1
|
Terry LM, Klumb MK, Nemchick DJ, Hodyss R, Maiwald F, Weber JM. Cryogenic Ion Vibrational Spectroscopy of Protonated Valine: Messenger Tag Effects. J Phys Chem A 2024; 128:7137-7144. [PMID: 39150465 DOI: 10.1021/acs.jpca.4c03552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We report the infrared photodissociation spectrum of tagged protonated valine in the range 1000-1900 cm-1, prepared in a cryogenic ion trap. Comparison of experimental results with calculated infrared spectra based on density functional theory shows that the hydroxyl group of the carboxylic acid functionality and the protonated amine group adopt a trans configuration. Nitrogen and methane molecules were used as messenger tags with optimal tagging temperatures of 30 K for N2 and 60 K for CH4. While the calculated infrared spectra of the tagged ion suggest only a weak influence of the messenger tag on the frequency positions of ValH+, the measured intensities for N2-tagged ValH+ appear strongly suppressed for all but the highest frequency feature at 1773 cm-1. We trace this behavior to the binding energy of the N2 tag, which is significantly higher than that of CH4, based on density functional and coupled cluster calculations and rate estimates for photoinduced unimolecular dissociation from statistical theory.
Collapse
Affiliation(s)
- Lane M Terry
- JILA and Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309-0440, United States
| | - Maddie K Klumb
- JILA and Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309-0440, United States
| | - Deacon J Nemchick
- California Institute of Technology, NASA Jet Propulsion Laboratory, Pasadena, California 91109, United States
| | - Robert Hodyss
- California Institute of Technology, NASA Jet Propulsion Laboratory, Pasadena, California 91109, United States
| | - Frank Maiwald
- JILA and Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309-0440, United States
| | - J Mathias Weber
- JILA and Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
2
|
Meyer KAE, Garand E. The impact of solvation on the structure and electric field strength in Li +GlyGly complexes. Phys Chem Chem Phys 2024; 26:12406-12421. [PMID: 38623633 DOI: 10.1039/d3cp06264c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
To scrutinise the impact of electric fields on the structure and vibrations of biomolecules in the presence of water, we study the sequential solvation of lithium diglycine up to three water molecules with cryogenic infrared action spectroscopy. Conformer-specific IR-IR spectroscopy and H2O/D2O isotopic substitution experiments provide most of the information required to decipher the structure of the observed conformers. Additional confirmation is provided by scaled harmonic vibrational frequency calculations using MP2 and DFT. The first water molecule is shown to bind to the Li+ ion, which weakens the electric field experienced by the peptide and as a consequence, also the strength of an internal NH⋯NH2 hydrogen bond in the diglycine backbone. The strength of this hydrogen bond decreases approximately linearly with the number of water molecules as a result of the decreasing electric field strength and coincides with an increase in the number of conformers observed in our spectra. The addition of two water molecules is already sufficient to change the preferred conformation of the peptide backbone, allowing for Li+ coordination to the lone pair of the terminal amine group.
Collapse
Affiliation(s)
- Katharina A E Meyer
- University of Wisconsin-Madison, Department of Chemistry, 1101 University Ave, Madison, WI 53706, USA.
| | - Etienne Garand
- University of Wisconsin-Madison, Department of Chemistry, 1101 University Ave, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Salzmann H, Rasmussen AP, Eaves JD, Weber JM. Competition between Water-Water Hydrogen Bonds and Water-π Bonds in Pyrene-Water Cluster Anions. J Phys Chem A 2024; 128:2772-2781. [PMID: 38564313 DOI: 10.1021/acs.jpca.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We present infrared spectra and density functional theory calculations of hydrated pyrene anion clusters with up to four water molecules. The experimental spectra were acquired by using infrared Ar messenger photodissociation spectroscopy. Water molecules form clusters on the surface of the pyrene, forming hydrogen bonds with the π-system. The structures of the water clusters and their interaction with the π-system are encoded in OH stretching vibrational modes. We find that the interactions between water molecules are stronger than the interactions between water molecules and the π-system. While all clusters show multiple conformers, three- and four-membered rings are the lowest energy structures in the larger hydrates.
Collapse
Affiliation(s)
- Heinrich Salzmann
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Anne P Rasmussen
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, Denmark
| | - Joel D Eaves
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - J Mathias Weber
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
4
|
Zviagin A, Boyarkin OV. Ion Spectroscopy Reveals Structural Difference for Proteins Microhydrated by Retention and Condensation of Water. J Phys Chem A 2024. [PMID: 38489273 DOI: 10.1021/acs.jpca.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Protein ubiquitin in its +7 charge state microhydrated by 5 and 10 water molecules has been interrogated in the gas phase by cold ion UV/IR spectroscopy. The complexes were formed either by condensing water onto the unfolded bare proteins in a temperature-controlled ion trap or by incomplete dehydration of the folded proteins. In the case of cryogenic condensation, the UV spectra of the complexes exhibit a resolved vibrational structure, which looks similar to the spectrum of bare unfolded ubiquitin. The spectra become, however, broad-band with no structure when complexes of the same size are produced by incomplete dehydration under soft conditions of electrospray ionization. We attribute this spectroscopic dissimilarity to the structural difference of the protein: condensing a few water molecules cannot refold the gas-phase structure of the bare ubiquitin, while the retained water preserves its solution-like folded motif through evaporative cooling. This assessment is firmly confirmed by IR spectroscopy, which reveals the presence of free NH and carboxylic OH stretching vibrations only in the complexes with condensed water.
Collapse
Affiliation(s)
- Andrei Zviagin
- SCI-SB-RB Group, ISIC, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Oleg V Boyarkin
- SCI-SB-RB Group, ISIC, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Hirata K, Akasaka K, Dopfer O, Ishiuchi SI, Fujii M. Transition from vehicle to Grotthuss proton transfer in a nanosized flask: cryogenic ion spectroscopy of protonated p-aminobenzoic acid solvated with D 2O. Chem Sci 2024; 15:2725-2730. [PMID: 38404372 PMCID: PMC10882521 DOI: 10.1039/d3sc05455a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Proton transfer (PT) is one of the most ubiquitous reactions in chemistry and life science. The unique nature of PT has been rationalized not by the transport of a solvated proton (vehicle mechanism) but by the Grotthuss mechanism in which a proton is transported to the nearest proton acceptor along a hydrogen-bonded network. However, clear experimental evidence of the Grotthuss mechanism has not been reported yet. Herein we show by infrared spectroscopy that a vehicle-type PT occurs in the penta- and hexahydrated clusters of protonated p-aminobenzoic acid, while Grotthuss-type PT is observed in heptahydrated clusters, indicating a change in the PT mechanism depending on the degree of hydration. These findings emphasize the importance of the usually ignored vehicle mechanism as well as the degree of hydration. It highlights the possibility of controlling the PT mechanism by the number of water molecules in chemical and biological environments.
Collapse
Affiliation(s)
- Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- International Research Frontiers Initiative, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Kyota Akasaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8503 Japan
| | - Otto Dopfer
- International Research Frontiers Initiative, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- Institut für Optik und Atomare Physik, Technische Universität Berlin Hardenbergstrasse 36 10623 Berlin Germany
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- International Research Frontiers Initiative, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8503 Japan
- International Research Frontiers Initiative, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
6
|
Roesch GC, Garand E. Tandem Mass-Selective Cryogenic Digital Ion Traps for Enhanced Cluster Formation. J Phys Chem A 2023; 127:7665-7672. [PMID: 37656038 DOI: 10.1021/acs.jpca.3c04706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We present the implementation of tandem mass-selective cryogenic ion traps, designed to enhance the range of ion processing capabilities that can be performed prior to spectroscopic interrogation. We show that both the formation of ion clusters and mass filtering steps can be combined in a single cryogenic linear quadrupole ion trap driven by RF square waves. Mass filtering and mass isolation can be achieved by manipulation of the RF frequency and duty cycle. Very importantly, this scheme circumvents the need for high-amplitude RF voltages that can be incompatible with typical cryogenic ion processing conditions. In addition, proper adjustment of the stability boundaries during the clustering process allows for the preferential formation of a specific cluster size rather than a broad distribution of sizes. Lastly, we show that a specific cluster size can be formed, mass-selected, and then transferred to another ion trap for a second completely separate ion processing step. The instrumentation and modular design developed here expand the scope of ionic species and clusters that can be accessed by processing electrosprayed ions.
Collapse
Affiliation(s)
- Gina C Roesch
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Schultz M, Parker SL, Fernando MT, Wellalage MM, Thomas DA. Diserinol Isophthalamide: A Novel Reagent for Complexation with Biomolecular Anions in Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:745-753. [PMID: 36975839 DOI: 10.1021/jasms.3c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transferring biomolecules from solution to vacuum facilitates a detailed analysis of molecular structure and dynamics by isolating molecules of interest from a complex environment. However, inherent in the ion desolvation process is the loss of solvent hydrogen bonding partners, which are critical for the stability of a condensed-phase structure. Thus, transfer of ions to vacuum can favor structural rearrangement, especially near solvent-accessible charge sites, which tend to adopt intramolecular hydrogen bonding motifs in the absence of solvent. Complexation of monoalkylammonium moieties (e.g., lysine side chains) with crown ethers such as 18-crown-6 can disfavor structural rearrangement of protonated sites, but no equivalent ligand has been investigated for deprotonated groups. Herein we describe diserinol isophthalamide (DIP), a novel reagent for the gas-phase complexation of anionic moieties within biomolecules. Complexation is observed to the C-terminus or side chains of the small model peptides GD, GE, GG, DF-OMe, VYV, YGGFL, and EYMPME in electrospray ionization mass spectrometry (ESI-MS) studies. In addition, complexation is observed with the phosphate and carboxylate moieities of phosphoserine and phosphotyrosine. DIP performs favorably in comparison to an existing anion recognition reagent, 1,1'-(1,2-phenylene)bis(3-phenylurea), that exhibits moderate carboxylate binding in organic solvent. This improved performance in ESI-MS experiments is attributed to reduced steric constraints to complexation with carboxylate groups of larger molecules. Overall, diserinol isophthalamide is an effective complexation reagent that can be applied in future work to study retention of solution-phase structure, investigate intrinsic molecular properties, and examine solvation effects.
Collapse
Affiliation(s)
- Madeline Schultz
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sarah L Parker
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Maleesha T Fernando
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Miyuru M Wellalage
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Daniel A Thomas
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
8
|
Schwaab G, Pérez de Tudela R, Mani D, Pal N, Roy TK, Gabas F, Conte R, Durán Caballero L, Ceotto M, Marx D, Havenith M. Zwitter Ionization of Glycine at Outer Space Conditions due to Microhydration by Six Water Molecules. PHYSICAL REVIEW LETTERS 2022; 128:033001. [PMID: 35119904 DOI: 10.1103/physrevlett.128.033001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/09/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
We investigate glycine microsolvation with water molecules, mimicking astrophysical conditions, in our laboratory by embedding these clusters in helium nanodroplets at 0.37 K. We recorded mass selective infrared spectra in the frequency range 1500-1800 cm^{-1} where two bands centered at 1630 and 1724 cm^{-1} were observed. By comparison with the extensive accompanying calculations, the band at 1630 cm^{-1} was assigned to the COO^{-} asymmetric stretching mode of the zwitter ion and the band at 1724 cm^{-1} was assigned to redshifted C=O stretch within neutral clusters. We show that zwitter ion formation of amino acids readily occurs with only few water molecules available even under extreme conditions.
Collapse
Affiliation(s)
- Gerhard Schwaab
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | - Devendra Mani
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Nitish Pal
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Tarun Kumar Roy
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Fabio Gabas
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | | | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
9
|
Saparbaev E, Aladinskaia V, Zviagin A, Boyarkin OV. Microhydration of Biomolecules: Revealing the Native Structures by Cold Ion IR Spectroscopy. J Phys Chem Lett 2021; 12:907-911. [PMID: 33439655 DOI: 10.1021/acs.jpclett.0c03678] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The native-like structures of protonated glycine and peptide Gly3H+ were elucidated using cold ion IR spectroscopy of these biomolecules hydrated by a controlled number of water molecules. The complexes were generated directly from an aqueous solution using gentle electrospray ionization. Already with a single retained water molecule, GlyH+ exhibits the native-like structure characterized by a lack of intramolecular hydrogen bonds. We use our spectra to calibrate the available data for the same complexes, which are produced by cryogenic condensation of water onto the gas-phase glycine. In some conformers of these complexes, GlyH+ adopts the native-like structure, while in the others, it remains "kinetically" trapped in the intrinsic state. Upon condensation of 4-5 water molecules, the embedded amino acid fully adopts its native-like structure. Similarly, condensation of one water molecule onto the tripeptide is insufficient to fully eliminate its kinetically trapped intrinsic states.
Collapse
Affiliation(s)
- Erik Saparbaev
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Station-6, 1015 Lausanne, Switzerland
| | - Viktoriia Aladinskaia
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Station-6, 1015 Lausanne, Switzerland
| | - Andrei Zviagin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Station-6, 1015 Lausanne, Switzerland
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Station-6, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Aieta C, Bertaina G, Micciarelli M, Ceotto M. Representing molecular ground and excited vibrational eigenstates with nuclear densities obtained from semiclassical initial value representation molecular dynamics. J Chem Phys 2020; 153:214117. [PMID: 33291909 DOI: 10.1063/5.0031391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present in detail and validate an effective Monte Carlo approach for the calculation of the nuclear vibrational densities via integration of molecular eigenfunctions that we have preliminary employed to calculate the densities of the ground and the excited OH stretch vibrational states in the protonated glycine molecule [Aieta et al., Nat Commun 11, 4348 (2020)]. Here, we first validate and discuss in detail the features of the method on a benchmark water molecule. Then, we apply it to calculate on-the-fly the ab initio anharmonic nuclear densities in the correspondence of the fundamental transitions of NH and CH stretches in protonated glycine. We show how we can gain both qualitative and quantitative physical insight by inspection of different one-nucleus densities and assign a character to spectroscopic absorption peaks using the expansion of vibrational states in terms of harmonic basis functions. The visualization of the nuclear vibrations in a purely quantum picture allows us to observe and quantify the effects of anharmonicity on the molecular structure, also to exploit the effect of IR excitations on specific bonds or functional groups, beyond the harmonic approximation. We also calculate the quantum probability distribution of bond lengths, angles, and dihedrals of the molecule. Notably, we observe how in the case of one type of fundamental NH stretching, the typical harmonic nodal pattern is absent in the anharmonic distribution.
Collapse
Affiliation(s)
- Chiara Aieta
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Gianluca Bertaina
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Marco Micciarelli
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
11
|
Khuu T, Yang N, Johnson MA. Vibrational spectroscopy of the cryogenically cooled O- and N-protomers of 4-Aminobenzoic acid: Tag effects, isotopic labels, and identification of the E,Z isomer of the O-protomer. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 457:116427. [PMID: 32982573 PMCID: PMC7511085 DOI: 10.1016/j.ijms.2020.116427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
4-Aminobenzoic acid (4ABA) is a biologically relevant, small organic molecule with two protonation sites: the amino group (N-protomer) and the carboxyl group (O-protomer). The O-protomer is energetically preferred in the gas-phase, while the higher energy N-protomer can be trapped using aprotic solvents such as acetonitrile during electrospray ionization. Here, we focus on the structure of the O-protomer, which can occur in three low-lying isomeric forms that result from different orientations of the OH groups relative to the benzene ring. We report the vibrational spectra of both N- and O-protomers of the cryogenically cooled ions in the gas phase over the spectral range 800-4000 cm-1. The bands arising from the OH stretches are isolated from the nearby NH stretching fundamentals using isotopic labeling as well as by analysis of the shifts in these fundamentals upon attachment of D2 and N2 molecules to the OH groups of the O-protomer. The spectra of isomers derived from the different locations of the adducts were isolated using two-color, IR-IR photofragmentation spectroscopy. The docking motifs by which the O-protomer binds to another 4ABA molecule is also explored and found to feature a bifurcated arrangement involving attachment of both OH groups of the protonated head group to the carbonyl group of the neutral partner.
Collapse
Affiliation(s)
- Thien Khuu
- Sterling Chemistry Laboratory, Yale University, New Haven, CT, 06520
| | - Nan Yang
- Sterling Chemistry Laboratory, Yale University, New Haven, CT, 06520
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, CT, 06520
| |
Collapse
|
12
|
Aieta C, Micciarelli M, Bertaina G, Ceotto M. Anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine. Nat Commun 2020; 11:4348. [PMID: 32859910 PMCID: PMC7455743 DOI: 10.1038/s41467-020-18211-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022] Open
Abstract
The interpretation of molecular vibrational spectroscopic signals in terms of atomic motion is essential to understand molecular mechanisms and for chemical characterization. The signals are usually assigned after harmonic normal mode analysis, even if molecular vibrations are known to be anharmonic. Here we obtain the quantum anharmonic vibrational eigenfunctions of the 11-atom protonated glycine molecule and we calculate the density distribution of its nuclei and its geometry parameters, for both the ground and the O-H stretch excited states, using our semiclassical method based on ab initio molecular dynamics trajectories. Our quantum mechanical results describe a molecule elongated and more flexible with respect to what previously thought. More importantly, our method is able to assign each spectral peak in vibrational spectroscopy by showing quantitatively how normal modes involving different functional groups cooperate to originate that spectroscopic signal. The method will possibly allow for a better rationalization of experimental spectroscopy.
Collapse
Affiliation(s)
- Chiara Aieta
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Marco Micciarelli
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Gianluca Bertaina
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133, Milano, Italy
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Torino, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133, Milano, Italy.
| |
Collapse
|
13
|
Thomas DA, Chang R, Mucha E, Lettow M, Greis K, Gewinner S, Schöllkopf W, Meijer G, von Helden G. Probing the conformational landscape and thermochemistry of DNA dinucleotide anions via helium nanodroplet infrared action spectroscopy. Phys Chem Chem Phys 2020; 22:18400-18413. [PMID: 32797142 DOI: 10.1039/d0cp02482a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Isolation of biomolecules in vacuum facilitates characterization of the intramolecular interactions that determine three-dimensional structure, but experimental quantification of conformer thermochemistry remains challenging. Infrared spectroscopy of molecules trapped in helium nanodroplets is a promising methodology for the measurement of thermochemical parameters. When molecules are captured in a helium nanodroplet, the rate of cooling to an equilibrium temperature of ca. 0.4 K is generally faster than the rate of isomerization, resulting in "shock-freezing" that kinetically traps molecules in local conformational minima. This unique property enables the study of temperature-dependent conformational equilibria via infrared spectroscopy at 0.4 K, thereby avoiding the deleterious effects of spectral broadening at higher temperatures. Herein, we demonstrate the first application of this approach to ionic species by coupling electrospray ionization mass spectrometry (ESI-MS) with helium nanodroplet infrared action spectroscopy to probe the structure and thermochemistry of deprotonated DNA dinucleotides. Dinucleotide anions were generated by ESI, confined in an ion trap at temperatures between 90 and 350 K, and entrained in traversing helium nanodroplets. The infrared action spectra of the entrained ions show a strong dependence on pre-pickup ion temperature, consistent with the preservation of conformer population upon cooling to 0.4 K. Non-negative matrix factorization was utilized to identify component conformer infrared spectra and determine temperature-dependent conformer populations. Relative enthalpies and entropies of conformers were subsequently obtained from a van't Hoff analysis. IR spectra and conformer thermochemistry are compared to results from ion mobility spectrometry (IMS) and electronic structure methods. The implementation of ESI-MS as a source of dopant molecules expands the diversity of molecules accessible for thermochemical measurements, enabling the study of larger, non-volatile species.
Collapse
Affiliation(s)
- Daniel A Thomas
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang P, Li D, Fan X, Hu B, Wang X. Sorption and desorption behaviors of triphenyl phosphate (TPhP) and its degradation intermediates on aquatic sediments. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121574. [PMID: 31732336 DOI: 10.1016/j.jhazmat.2019.121574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
As triphenyl phosphate (TPhP) can biodegrade extensively in sediments, researches should further the understanding of the fate and transport of TPhP and its degradation intermediates in the environment. Therefore, the sorption/desorption behaviors of TPhP, diphenyl phosphate (DPhP) and phenyl phosphate (PhP) on sediments were investigated. The kinetic process was well-fitted by pseudo-second-order model, suggesting that chemisorption was involved. And the Langmuir model could describe the sorption isotherms of TPhP and DPhP well except for PhP. The redundancy analysis revealed that the sorption amount had a positive correlation with sediment organic matter, zeta potential and C/H of sediments. Besides the sorption/desorption behaviors were greatly influenced by the physicochemical properties of the sorbates. PhP with high molecular electrostatic potential (0.132 e0) was prone to protonation and formed hydrogen bonds, leading to higher sorption. Furthermore, hydrophobicity, π-π interactions, Lewis acid-base interaction and hydrogen bonding were involved in the sorption process and resulted in nonlinear sorption isotherms. TPhP, DPhP and PhP exhibited apparent desorption hysteresis on the sediments. Sediments with organic matter removed, which have complex pore distributions, exhibited more hysteresis. These results may contribute to the risk assessment and fate modeling of TPhP and its degradation products in sediments.
Collapse
Affiliation(s)
- Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Dandan Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
15
|
Hebert MJ, Russell DH. Tracking the Structural Evolution of 4-Aminobenzoic Acid in the Transition from Solution to the Gas Phase. J Phys Chem B 2020; 124:2081-2087. [DOI: 10.1021/acs.jpcb.9b10576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Michael J. Hebert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
16
|
Bakels S, Gaigeot MP, Rijs AM. Gas-Phase Infrared Spectroscopy of Neutral Peptides: Insights from the Far-IR and THz Domain. Chem Rev 2020; 120:3233-3260. [PMID: 32073261 PMCID: PMC7146864 DOI: 10.1021/acs.chemrev.9b00547] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Gas-phase, double
resonance IR spectroscopy has proven to be an
excellent approach to obtain structural information on peptides ranging
from single amino acids to large peptides and peptide clusters. In
this review, we discuss the state-of-the-art of infrared action spectroscopy
of peptides in the far-IR and THz regime. An introduction to the field
of far-IR spectroscopy is given, thereby highlighting the opportunities
that are provided for gas-phase research on neutral peptides. Current
experimental methods, including spectroscopic schemes, have been reviewed.
Structural information from the experimental far-IR spectra can be
obtained with the help of suitable theoretical approaches such as
dynamical DFT techniques and the recently developed Graph Theory.
The aim of this review is to underline how the synergy between far-IR
spectroscopy and theory can provide an unprecedented picture of the
structure of neutral biomolecules in the gas phase. The far-IR signatures
of the discussed studies are summarized in a far-IR map, in order
to gain insight into the origin of the far-IR localized and delocalized
motions present in peptides and where they can be found in the electromagnetic
spectrum.
Collapse
Affiliation(s)
- Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| | - Marie-Pierre Gaigeot
- LAMBE CNRS UMR8587, Université d'Evry val d'Essonne, Blvd F. Mitterrand, Bât Maupertuis, 91025 Evry, France
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
17
|
Fischer KC, Sherman SL, Garand E. Competition between Solvation and Intramolecular Hydrogen-Bonding in Microsolvated Protonated Glycine and β-Alanine. J Phys Chem A 2020; 124:1593-1602. [DOI: 10.1021/acs.jpca.9b11977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaitlyn C. Fischer
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Summer L. Sherman
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Lin CK, Shishido R, Huang QR, Fujii A, Kuo JL. Vibrational spectroscopy of protonated amine–water clusters: tuning Fermi resonance and lighting up dark states. Phys Chem Chem Phys 2020; 22:22035-22046. [DOI: 10.1039/d0cp03229h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The H-bonded NH stretching fundamentals of protonated amine–water clusters pass through the “Fermi resonance window” formed by bending overtones, generating split bands due to anharmonic couplings.
Collapse
Affiliation(s)
- Chih-Kai Lin
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Republic of China
| | - Ryunosuke Shishido
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Qian-Rui Huang
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Republic of China
| | - Asuka Fujii
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Republic of China
| |
Collapse
|
19
|
Zhang X, Chen L, Liu R, Li D, Ge X, Ge G. The Role of the OH Group in Citric Acid in the Coordination with Fe 3O 4 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8325-8332. [PMID: 31149819 DOI: 10.1021/acs.langmuir.9b00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The role of the C?OH group in citric acid (CA) in the molecular coordination with Fe3O4 nanoparticles (NPs) has been elusive for a long time. In this study, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectral deconvolution and thermogravimetric analysis (TGA) have been used to quantitatively clarify its significance in CA adsorption and its corresponding conformation. The experimental results show that the coordination and the corresponding conformation are exclusively determined by COOH not C?OH at pH 3, where its adsorption behavior conforms to the Brunauer?Emmett?Teller (BET) multilayer model with a maximal monolayer coordination number of 2.1/nm2. However, C?OH is involved in the coordination at pH 10, and CA conforms to the Langmuir monolayer model with 1.4/nm2 as its maximal monolayer coordination number, which is more stable than the COOH-only coordination. Especially, the conformational transformation is observed for the first time at pH 3, where the CA molecules adjust their conformation upon elution to maximize the utilization of the available binding sites on Fe3O4 NPs. This finding deepens the understanding on the fundamental mechanism for the interaction between the C?OH and COOH groups containing the organic ligand and metal oxide.
Collapse
Affiliation(s)
- Xiaorui Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Renxiao Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Dexing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Xiujie Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| |
Collapse
|
20
|
Fischer KC, Sherman SL, Voss JM, Zhou J, Garand E. Microsolvation Structures of Protonated Glycine and l-Alanine. J Phys Chem A 2019; 123:3355-3366. [DOI: 10.1021/acs.jpca.9b01578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kaitlyn C. Fischer
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Summer L. Sherman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jonathan M. Voss
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jia Zhou
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Churakov AV, Grishanov DA, Medvedev AG, Mikhaylov AA, Tripol'skaya TA, Vener MV, Navasardyan MA, Lev O, Prikhodchenko PV. Cyclic dipeptide peroxosolvates: first direct evidence for hydrogen bonding between hydrogen peroxide and a peptide backbone. CrystEngComm 2019. [DOI: 10.1039/c9ce00892f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The crystal structures of cyclic dipeptide peroxosolvates provide valuable insight into the non-redox interaction of hydrogen peroxide with the peptide backbone.
Collapse
Affiliation(s)
- Andrei V. Churakov
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Dmitry A. Grishanov
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Alexander G. Medvedev
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Alexey A. Mikhaylov
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Tatiana A. Tripol'skaya
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Mikhail V. Vener
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russia
- Department of Quantum Chemistry
| | - Mger A. Navasardyan
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Ovadia Lev
- The Casali Center of Applied Chemistry
- The Institute of Chemistry
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Petr V. Prikhodchenko
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow 119991
- Russia
| |
Collapse
|
22
|
Fischer KC, Voss JM, Zhou J, Garand E. Probing Solvation-Induced Structural Changes in Conformationally Flexible Peptides: IR Spectroscopy of Gly3H+·(H2O). J Phys Chem A 2018; 122:8213-8221. [DOI: 10.1021/acs.jpca.8b07546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaitlyn C. Fischer
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Jonathan M. Voss
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Jia Zhou
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
Garand E. Spectroscopy of Reactive Complexes and Solvated Clusters: A Bottom-Up Approach Using Cryogenic Ion Traps. J Phys Chem A 2018; 122:6479-6490. [DOI: 10.1021/acs.jpca.8b05712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Etienne Garand
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Esser TK, Knorke H, Siro-Brigiano F, Galimberti DR, Asmis KR, Gaigeot MP, Lisy JM. Influence of argon and D2 tagging on the hydrogen bond network in Cs+(H2O)3; kinetic trapping below 40 K. Phys Chem Chem Phys 2018; 20:28476-28486. [DOI: 10.1039/c8cp06020g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tuning cluster ion conformations between 12 and 21 K.
Collapse
Affiliation(s)
- Tim K. Esser
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
- D-04103 Leipzig
- Germany
| | - Harald Knorke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
- D-04103 Leipzig
- Germany
| | | | | | - Knut R. Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
- Universität Leipzig
- D-04103 Leipzig
- Germany
| | | | - James M. Lisy
- Department of Chemistry
- University of Illinois at Urbana-Champaign, Urbana
- Illinois 61801
- USA
| |
Collapse
|