1
|
Banerjee P, Prakapenka VB, Chariton S, Shevchenko EV. Compressibility Studies of Copper Selenides Obtained by Cation Exchange Reaction Revealing the New CsCl Phase. NANO LETTERS 2024; 24:6981-6989. [PMID: 38814739 DOI: 10.1021/acs.nanolett.4c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
In this study, we conducted a high-pressure investigation of Cu2-xSe nanostructures with pyramid- and plate-like morphologies, created through cation exchange from zinc-blende CdSe nanocrystals and wurtzite CdSe nanoplatelets respectively. Using a diamond anvil cell setup at the APS synchrotron, we observed the phase transitions in the Cu2-xSe nanostructures up to 40 GPa, identifying a novel CsCl-type lattice with Pm3̅m symmetry above 4 GPa. This CsCl-type structure, previously unreported in copper selenides, was partially retained after decompression. Our results indicate that the initial crystalline structure of CdSe does not affect the stability of Cu2-xSe nanostructures formed via cation exchange. Both morphologies of Cu2-xSe sintered under compression, potentially contributing to the stabilization of the high-pressure phase through interfacial defects. These findings are significant for discovering new phases with potential applications in future technologies.
Collapse
Affiliation(s)
- Progna Banerjee
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Stella Chariton
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Elena V Shevchenko
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
2
|
Freyer A, Tumiel TM, Smeaton M, Savitzky BH, Kourkoutis LF, Krauss TD. Heterogeneity in Cation Exchange Ag + Doping of CdSe Nanocrystals. ACS NANOSCIENCE AU 2023; 3:280-285. [PMID: 37601918 PMCID: PMC10436366 DOI: 10.1021/acsnanoscienceau.3c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 08/22/2023]
Abstract
Cation exchange is becoming extensively used for nanocrystal (NC) doping in order to produce NCs with unique optical and electronic properties. However, despite its ever-increasing use, the relationships between the cation exchange process, its doped NC products, and the resulting NC photophysics are not well characterized. For example, similar doping procedures on NCs with the same chemical compositions have resulted in quite different photophysics. Through a detailed single molecule investigation of a postsynthesis Ag+ doping of CdSe NCs, a number of species were identified within a single doped NC sample, suggesting the differences in the optical properties of the various synthesis methods are due to the varied contributions of each species. Electrostatic force microscopy (EFM), electron energy loss spectroscopy (EELS) mapping, and single molecule photoluminescence (PL) studies were used to identify four possible species resulting from the Ag+-CdSe cation exchange doping process. The heterogeneity of these samples shows the difficulty in controlling a postsynthesis cation exchange method to produce homogeneous samples needed for use in any potential application. Additionally, the heterogeneity in the doped samples demonstrates that significant care must be taken in describing the ensemble or average characteristics of the sample.
Collapse
Affiliation(s)
- Abigail Freyer
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
| | - Trevor M. Tumiel
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
| | - Michelle Smeaton
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Benjamin H. Savitzky
- Department
of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Lena F. Kourkoutis
- School
of Applied and Engineering Physics, Cornell
University, Ithaca, New York 14853, United States
- Kavli Institute
at Cornell for Nanoscale Science, Cornell
University, Ithaca, New York 14853, United States
| | - Todd D. Krauss
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
- The
Institute of Optics, University of Rochester, Rochester, New York 14627-0216, United
States
| |
Collapse
|
3
|
Du R, Li X, Li Y, Li Y, Hou T, Li Y, Qiao C, Zhang J. Cation Exchange Synthesis of Aliovalent Doped InP QDs and Their ZnSe xS 1-x Shell Coating for Enhanced Fluorescence Properties. J Phys Chem Lett 2023; 14:670-676. [PMID: 36637473 DOI: 10.1021/acs.jpclett.2c03515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
III-V quantum dots (QDs), in particular InP QDs, have emerged as high-performance and environmentally friendly candidates to replace cadmium based QDs. InP QDs exhibit properties of direct band gap structure, low toxicity, and high mobility, which make them suitable for high-performance optoelectronic applications. However, it is still challenging to precisely regulate the components and crystal structure of InP QDs, especially in the engineered stable aliovalent doping. In this work, we developed our original reverse cation exchange strategy to achieve Cu+ doped InP (InP:Cu) QDs at lower temperature. A ZnSexS1-x shell was then homogeneously grown on the InP:Cu QDs as the passivation shell. The as-prepared InP:Cu@ZnSexS1-x core-shell QDs exhibited better fluorescence properties with a photoluminescence quantum yield (PLQY) of 56.47%. Due to the existence of multiple luminous centers in the QDs, variable temperature-dependent fluorescence characteristics have been studied. The high photoluminescence characteristics in the near-infrared region indicate their potential applications in optoelectronic devices and biological fields.
Collapse
Affiliation(s)
- Ruizhi Du
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinyuan Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - You Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuxi Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tailei Hou
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuemei Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chen Qiao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Leng D, Zhao J, Ren X, Xu R, Liu L, Liu X, Li Y, Wei Q. MoSe 2/CdSe Heterojunction Destruction by Cation Exchange for Photoelectrochemical Immunoassays with a Controlled-Release Strategy. Anal Chem 2021; 93:10712-10718. [PMID: 34283578 DOI: 10.1021/acs.analchem.1c02354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, a split-type immunoassay strategy instigated by cation exchange (CE) and changing the capacity of an electron donor in an electrolyte solution is optimized, namely, for differentiating the biological-specific binding assay and photoelectrochemical (PEC) analysis. MoSe2/CdSe, a Z-scheme heterojunction with efficient visible light absorption and a low recombination of carriers, is used as a photoelectrode substrate. Silver ions (Ag+) as the initiator of CE are generated by the acidolysis of evenly loaded silver nanoparticles on mesoporous silica nanospheres (MSNs). The theoretical calculation and experimental results confirm that Ag+ replaces Cd2+ in CdSe and retains the crystal structure of MoSe2. However, this behavior destroys the perfectly matched heterojunction structure and introduces defects, which led to the reduction of the photocurrent response. In addition, ascorbate oxidase in combination with MSNs can be used as a consumptive agent of the electron donor, which further improves the sensitivity and reliability of the sensor. As a proof of principle, neuron-specific enolase was applied to elucidate the potential application of the PEC immunoassay in clinical diagnosis, and the obtained linear range of the sensor was from 0.0001 to 100 ng/mL with a detection limit of 28 fg/mL (S/N = 3).
Collapse
Affiliation(s)
- Dongquan Leng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Jihao Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Rui Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Lei Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xuejing Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yuyang Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| |
Collapse
|
5
|
Hu L, Xu T, Zhu H, Ma C, Chen G. Luminescence Change of CdS and CdSe Quantum Dots on a Ag Film. ACS OMEGA 2019; 4:14193-14201. [PMID: 31508541 PMCID: PMC6732985 DOI: 10.1021/acsomega.9b01096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Enhanced luminescence of an emitter on a Ag film is usually ascribed to the resonant surface plasmons. In these studies, the solid cadmium sulfide (CdS) and cadmium selenide (CdSe) quantum dot/silver (QD/Ag) hybrids were prepared, and the luminescence characteristics of these QD/Ag hybrids were measured. It is found that the enhancement of the trap state emission (TSE) is related to the QD size. The TSE features of the annealed QD/Ag hybrids are insensitive to the morphology of the Ag film. We used the wet and dry methods to separate the QD and Ag components and found that the photoluminescence (PL) of the QD component was permanently changed from the initial state. The PL modification is ascribed to the Ag+ doping effect rather than the surface plasmons. This doping method uses pure Ag as the Ag+ ion source. In this case, though the CdS and CdSe QD/Ag hybrids are the solid state, the cation exchange between Ag+ and Cd2+ ions can still occur on the QD surface. Even a small amount of Ag can efficiently influence the luminescence of the QDs embedded in the poly(methyl methacrylate) matrix. A hypothetical model was proposed to explain the PL modification of the QD/Ag hybrid with and without annealing. Using this dry method for doping, the transparent luminescence label can be prepared easily, and the doped QDs can be further doped with Ag+ dopants.
Collapse
Affiliation(s)
- Lian Hu
- School
of Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, People’s Republic of China
| | - Tianning Xu
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312030, Zhejiang, People’s Republic of China
| | - Huaxin Zhu
- School
of Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, People’s Republic of China
| | - Chaoqun Ma
- School
of Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, People’s Republic of China
| | - Guoqing Chen
- School
of Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Makkar M, Saha A, Khalid S, Viswanatha R. Thermodynamics of Dual Doping in Quantum Dots. J Phys Chem Lett 2019; 10:1992-1998. [PMID: 30945549 DOI: 10.1021/acs.jpclett.9b00606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dual doping is a powerful way to tailor the properties of semiconductor quantum dots (QDs) arising out of host-dopant and dopant-dopant interactions. Nevertheless, it has seldom been explored due to a variety of thermodynamic challenges, such as the differential bonding strength and diffusion constant within the host matrix that integrates with the host in dissimilar ways. This work discusses the challenges involved in administering them within the constraints of one host under similar conditions of temperature, time, and chemical parameters such as solubility and reactivity using CoPt-doped CdS QDs as a model system. In addition, the various forces in play, such as Kirkendall diffusion, solid- and liquid-state diffusion, hard acid soft base interaction with the host, and the effect of lattice strain due to lattice mismatch, are studied to understand the feasibility of the core to doped transformation. These findings suggest a potential approach for manipulating the properties of semiconductors by dual doping engineering.
Collapse
Affiliation(s)
| | | | - Syed Khalid
- Brookhaven National Laboratory , Upton , New York 11973-5000 , United States
| | | |
Collapse
|