mn4CaO5 cluster1-3, during which an extra oxygen (O6) is incorporated at the S3 state to form a possible dioxygen4-7. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). YZ, a tyrosine residue that connects the reaction centre P680 and the Mn4CaO5 cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca2+ ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the O1, O4 and Cl-1 channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as O-O bond formation.
Collapse
Affiliation(s)
- Hongjie Li
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Eriko Nango
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
- RIKEN SPring-8 Center, Sayo, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Daichi Yamada
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, Kobe, Japan
| | - Kana Hashimoto
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Fangjia Luo
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, Sayo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | - Yasunori Saitoh
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shunpei Kishi
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Huaxin Yu
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Naoki Matsubara
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hajime Fujii
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | - Mamoru Suzuki
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Tetsuya Masuda
- Division of Food and Nutrition, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Tetsunari Kimura
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Tran Nguyen Thao
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shinichiro Yonekura
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Long-Jiang Yu
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Takaki Hatsui
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Minoru Kubo
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, Kobe, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Sayo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Kizashi Yamaguchi
- Center for Quantum Information and Quantum Biology, Osaka University, Osaka, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
4
|
Hussein R, Ibrahim M, Bhowmick A, Simon PS, Bogacz I, Doyle MD, Dobbek H, Zouni A, Messinger J, Yachandra VK, Kern JF, Yano J. Evolutionary diversity of proton and water channels on the oxidizing side of photosystem II and their relevance to function. PHOTOSYNTHESIS RESEARCH 2023; 158:91-107. [PMID: 37266800 PMCID: PMC10684718 DOI: 10.1007/s11120-023-01018-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 06/03/2023]
Abstract
One of the reasons for the high efficiency and selectivity of biological catalysts arise from their ability to control the pathways of substrates and products using protein channels, and by modulating the transport in the channels using the interaction with the protein residues and the water/hydrogen-bonding network. This process is clearly demonstrated in Photosystem II (PS II), where its light-driven water oxidation reaction catalyzed by the Mn4CaO5 cluster occurs deep inside the protein complex and thus requires the transport of two water molecules to and four protons from the metal center to the bulk water. Based on the recent advances in structural studies of PS II from X-ray crystallography and cryo-electron microscopy, in this review we compare the channels that have been proposed to facilitate this mass transport in cyanobacteria, red and green algae, diatoms, and higher plants. The three major channels (O1, O4, and Cl1 channels) are present in all species investigated; however, some differences exist in the reported structures that arise from the different composition and arrangement of membrane extrinsic subunits between the species. Among the three channels, the Cl1 channel, including the proton gate, is the most conserved among all photosynthetic species. We also found at least one branch for the O1 channel in all organisms, extending all the way from Ca/O1 via the 'water wheel' to the lumen. However, the extending path after the water wheel varies between most species. The O4 channel is, like the Cl1 channel, highly conserved among all species while having different orientations at the end of the path near the bulk. The comparison suggests that the previously proposed functionality of the channels in T. vestitus (Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Hussein et al., Nat Commun 12:6531, 2021) is conserved through the species, i.e. the O1-like channel is used for substrate water intake, and the tighter Cl1 and O4 channels for proton release. The comparison does not eliminate the potential role of O4 channel as a water intake channel. However, the highly ordered hydrogen-bonded water wire connected to the Mn4CaO5 cluster via the O4 may strongly suggest that it functions in proton release, especially during the S0 → S1 transition (Saito et al., Nat Commun 6:8488, 2015; Kern et al., Nature 563:421-425, 2018; Ibrahim et al., Proc Natl Acad Sci USA 117:12624-12635, 2020; Sakashita et al., Phys Chem Chem Phys 22:15831-15841, 2020; Hussein et al., Nat Commun 12:6531, 2021).
Collapse
Affiliation(s)
- Rana Hussein
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany.
| | - Mohamed Ibrahim
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Philipp S Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Margaret D Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Holger Dobbek
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Athina Zouni
- Department of Biology, Humboldt-Universität Zu Berlin, 10099, Berlin, Germany
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, SE 75120, Uppsala, Sweden
- Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
5
|
Drosou M, Comas-Vilà G, Neese F, Salvador P, Pantazis DA. Does Serial Femtosecond Crystallography Depict State-Specific Catalytic Intermediates of the Oxygen-Evolving Complex? J Am Chem Soc 2023; 145:10604-10621. [PMID: 37137865 DOI: 10.1021/jacs.3c00489] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in serial femtosecond crystallography (SFX) of photosystem II (PSII), enabled by X-ray free electron lasers (XFEL), provided the first geometric models of distinct intermediates in the catalytic S-state cycle of the oxygen-evolving complex (OEC). These models are obtained by flash-advancing the OEC from the dark-stable state (S1) to more oxidized intermediates (S2 and S3), eventually cycling back to the most reduced S0. However, the interpretation of these models is controversial because geometric parameters within the Mn4CaO5 cluster of the OEC do not exactly match those expected from coordination chemistry for the spectroscopically verified manganese oxidation states of the distinct S-state intermediates. Here we focus on the first catalytic transition, S1 → S2, which represents a one-electron oxidation of the OEC. Combining geometric and electronic structure criteria, including a novel effective oxidation state approach, we analyze existing 1-flash (1F) SFX-XFEL crystallographic models that should depict the S2 state of the OEC. We show that the 1F/S2 equivalence is not obvious, because the Mn oxidation states and total unpaired electron counts encoded in these models are not fully consistent with those of a pure S2 state and with the nature of the S1 → S2 transition. Furthermore, the oxidation state definition in two-flashed (2F) structural models is practically impossible to elucidate. Our results advise caution in the extraction of electronic structure information solely from the literal interpretation of crystallographic models and call for re-evaluation of structural and mechanistic interpretations that presume exact correspondence of such models to specific catalytic intermediates of the OEC.
Collapse
Affiliation(s)
- Maria Drosou
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Gerard Comas-Vilà
- Institute of Computational Chemistry and Catalysis, Chemistry Department, University of Girona, Montilivi Campus, Girona, Catalonia 17003, Spain
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Pedro Salvador
- Institute of Computational Chemistry and Catalysis, Chemistry Department, University of Girona, Montilivi Campus, Girona, Catalonia 17003, Spain
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
6
|
Gates C, Ananyev G, Roy-Chowdhury S, Fromme P, Dismukes GC. Regulation of light energy conversion between linear and cyclic electron flow within photosystem II controlled by the plastoquinone/quinol redox poise. PHOTOSYNTHESIS RESEARCH 2023; 156:113-128. [PMID: 36436152 DOI: 10.1007/s11120-022-00985-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Ultrapurified Photosystem II complexes crystalize as uniform microcrystals (PSIIX) of unprecedented homogeneity that allow observation of details previously unachievable, including the longest sustained oscillations of flash-induced O2 yield over > 200 flashes and a novel period-4.7 water oxidation cycle. We provide new evidence for a molecular-based mechanism for PSII-cyclic electron flow that accounts for switching from linear to cyclic electron flow within PSII as the downstream PQ/PQH2 pool reduces in response to metabolic needs and environmental input. The model is supported by flash oximetry of PSIIX as the LEF/CEF switch occurs, Fourier analysis of O2 flash yields, and Joliot-Kok modeling. The LEF/CEF switch rebalances the ratio of reductant energy (PQH2) to proton gradient energy (H+o/H+i) created by PSII photochemistry. Central to this model is the requirement for a regulatory site (QC) with two redox states in equilibrium with the dissociable secondary electron carrier site QB. Both sites are controlled by electrons and protons. Our evidence fits historical LEF models wherein light-driven water oxidation delivers electrons (from QA-) and stromal protons through QB to generate plastoquinol, the terminal product of PSII-LEF in vivo. The new insight is the essential regulatory role of QC. This site senses both the proton gradient (H+o/H+i) and the PQ pool redox poise via e-/H+ equilibration with QB. This information directs switching to CEF upon population of the protonated semiquinone in the Qc site (Q-H+)C, while the WOC is in the reducible S2 or S3 states. Subsequent photochemical primary charge separation (P+QA-) forms no (QH2)B, but instead undergoes two-electron backward transition in which the QC protons are pumped into the lumen, while the electrons return to the WOC forming (S1/S2). PSII-CEF enables production of additional ATP needed to power cellular processes including the terminal carboxylation reaction and in some cases PSI-dependent CEF.
Collapse
Affiliation(s)
- Colin Gates
- Dept of Chemistry & Chemical Biology, Rutgers University, Piscataway, USA
- Waksman Institute of Microbiology, Rutgers University, Piscataway, USA
- Dept of Computational Biology & Molecular Biophysics, Rutgers University, Piscataway, NJ, USA
- Dept of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Gennady Ananyev
- Dept of Chemistry & Chemical Biology, Rutgers University, Piscataway, USA
- Waksman Institute of Microbiology, Rutgers University, Piscataway, USA
| | - Shatabdi Roy-Chowdhury
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Petra Fromme
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - G Charles Dismukes
- Dept of Chemistry & Chemical Biology, Rutgers University, Piscataway, USA.
- Waksman Institute of Microbiology, Rutgers University, Piscataway, USA.
| |
Collapse
|
7
|
Yamaguchi K, Shoji M, Isobe H, Kawakami T, Miyagawa K, Suga M, Akita F, Shen JR. Geometric, electronic and spin structures of the CaMn4O5 catalyst for water oxidation in oxygen-evolving photosystem II. Interplay between experiments and theoretical computations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Hussein R, Ibrahim M, Bhowmick A, Simon PS, Chatterjee R, Lassalle L, Doyle M, Bogacz I, Kim IS, Cheah MH, Gul S, de Lichtenberg C, Chernev P, Pham CC, Young ID, Carbajo S, Fuller FD, Alonso-Mori R, Batyuk A, Sutherlin KD, Brewster AS, Bolotovsky R, Mendez D, Holton JM, Moriarty NW, Adams PD, Bergmann U, Sauter NK, Dobbek H, Messinger J, Zouni A, Kern J, Yachandra VK, Yano J. Structural dynamics in the water and proton channels of photosystem II during the S 2 to S 3 transition. Nat Commun 2021; 12:6531. [PMID: 34764256 PMCID: PMC8585918 DOI: 10.1038/s41467-021-26781-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Light-driven oxidation of water to molecular oxygen is catalyzed by the oxygen-evolving complex (OEC) in Photosystem II (PS II). This multi-electron, multi-proton catalysis requires the transport of two water molecules to and four protons from the OEC. A high-resolution 1.89 Å structure obtained by averaging all the S states and refining the data of various time points during the S2 to S3 transition has provided better visualization of the potential pathways for substrate water insertion and proton release. Our results indicate that the O1 channel is the likely water intake pathway, and the Cl1 channel is the likely proton release pathway based on the structural rearrangements of water molecules and amino acid side chains along these channels. In particular in the Cl1 channel, we suggest that residue D1-E65 serves as a gate for proton transport by minimizing the back reaction. The results show that the water oxidation reaction at the OEC is well coordinated with the amino acid side chains and the H-bonding network over the entire length of the channels, which is essential in shuttling substrate waters and protons.
Collapse
Affiliation(s)
- Rana Hussein
- grid.7468.d0000 0001 2248 7639Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Mohamed Ibrahim
- grid.7468.d0000 0001 2248 7639Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Asmit Bhowmick
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Philipp S. Simon
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Ruchira Chatterjee
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Louise Lassalle
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Margaret Doyle
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Isabel Bogacz
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - In-Sik Kim
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Mun Hon Cheah
- grid.8993.b0000 0004 1936 9457Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Sheraz Gul
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Casper de Lichtenberg
- grid.8993.b0000 0004 1936 9457Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden ,grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
| | - Petko Chernev
- grid.8993.b0000 0004 1936 9457Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Cindy C. Pham
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Iris D. Young
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Sergio Carbajo
- grid.512023.70000 0004 6047 9447Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Franklin D. Fuller
- grid.512023.70000 0004 6047 9447Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Roberto Alonso-Mori
- grid.512023.70000 0004 6047 9447Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Alex Batyuk
- grid.512023.70000 0004 6047 9447Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Kyle D. Sutherlin
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Aaron S. Brewster
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Robert Bolotovsky
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Derek Mendez
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - James M. Holton
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Nigel W. Moriarty
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Paul D. Adams
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Uwe Bergmann
- grid.14003.360000 0001 2167 3675Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 USA
| | - Nicholas K. Sauter
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Holger Dobbek
- grid.7468.d0000 0001 2248 7639Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Johannes Messinger
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120, Uppsala, Sweden. .,Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden.
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Vittal K. Yachandra
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
9
|
Drosou M, Pantazis DA. Redox Isomerism in the S 3 State of the Oxygen-Evolving Complex Resolved by Coupled Cluster Theory. Chemistry 2021; 27:12815-12825. [PMID: 34288176 PMCID: PMC8518824 DOI: 10.1002/chem.202101567] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Indexed: 01/19/2023]
Abstract
The electronic and geometric structures of the water-oxidizing complex of photosystem II in the steps of the catalytic cycle that precede dioxygen evolution remain hotly debated. Recent structural and spectroscopic investigations support contradictory redox formulations for the active-site Mn4 CaOx cofactor in the final metastable S3 state. These range from the widely accepted MnIV 4 oxo-hydroxo model, which presumes that O-O bond formation occurs in the ultimate transient intermediate (S4 ) of the catalytic cycle, to a MnIII 2 MnIV 2 peroxo model representative of the contrasting "early-onset" O-O bond formation hypothesis. Density functional theory energetics of suggested S3 redox isomers are inconclusive because of extreme functional dependence. Here, we use the power of the domain-based local pair natural orbital approach to coupled cluster theory, DLPNO-CCSD(T), to present the first correlated wave function theory calculations of relative stabilities for distinct redox-isomeric forms of the S3 state. Our results enabled us to evaluate conflicting models for the S3 state of the oxygen-evolving complex (OEC) and to quantify the accuracy of lower-level theoretical approaches. Our assessment of the relevance of distinct redox-isomeric forms for the mechanism of biological water oxidation strongly disfavors the scenario of early-onset O-O formation advanced by literal interpretations of certain crystallographic models. This work serves as a case study in the application of modern coupled cluster implementations to redox isomerism problems in oligonuclear transition metal systems.
Collapse
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry LaboratoryNational and Kapodistrian University of AthensPanepistimiopolisZografou15771Greece
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an derRuhrGermany
| |
Collapse
|
10
|
Whelan É, Steuber FW, Gunnlaugsson T, Schmitt W. Tuning photoactive metal–organic frameworks for luminescence and photocatalytic applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213757] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Li H, Nakajima Y, Nomura T, Sugahara M, Yonekura S, Chan SK, Nakane T, Yamane T, Umena Y, Suzuki M, Masuda T, Motomura T, Naitow H, Matsuura Y, Kimura T, Tono K, Owada S, Joti Y, Tanaka R, Nango E, Akita F, Kubo M, Iwata S, Shen JR, Suga M. Capturing structural changes of the S 1 to S 2 transition of photosystem II using time-resolved serial femtosecond crystallography. IUCRJ 2021; 8:431-443. [PMID: 33953929 PMCID: PMC8086164 DOI: 10.1107/s2052252521002177] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/24/2021] [Indexed: 05/21/2023]
Abstract
Photosystem II (PSII) catalyzes light-induced water oxidation through an S i -state cycle, leading to the generation of di-oxygen, protons and electrons. Pump-probe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture structural dynamics of light-sensitive proteins. In this approach, it is crucial to avoid light contamination in the samples when analyzing a particular reaction intermediate. Here, a method for determining a condition that avoids light contamination of the PSII microcrystals while minimizing sample consumption in TR-SFX is described. By swapping the pump and probe pulses with a very short delay between them, the structural changes that occur during the S1-to-S2 transition were examined and a boundary of the excitation region was accurately determined. With the sample flow rate and concomitant illumination conditions determined, the S2-state structure of PSII could be analyzed at room temperature, revealing the structural changes that occur during the S1-to-S2 transition at ambient temperature. Though the structure of the manganese cluster was similar to previous studies, the behaviors of the water molecules in the two channels (O1 and O4 channels) were found to be different. By comparing with the previous studies performed at low temperature or with a different delay time, the possible channels for water inlet and structural changes important for the water-splitting reaction were revealed.
Collapse
Affiliation(s)
- Hongjie Li
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Takashi Nomura
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shinichiro Yonekura
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Siu Kit Chan
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Takanori Nakane
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Yamane
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Yasufumi Umena
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Mamoru Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Taiki Motomura
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Hisashi Naitow
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshinori Matsuura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsunari Kimura
- Department of Chemistry, Graduate School of Science, Kobe University, -1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
- Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
- Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan
| |
Collapse
|
12
|
Kato K, Miyazaki N, Hamaguchi T, Nakajima Y, Akita F, Yonekura K, Shen JR. High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams. Commun Biol 2021; 4:382. [PMID: 33753866 PMCID: PMC7985191 DOI: 10.1038/s42003-021-01919-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/26/2021] [Indexed: 12/03/2022] Open
Abstract
Photosystem II (PSII) plays a key role in water-splitting and oxygen evolution. X-ray crystallography has revealed its atomic structure and some intermediate structures. However, these structures are in the crystalline state and its final state structure has not been solved. Here we analyzed the structure of PSII in solution at 1.95 Å resolution by single-particle cryo-electron microscopy (cryo-EM). The structure obtained is similar to the crystal structure, but a PsbY subunit was visible in the cryo-EM structure, indicating that it represents its physiological state more closely. Electron beam damage was observed at a high-dose in the regions that were easily affected by redox states, and reducing the beam dosage by reducing frames from 50 to 2 yielded a similar resolution but reduced the damage remarkably. This study will serve as a good indicator for determining damage-free cryo-EM structures of not only PSII but also all biological samples, especially redox-active metalloproteins.
Collapse
Affiliation(s)
- Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Naoyuki Miyazaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, Japan
| | - Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN Spring-8 Center, Hyogo, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN Spring-8 Center, Hyogo, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Japan.
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
13
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
14
|
Kato Y, Haniu S, Nakajima Y, Akita F, Shen JR, Noguchi T. FTIR Microspectroscopic Analysis of the Water Oxidation Reaction in a Single Photosystem II Microcrystal. J Phys Chem B 2020; 124:121-127. [PMID: 31825617 DOI: 10.1021/acs.jpcb.9b10154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microcrystals of photosystem II (PSII) have recently been used to investigate the intermediate structures of the water oxidizing complex during water oxidation by serial femtosecond crystallography using X-ray free electron lasers. To clarify the water oxidation mechanism, it is crucial to know whether the reaction proceeds properly in the microcrystals. In this work, we monitored the water oxidation reaction in a single PSII microcrystal using Fourier transform infrared (FTIR) microspectroscopy with the transmission method. Flash-induced micro-FTIR difference spectra of S-state transitions in a PSII microcrystal showed features virtually identical to the corresponding spectra previously obtained using the attenuated total reflection method for multiple microcrystals, representing the reactions near the crystal surface, as well as the spectra in solution. This observation indicates that the reaction processes of water oxidation proceed with relatively high efficiencies retaining native intermediate structures in the entire inside of a PSII microcrystal.
Collapse
Affiliation(s)
- Yuki Kato
- Division of Material Science, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan
| | - Satoshi Haniu
- Division of Material Science, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan.,Japan Science and Technology Agency, PRESTO , 4-1-8 Honcho , Kawaguchi, Saitama 332-0012 , Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan
| |
Collapse
|
15
|
Suga M, Shimada A, Akita F, Shen JR, Tosha T, Sugimoto H. Time-resolved studies of metalloproteins using X-ray free electron laser radiation at SACLA. Biochim Biophys Acta Gen Subj 2019; 1864:129466. [PMID: 31678142 DOI: 10.1016/j.bbagen.2019.129466] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND The invention of the X-ray free-electron laser (XFEL) has provided unprecedented new opportunities for structural biology. The advantage of XFEL is an intense pulse of X-rays and a very short pulse duration (<10 fs) promising a damage-free and time-resolved crystallography approach. SCOPE OF REVIEW Recent time-resolved crystallographic analyses in XFEL facility SACLA are reviewed. Specifically, metalloproteins involved in the essential reactions of bioenergy conversion including photosystem II, cytochrome c oxidase and nitric oxide reductase are described. MAJOR CONCLUSIONS XFEL with pump-probe techniques successfully visualized the process of the reaction and the dynamics of a protein. Since the active center of metalloproteins is very sensitive to the X-ray radiation, damage-free structures obtained by XFEL are essential to draw mechanistic conclusions. Methods and tools for sample delivery and reaction initiation are key for successful measurement of the time-resolved data. GENERAL SIGNIFICANCE XFEL is at the center of approaches to gain insight into complex mechanism of structural dynamics and the reactions catalyzed by biological macromolecules. Further development has been carried out to expand the application of time-resolved X-ray crystallography. This article is part of a Special Issue entitled Novel measurement techniques for visualizing 'live' protein molecules.
Collapse
Affiliation(s)
- Michihiro Suga
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan..
| | - Atsuhiro Shimada
- Graduate School of Applied Biological Sciences and Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan..
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Takehiko Tosha
- Synchrotron Radiation Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hiroshi Sugimoto
- Synchrotron Radiation Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan..
| |
Collapse
|
16
|
Suga M, Akita F, Yamashita K, Nakajima Y, Ueno G, Li H, Yamane T, Hirata K, Umena Y, Yonekura S, Yu LJ, Murakami H, Nomura T, Kimura T, Kubo M, Baba S, Kumasaka T, Tono K, Yabashi M, Isobe H, Yamaguchi K, Yamamoto M, Ago H, Shen JR. An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser. Science 2019; 366:334-338. [DOI: 10.1126/science.aax6998] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Abstract
Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II (PSII) with linear progression through five S-state intermediates (S0 to S4). To reveal the mechanism of water oxidation, we analyzed structures of PSII in the S1, S2, and S3 states by x-ray free-electron laser serial crystallography. No insertion of water was found in S2, but flipping of D1 Glu189 upon transition to S3 leads to the opening of a water channel and provides a space for incorporation of an additional oxygen ligand, resulting in an open cubane Mn4CaO6 cluster with an oxyl/oxo bridge. Structural changes of PSII between the different S states reveal cooperative action of substrate water access, proton release, and dioxygen formation in photosynthetic water oxidation.
Collapse
Affiliation(s)
- Michihiro Suga
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Keitaro Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Go Ueno
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hongjie Li
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Takahiro Yamane
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Kunio Hirata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yasufumi Umena
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Shinichiro Yonekura
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Long-Jiang Yu
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Hironori Murakami
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takashi Nomura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Tetsunari Kimura
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Minoru Kubo
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Seiki Baba
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Kizashi Yamaguchi
- The Institute for Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Institute for Nanoscience Design, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| |
Collapse
|
17
|
Capone M, Narzi D, Tychengulova A, Guidoni L. On the comparison between differential vibrational spectroscopy spectra and theoretical data in the carboxyl region of photosystem II. PHYSIOLOGIA PLANTARUM 2019; 166:33-43. [PMID: 30801735 DOI: 10.1111/ppl.12949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Understanding the structural modification experienced by the Mn4 CaO5 oxygen-evolving complex of photosystem II along the Kok-Joliot's cycle has been a challenge for both theory and experiments since many decades. In particular, differential infrared spectroscopy was extensively used to probe the surroundings of the reaction center, to catch spectral changes between different S-states along the catalytic cycle. Because of the complexity of the signals, only a limited quantity of identified peaks have been assigned so far, also because of the difficulty of a direct comparison with theoretical calculations. In the present work, we critically reconsider the comparison between differential vibrational spectroscopy and theoretical calculations performed on the structural models of the photosystem II active site and an inorganic structural mimic. Several factors are currently limiting the reliability of a quantitative comparison, such as intrinsic errors associated to theoretical methods, and most of all, the uncertainty attributed to the lack of knowledge about the localization of the underlying structural changes. Critical points in this comparison are extensively discussed. Comparing several computational data of differential S2 /S1 infrared spectroscopy, we have identified weak and strong points in their interpretation when compared with experimental spectra.
Collapse
Affiliation(s)
- Matteo Capone
- Department of Information Engineering, Computational Science and Mathematics, Università dell'Aquila, 67100, L'Aquila, Italy
| | - Daniele Narzi
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aliya Tychengulova
- Department of Basic Sciences Applied for Engineering, "Sapienza" Università di Roma, 00185, Rome, Italy
| | - Leonardo Guidoni
- Department of Physical and Chemical Science, Università dell'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
18
|
Ananyev G, Roy-Chowdhury S, Gates C, Fromme P, Dismukes GC. The Catalytic Cycle of Water Oxidation in Crystallized Photosystem II Complexes: Performance and Requirements for Formation of Intermediates. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Shatabdi Roy-Chowdhury
- Biodesign Center for Applied Structural Discovery, The Biodesign Institute and School of Molecular Sciences Arizona State University, Tempe, Arizona 85287, United States
| | | | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, The Biodesign Institute and School of Molecular Sciences Arizona State University, Tempe, Arizona 85287, United States
| | | |
Collapse
|
19
|
Corry TA, O'Malley PJ. Evidence of O-O Bond Formation in the Final Metastable S 3 State of Nature's Water Oxidizing Complex Implying a Novel Mechanism of Water Oxidation. J Phys Chem Lett 2018; 9:6269-6274. [PMID: 30336040 DOI: 10.1021/acs.jpclett.8b02793] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel mechanism for the final stages of Nature's photosynthetic water oxidation to molecular oxygen is proposed. This is based on a comparison of experimental and broken symmetry density functional theory (BS-DFT) calculated geometries and magnetic resonance properties of water oxidizing complex models in the final metastable oxidation state, S3. We show that peroxo models of the S3 state are in vastly superior agreement with the current experimental structural determinations compared with oxo-hydroxo models. Comparison of experimental and BS-DFT calculated 55Mn hyperfine couplings for the electron paramagnetic resonance (EPR) visible form shows better agreement for the oxo-hydroxo model. An equilibrium between oxo-hydroxo and peroxo models is proposed for the S3 state and the major implications for the final steps in the water oxidation mechanism are analyzed and discussed.
Collapse
Affiliation(s)
- Thomas A Corry
- School of Chemistry , The University of Manchester , Manchester , M13 9PL , U.K
| | - Patrick J O'Malley
- School of Chemistry , The University of Manchester , Manchester , M13 9PL , U.K
| |
Collapse
|
20
|
Yata H, Noguchi T. Mechanism of Methanol Inhibition of Photosynthetic Water Oxidation As Studied by Fourier Transform Infrared Difference and Time-Resolved Infrared Spectroscopies. Biochemistry 2018; 57:4803-4815. [DOI: 10.1021/acs.biochem.8b00596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Haruna Yata
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|