1
|
Ma Y, Zhou S, He Y, Su Y, Qiao L, Gao L. Understanding the migration mechanism of hydrogen atom from the α-Fe matrix into nano-precipitates via DFT calculations. Phys Chem Chem Phys 2023; 25:29727-29737. [PMID: 37882790 DOI: 10.1039/d3cp03499b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The service of high-strength steel suffers from the threat of hydrogen embrittlement and introducing nano-precipitates is an effective avenue to mitigate it. How hydrogen atoms migrate into nano-precipitates is an important question that needs to be clarified. In this study, NEB-based DFT calculations have clearly constructed the energy evolution profiles of the whole process for hydrogen atoms diffusing from α-Fe through the α-Fe/MC (M = V, Ti, Nb) coherent interfaces and finally into the nano-precipitates. The calculation results indicate that a hydrogen atom migrates with difficulty through the α-Fe/MC coherent interfaces and the diffusions in nano-precipitates follow two-step pathways. The C atom vacancy is easier to form in MC nano-precipitates. When introducing a C atom or metallic atom vacancy into the α-Fe/MC interface, the C atom vacancy is the hydrogen trapping site, while the metallic atom vacancy reduces the migration barrier. In addition, once a C atom or metallic atom vacancy is formed in the nano-precipitate, the vacancy will behave as an irreversible trapping site. Finally, electronic structure analyses and distortion energy calculations clearly reveal the effects of the local atomic environment on hydrogen diffusion from α-Fe into nano-precipitates.
Collapse
Affiliation(s)
- Yuan Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Shaojie Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yanjing Su
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lijie Qiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lei Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
Tsuji Y, Yoshioka Y, Okazawa K, Yoshizawa K. Exploring Metal Nanocluster Catalysts for Ammonia Synthesis Using Informatics Methods: A Concerted Effort of Bayesian Optimization, Swarm Intelligence, and First-Principles Computation. ACS OMEGA 2023; 8:30335-30348. [PMID: 37636907 PMCID: PMC10448644 DOI: 10.1021/acsomega.3c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
This paper details the use of computational and informatics methods to design metal nanocluster catalysts for efficient ammonia synthesis. Three main problems are tackled: defining a measure of catalytic activity, choosing the best candidate from a large number of possibilities, and identifying the thermodynamically stable cluster catalyst structure. First-principles calculations, Bayesian optimization, and particle swarm optimization are used to obtain a Ti8 nanocluster as a catalyst candidate. The N2 adsorption structure on Ti8 indicates substantial activation of the N2 molecule, while the NH3 adsorption structure suggests that NH3 is likely to undergo easy desorption. The study also reveals several cluster catalyst candidates that break the general trade-off that surfaces that strongly adsorb reactants also strongly adsorb products.
Collapse
Affiliation(s)
- Yuta Tsuji
- Faculty
of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Yuta Yoshioka
- Institute
for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Okazawa
- Institute
for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute
for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Zhang Y, Deng XQ, Jing Q, Zhang ZH, Ding X. Tunable electronic properties and related functional devices for ferroelectric In 2Se 3/MoSSe van der Waals heterostructures. RSC Adv 2022; 13:228-238. [PMID: 36605646 PMCID: PMC9768469 DOI: 10.1039/d2ra06337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, two-dimensional (2D) materials have attracted increasing attraction in a number of scientific research fields. In particular, ferroelectric materials with reversible spontaneous electric polarization and Janus transition metal dichalcogenides (TMDs) with intrinsic dipoles exhibit novel properties for many practical applications. Here, the electronic properties of van der Waals (vdW) heterostructures consisting of In2Se3 and MoSSe were investigated based on a first-principles approach. It was demonstrated that four studied In2Se3/MoSSe heterostructures exhibited obvious band gap (E g) differences, ranging 0.13 to 0.90 eV for PBE (0.47 to 1.50 eV for HSE06) owing to the reversible spontaneous electric polarization of In2Se3 and different intrinsic dipole of MoSSe, and different band alignments of type-I or type-II could also be obtained. The energy bands of the four vdW heterostructures could be obviously regulated by varying degrees of vertical (horizontal) strain and vertical interface electric field, and the E g varied from zero to 1.27 eV. Then, M4-based mechanical switching devices and ferroelectric diodes were designed based on the significant strain and electric field function. These results provide one possible mechanism for how the polarization direction regulates the physical properties of the system due to the different charges on the two surfaces of the out-of-plane polarized ferroelectric material, which may lead to different proximity effects on the face of the material.
Collapse
Affiliation(s)
- Y. Zhang
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and TechnologyChangsha 410114China
| | - X. Q. Deng
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and TechnologyChangsha 410114China
| | - Q. Jing
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and TechnologyChangsha 410114China
| | - Z. H. Zhang
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and TechnologyChangsha 410114China
| | - X. Ding
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and TechnologyChangsha 410114China
| |
Collapse
|
4
|
Song K, Fan Y, Liu J, Qi D, Lu N, Qin W. Carrier Separation Enhanced by High Angle Twist Grain Boundaries in Cesium Lead Bromide Perovskites. J Phys Chem Lett 2022; 13:7206-7212. [PMID: 35912980 DOI: 10.1021/acs.jpclett.2c01832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Grain boundaries (GBs) have a profound impact on mechanical, chemical, and physical properties of polycrystalline materials. Comprehension of atomic and electronic structures of different GBs in materials can help to understand their impact on materials' properties. Here, with aberration-corrected scanning transmission electron microscopy (STEM), the atomic structure of a 90° twist GB s in CsPbBr3 is determined, and its impact on electron-hole pair separation is predicted. The 90° twist GB has a coherent interface and the same chemical composition as the bulk except for the lattice twist. Density functional theory (DFT) calculation results indicate that the twist GB has an electronic structure similar to that of the bulk CsPbBr3. An electronic potential at the GBs enhances the separation of photogenerated carriers and promotes the motion of electrons across the GBs. These results extend the understanding of atomic and electronic structure of GBs in halide perovskites and propose a potential strategy to eliminate the influence of GBs by GB engineering.
Collapse
Affiliation(s)
- Kepeng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yingcai Fan
- School of Physics, Shandong University, Jinan 250100, China
| | - Jiakai Liu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Dongqing Qi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ning Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wei Qin
- School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Shi Y, Rabbani M, Vázquez-Mayagoitia Á, Zhao J, Saidi WA. Controlling the nucleation and growth of ultrasmall metal nanoclusters with MoS 2 grain boundaries. NANOSCALE 2022; 14:617-625. [PMID: 34985076 DOI: 10.1039/d1nr07836d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The stabilization of supported nanoclusters is critical for different applications, including catalysis and plasmonics. Herein we investigate the impact of MoS2 grain boundaries (GBs) on the nucleation and growth of Pt NCs. The optimum atomic structure of the metal clusters is obtained using an adaptive genetic algorithm that employs a hybrid approach based on atomistic force fields and density functional theory. Our findings show that GBs stabilize the NCs up to a cluster size of nearly ten atoms, and with larger clusters having a similar binding to the pristine system. Notably, Pt monomers are found to be attracted to GB cores achieving 60% more stabilization compared to the pristine surface. Furthermore, we show that the nucleation and growth of the metal seeds are facile with low kinetic barriers, which are of similar magnitude to the diffusion barriers of metals on the pristine surface. The findings highlight the need to engineer ultrasmall NCs to take advantage of enhanced stabilization imparted by the GB region, particularly to circumvent sintering behavior for high-temperature applications.
Collapse
Affiliation(s)
- Yongliang Shi
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Muztoba Rabbani
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | - Jin Zhao
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
6
|
Chu W, Saidi WA, Prezhdo OV. Long-Lived Hot Electron in a Metallic Particle for Plasmonics and Catalysis: Ab Initio Nonadiabatic Molecular Dynamics with Machine Learning. ACS NANO 2020; 14:10608-10615. [PMID: 32806073 DOI: 10.1021/acsnano.0c04736] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiple experiments provide evidence for photovoltaic, catalytic, optoelectronic, and plasmonic processes involving hot, i.e., high energy, electrons in nanoscale materials. However, the mechanisms of such processes remain elusive, because electrons rapidly lose energy by relaxation through dense manifolds of states. We demonstrate a long-lived hot electron state in a Pt nanocluster adsorbed on the MoS2 substrate. For this purpose, we develop a simulation technique, combining classical molecular dynamics based on machine learning potentials with ab initio nonadiabatic molecular dynamics and real-time time-dependent density functional theory. Choosing Pt20/MoS2 as a prototypical system, we find frequent shifting of a top atom in the Pt particle occurring on a 50 ps time scale. The distortion breaks particle symmetry and creates unsaturated chemical bonds. The lifetime of the localized state associated with the broken bonds is enhanced by a factor of 3. Hot electrons aggregate near the shifted atom and form a catalytic reaction center. Our findings prove that distortion of even a single atom can have important implications for nanoscale catalysis and plasmonics and provide insights for utilizing machine learning potentials to accelerate ab initio investigations of excited state dynamics in condensed matter systems.
Collapse
Affiliation(s)
- Weibin Chu
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
7
|
Song B, Yang TT, Yuan Y, Sharifi-Asl S, Cheng M, Saidi WA, Liu Y, Shahbazian-Yassar R. Revealing Sintering Kinetics of MoS 2-Supported Metal Nanocatalysts in Atmospheric Gas Environments via Operando Transmission Electron Microscopy. ACS NANO 2020; 14:4074-4086. [PMID: 32283933 DOI: 10.1021/acsnano.9b08757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The decoration of two-dimensional (2D) substrates with nanoparticles (NPs) serve as heterostructures for various catalysis applications. Deep understanding of catalyst degradation mechanisms during service conditions is crucial to improve the catalyst durability. Herein, we studied the sintering behavior of Pt and bimetallic Au-core Pt-shell (Au@Pt core-shell) NPs on MoS2 supports at high temperatures under vacuum, nitrogen (N2), hydrogen (H2), and air environments by in situ gas-cell transmission electron microscopy (TEM). The key observations are summarized as effect of environment: while particle migration and coalescence (PMC) was the main mechanism that led to Pt and Au@Pt NPs degradation under vacuum, N2, and H2 environments, the degradation of MoS2 substrate was prominent under exposure to air at high temperatures. Pt NPs were less stable in H2 environment when compared with the Pt NPs under vacuum or N2, due to Pt-H interactions that weakened the adhesion of Pt on MoS2. Effect of NP composition: under H2, the stability of Au@Pt NPs was higher in comparison to Pt NPs. This is because H2 promotes the alloying of Pt-Au, thus reducing the number of Pt at the surface (reducing H2 interactions) and increasing Pt atoms in contact with MoS2. Effect of NP size: The alloying effect promoted by H2 was more pronounced in small size Au@Pt NPs resulting in their higher sintering resistance in comparison to large size Au@Pt NPs and similar size Pt NPs. The present work provides key insights into the parameters affecting the catalyst degradation mechanisms on 2D supports.
Collapse
Affiliation(s)
- Boao Song
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Timothy T Yang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yifei Yuan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Soroosh Sharifi-Asl
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Meng Cheng
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Reza Shahbazian-Yassar
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
8
|
Lai KC, Han Y, Spurgeon P, Huang W, Thiel PA, Liu DJ, Evans JW. Reshaping, Intermixing, and Coarsening for Metallic Nanocrystals: Nonequilibrium Statistical Mechanical and Coarse-Grained Modeling. Chem Rev 2019; 119:6670-6768. [DOI: 10.1021/acs.chemrev.8b00582] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- King C. Lai
- Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, United States
- Division of Chemical & Biological Sciences, Ames Laboratory − USDOE, Iowa State University, Ames, Iowa 50011, United States
| | - Yong Han
- Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, United States
- Division of Chemical & Biological Sciences, Ames Laboratory − USDOE, Iowa State University, Ames, Iowa 50011, United States
| | - Peter Spurgeon
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Patricia A. Thiel
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Da-Jiang Liu
- Division of Chemical & Biological Sciences, Ames Laboratory − USDOE, Iowa State University, Ames, Iowa 50011, United States
| | - James W. Evans
- Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, United States
- Division of Chemical & Biological Sciences, Ames Laboratory − USDOE, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
9
|
Song B, He K, Yuan Y, Sharifi-Asl S, Cheng M, Lu J, Saidi WA, Shahbazian-Yassar R. In situ study of nucleation and growth dynamics of Au nanoparticles on MoS 2 nanoflakes. NANOSCALE 2018; 10:15809-15818. [PMID: 30102314 DOI: 10.1039/c8nr03519a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional (2D) substrates decorated with metal nanoparticles offer new opportunities to achieve high-performance catalytic behavior. However, little is known on how the substrates control the nucleation and growth processes of the nanoparticles. This paper presents the visualization of dynamic nucleation and growth processes of gold nanoparticles on ultrathin MoS2 nanoflakes by in situ liquid-cell transmission electron microscopy (TEM). The galvanic displacement resulting in Au nuclei formation on MoS2 was observed in real time inside the liquid cell. We found that the growth mechanism of Au particles on pristine MoS2 is in between diffusion-limited and reaction-limited, possibly due to the presence of electrochemical Ostwald ripening. A larger size distribution and more orientation variation is observed for the Au particles along the MoS2 edge than on the interior. Differing from pristine MoS2, sulfur vacancies on MoS2 induce Au particle diffusion and coalescence during the growth process. Density functional theory (DFT) calculations show that the size difference is because the exposed molybdenum atoms at the edge with dangling bonds can strongly interact with Au atoms, whereas sulfur atoms on the MoS2 interior have no dangling bonds and weakly interact with gold atoms. In addition, S vacancies on MoS2 generate strong nucleation centers that can promote diffusion and coalescence of Au nanoparticles. The present work provides key insights into the role of 2D materials in controlling the size and orientation of noble metal nanoparticles vital to the design of next generation catalysts.
Collapse
Affiliation(s)
- Boao Song
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | | | | | | | | | | | | | |
Collapse
|