1
|
Zhao J, Zhao L, Xu W, Lu Z, Xu S. Fabrication of High-Negatively Charged Bicelle-Mediated Supported Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8083-8093. [PMID: 38572682 DOI: 10.1021/acs.langmuir.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Supported lipid bilayers (SLBs), two-dimensional lipid films formed on a solid-supporting substrate, serve as models for biomembranes and exhibit remarkable potential in chemistry, biology, and medicine. However, preparing SLBs with highly negatively charged contents on the negatively charged surface by overcoming electrostatic repulsion remains a challenge. Here, a creative bicelle-mediated and divalent cation-free SLB preparation method with the assistance of phosphate-buffered saline (PBS) solution was proposed, which can form the SLBs containing 50% DOPS or 30% CL on the silica surface monitored by a quartz crystal microbalance with dissipation (QCM-D). Results of molecular dynamics (MD) simulation indicate that electrostatic repulsion can be overcome by the increased number of hydrogen bonds caused by the adsorption of dihydrogen phosphate ions onto the headgroups of lipids. In addition, the negatively charged SLB formation was identified to be a three-step kinetic process, which differs from a two-step mechanism in the case of amphoteric SLB. The extra kinetic step can be attributed to the reduction in the number of intermolecular hydrogen bonds and the ordering of water molecules in the hydration layer. This investigation resolves the challenge of fabricating SLB over negatively charged surfaces and offers a fresh perspective on the SLB assembly methodology.
Collapse
Affiliation(s)
- Junyi Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Li Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, Changchun 130012, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Dey M, Sharma A, Dhanawat G, Gupta D, Harshan KH, Parveen N. Synergistic Binding of SARS-CoV-2 to ACE2 and Gangliosides in Native Lipid Membranes. ACS Infect Dis 2024; 10:907-916. [PMID: 38412250 DOI: 10.1021/acsinfecdis.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Viruses utilize cell surface glycans and plasma membrane receptors to attain an adequate attachment strength for initiating cellular entry. We show that SARS-CoV-2 particles bind to endogenous ACE2 receptors and added sialylated gangliosides in near-native membranes. This was explored using supported membrane bilayers (SMBs) that were formed using plasma membrane vesicles having endogenous ACE2 and GD1a gangliosides reconstituted in lipid vesicles. The virus binding rate to the SMBs is influenced by GD1a and inhibition of the ganglioside reduces the extent of virus binding to the membrane receptors. Using combinations of inhibition assays, we confirm that added GD1a in lipid membranes increases the availability of the endogenous ACE2 receptor and results in the synergistic binding of SARS-CoV-2 to the membrane receptors in SMBs.
Collapse
Affiliation(s)
- Manorama Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Garvita Dhanawat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Divya Gupta
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Krishnan H Harshan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
3
|
Sharma A, Negi G, Chaudhary M, Parveen N. Kinetics of Ganglioside-Rich Supported Lipid Bilayer Formation with Tracer Vesicle Fluorescence Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11694-11707. [PMID: 37552772 DOI: 10.1021/acs.langmuir.3c01301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Gangliosides, forming a class of lipids complemented by sugar chains, influence the lateral distribution of membrane proteins or membrane-binding proteins, act as receptors for viruses and bacterial toxins, and mediate several types of cellular signaling. Gangliosides incorporated into supported lipid bilayers (SLBs) have been widely applied as a model system to examine these biological processes. In this work, we explored how ganglioside composition affects the kinetics of SLB formation using the vesicle rupturing method on a solid surface. We imaged the attachment of vesicles and the subsequent SLB formation using the time-lapse total internal reflection fluorescence microscopy technique. In the early phase, the ganglioside type and concentration influence the adsorption kinetics of vesicles and their residence/lifetime on the surface before rupturing. Our data confirm that a simultaneous rupturing of neighboring surface-adsorbed vesicles forms microscopic lipid patches on the surface and it is triggered by a critical coverage of the vesicles independent of their composition. In the SLB growth phase, lipid patches merge, forming a continuous SLB. The propagation of patch edges catalyzes the process and depends on the ganglioside type. Our pH-dependent experiments confirm that the polar/charged head groups of the gangliosides have a critical role in these steps and phases of SLB formation kinetics.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Geetanjali Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Monika Chaudhary
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| |
Collapse
|
4
|
Negi G, Sharma A, Chaudhary M, Gupta D, Harshan KH, Parveen N. SARS-CoV-2 Binding to Terminal Sialic Acid of Gangliosides Embedded in Lipid Membranes. ACS Infect Dis 2023; 9:1346-1361. [PMID: 37145972 DOI: 10.1021/acsinfecdis.3c00106] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Multiple recent reports indicate that the S protein of SARS-CoV-2 specifically interacts with membrane receptors and attachment factors other than ACE2. They likely have an active role in cellular attachment and entry of the virus. In this article, we examined the binding of SARS-CoV-2 particles to gangliosides embedded in supported lipid bilayers (SLBs), mimicking the cell membrane-like environment. We show that the virus specifically binds to sialylated (sialic acid (SIA)) gangliosides, i.e., GD1a, GM3, and GM1, as determined from the acquired single-particle fluorescence images using a time-lapse total internal reflection fluorescence (TIRF) microscope. The data of virus binding events, the apparent binding rate constant, and the maximum virus coverage on the ganglioside-rich SLBs show that the virus particles have a higher binding affinity toward the GD1a and GM3 compared to the GM1 ganglioside. Enzymatic hydrolysis of the SIA-Gal bond of the gangliosides confirms that the SIA sugar unit of GD1a and GM3 is essential for virus attachment to the SLBs and even the cell surface sialic acid is critical for the cellular attachment of the virus. The structural difference between GM3/GD1a and GM1 is the presence of SIA at the main or branched chain. We conclude that the number of SIA per ganglioside can weakly influence the initial binding rate of SARS-CoV-2 particles, whereas the terminal or more exposed SIA is critical for the virus binding to the gangliosides in SLBs.
Collapse
Affiliation(s)
- Geetanjali Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Monika Chaudhary
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Divya Gupta
- CSIR-Centre for Cellular and Molecular Biology, 500007 Hyderabad, India
| | - Krishnan H Harshan
- CSIR-Centre for Cellular and Molecular Biology, 500007 Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| |
Collapse
|
5
|
Nugroho FAA, Świtlik D, Armanious A, O’Reilly P, Darmadi I, Nilsson S, Zhdanov VP, Höök F, Antosiewicz TJ, Langhammer C. Time-Resolved Thickness and Shape-Change Quantification using a Dual-Band Nanoplasmonic Ruler with Sub-Nanometer Resolution. ACS NANO 2022; 16:15814-15826. [PMID: 36083800 PMCID: PMC9620406 DOI: 10.1021/acsnano.2c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Time-resolved measurements of changes in the size and shape of nanobiological objects and layers are crucial to understand their properties and optimize their performance. Optical sensing is particularly attractive with high throughput and sensitivity, and label-free operation. However, most state-of-the-art solutions require intricate modeling or multiparameter measurements to disentangle conformational or thickness changes of biomolecular layers from complex interfacial refractive index variations. Here, we present a dual-band nanoplasmonic ruler comprising mixed arrays of plasmonic nanoparticles with spectrally separated resonance peaks. As electrodynamic simulations and model experiments show, the ruler enables real-time simultaneous measurements of thickness and refractive index variations in uniform and heterogeneous layers with sub-nanometer resolution. Additionally, nanostructure shape changes can be tracked, as demonstrated by quantifying the degree of lipid vesicle deformation at the critical coverage prior to rupture and supported lipid bilayer formation. In a broader context, the presented nanofabrication approach constitutes a generic route for multimodal nanoplasmonic optical sensing.
Collapse
Affiliation(s)
- Ferry Anggoro Ardy Nugroho
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan
1081, 1081 HV Amsterdam, The Netherlands
- Department
of Physics, Universitas Indonesia, Depok 16424, Indonesia
| | - Dominika Świtlik
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Antonius Armanious
- Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Padraic O’Reilly
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Iwan Darmadi
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Sara Nilsson
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Vladimir P. Zhdanov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Boreskov
Institute of Catalysis, Russian Academy
of Sciences, Novosibirsk 630090, Russia
| | - Fredrik Höök
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Tomasz J. Antosiewicz
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
6
|
Park H, Sut TN, Yoon BK, Zhdanov VP, Cho NJ, Jackman JA. Unraveling How Multivalency Triggers Shape Deformation of Sub-100 nm Lipid Vesicles. J Phys Chem Lett 2021; 12:6722-6729. [PMID: 34263601 DOI: 10.1021/acs.jpclett.1c01510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Multivalent ligand-receptor interactions are critical to the function of membrane-enveloped biological and biomimetic nanoparticles, yet resulting nanoparticle shape changes are rarely investigated. Using the localized surface plasmon resonance (LSPR) sensing technique, we tracked the attachment of biotinylated, sub-100 nm lipid vesicles to a streptavidin-functionalized supported lipid bilayer (SLB) and developed an analytical model to extract quantitative details about the vesicle-SLB contact region. The experimental results were supported by theoretical analyses of biotin-streptavidin complex formation and corresponding structural and energetic aspects of vesicle deformation. Our findings reveal how varying the surface densities of streptavidin receptors in the SLB and biotin ligands in the vesicles affects the extent of nanometer-scale vesicle deformation. We also identify conditions, i.e., a critical ligand density, at which appreciable vesicle deformation began, which provides insight into how the membrane bending energy partially counterposes the multivalent binding interaction energy. These findings are generalizable to various multivalent ligand-receptor systems.
Collapse
Affiliation(s)
- Hyeonjin Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Tun Naw Sut
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Bo Kyeong Yoon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Vladimir P Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Ulmefors H, Nissa J, Pace H, Wahlsten O, Gunnarsson A, Simon DT, Berggren M, Höök F. Formation of Supported Lipid Bilayers Derived from Vesicles of Various Compositional Complexity on Conducting Polymer/Silica Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5494-5505. [PMID: 33929845 PMCID: PMC8280725 DOI: 10.1021/acs.langmuir.1c00175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/26/2021] [Indexed: 05/30/2023]
Abstract
Supported lipid bilayers (SLBs) serve important roles as minimalistic models of cellular membranes in multiple diagnostic and pharmaceutical applications as well as in the strive to gain fundamental insights about their complex biological function. To further expand the utility of SLBs, there is a need to go beyond simple lipid compositions to thereby better mimic the complexity of native cell membranes, while simultaneously retaining their compatibility with a versatile range of analytical platforms. To meet this demand, we have in this work explored SLB formation on PEDOT:PSS/silica nanoparticle composite films and mesoporous silica films, both capable of transporting ions to an underlying conducting PEDOT:PSS film. The SLB formation process was evaluated by using the quartz crystal microbalance with dissipation (QCM-D) monitoring, total internal reflection fluorescence (TIRF) microscopy, and fluorescence recovery after photobleaching (FRAP) for membranes made of pure synthetic lipids with or without the reconstituted membrane protein β-secretase 1 (BACE1) as well as cell-derived native lipid vesicles containing overexpressed BACE1. The mesoporous silica thin film was superior to the PEDOT:PSS/silica nanoparticle composite, providing successful formation of bilayers with high lateral mobility and low defect density even for the most complex native cell membranes.
Collapse
Affiliation(s)
- Hanna Ulmefors
- Division
of Nano and Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Josefin Nissa
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Hudson Pace
- Division
of Nano and Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Olov Wahlsten
- Division
of Nano and Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Anders Gunnarsson
- Discovery
Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Daniel T. Simon
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Magnus Berggren
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Fredrik Höök
- Division
of Nano and Biological Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
8
|
Yoon BK, Park H, Zhdanov VP, Jackman JA, Cho NJ. Real-time nanoplasmonic sensing of three-dimensional morphological changes in a supported lipid bilayer and antimicrobial testing applications. Biosens Bioelectron 2021; 174:112768. [DOI: 10.1016/j.bios.2020.112768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
|
9
|
Joyce P, Jõemetsa S, Isaksson S, Hossain S, Larsson P, Bergström C, Höök F. TIRF Microscopy-Based Monitoring of Drug Permeation Across a Lipid Membrane Supported on Mesoporous Silica. Angew Chem Int Ed Engl 2021; 60:2069-2073. [PMID: 32926534 PMCID: PMC7894553 DOI: 10.1002/anie.202011931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 11/12/2022]
Abstract
There is an urgent demand for analytic approaches that enable precise and representative quantification of the transport of biologically active compounds across cellular membranes. In this study, we established a new means to monitor membrane permeation kinetics, using total internal reflection fluorescence microscopy confined to a ≈500 nm thick mesoporous silica substrate, positioned underneath a planar supported cell membrane mimic. This way, we demonstrate spatiotemporally resolved membrane permeation kinetics of a small-molecule model drug, felodipine, while simultaneously controlling the integrity of, and monitoring the drug binding to, the cell membrane mimic. By contrasting the permeation behaviour of pure felodipine with felodipine coupled to the permeability enhancer caprylate (C8), we provide evidence for C8-facilitated transport across lipid membranes, thus validating the potential for this approach to successfully quantify carrier system-induced changes to cellular membrane permeation.
Collapse
Affiliation(s)
- Paul Joyce
- Department of PhysicsChalmers University of TechnologyGothenburgSE-412 96Sweden
| | - Silver Jõemetsa
- Department of PhysicsChalmers University of TechnologyGothenburgSE-412 96Sweden
| | - Simon Isaksson
- Department of PhysicsChalmers University of TechnologyGothenburgSE-412 96Sweden
| | - Shakhawath Hossain
- Department of PharmacyUppsala UniversityUppsalaSE-751 23Sweden
- The Swedish Drug Delivery ForumDepartment of PharmacyUppsala UniversityUppsalaSE-751 23Sweden
| | - Per Larsson
- Department of PharmacyUppsala UniversityUppsalaSE-751 23Sweden
- The Swedish Drug Delivery ForumDepartment of PharmacyUppsala UniversityUppsalaSE-751 23Sweden
| | - Christel Bergström
- Department of PharmacyUppsala UniversityUppsalaSE-751 23Sweden
- The Swedish Drug Delivery ForumDepartment of PharmacyUppsala UniversityUppsalaSE-751 23Sweden
| | - Fredrik Höök
- Department of PhysicsChalmers University of TechnologyGothenburgSE-412 96Sweden
| |
Collapse
|
10
|
Joyce P, Jõemetsa S, Isaksson S, Hossain S, Larsson P, Bergström C, Höök F. TIRF Microscopy‐Based Monitoring of Drug Permeation Across a Lipid Membrane Supported on Mesoporous Silica. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paul Joyce
- Department of Physics Chalmers University of Technology Gothenburg SE-412 96 Sweden
| | - Silver Jõemetsa
- Department of Physics Chalmers University of Technology Gothenburg SE-412 96 Sweden
| | - Simon Isaksson
- Department of Physics Chalmers University of Technology Gothenburg SE-412 96 Sweden
| | - Shakhawath Hossain
- Department of Pharmacy Uppsala University Uppsala SE-751 23 Sweden
- The Swedish Drug Delivery Forum Department of Pharmacy Uppsala University Uppsala SE-751 23 Sweden
| | - Per Larsson
- Department of Pharmacy Uppsala University Uppsala SE-751 23 Sweden
- The Swedish Drug Delivery Forum Department of Pharmacy Uppsala University Uppsala SE-751 23 Sweden
| | - Christel Bergström
- Department of Pharmacy Uppsala University Uppsala SE-751 23 Sweden
- The Swedish Drug Delivery Forum Department of Pharmacy Uppsala University Uppsala SE-751 23 Sweden
| | - Fredrik Höök
- Department of Physics Chalmers University of Technology Gothenburg SE-412 96 Sweden
| |
Collapse
|
11
|
Zhdanov VP. Ligand-receptor-mediated attachment of lipid vesicles to a supported lipid bilayer. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2020; 49:395-400. [PMID: 32556429 PMCID: PMC7351846 DOI: 10.1007/s00249-020-01441-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
Abstract
The interaction of exosomes (cell-secreted [Formula: see text]100 nm-sized extracellular vesicles) or membrane-enveloped virions with cellular lipid membranes is often mediated by relatively weak ligand-receptor bonds. Interactions of this type can be studied using vesicles and observing their attachment to receptors located in a lipid bilayer formed at a solid surface. The contact region between a vesicle and the supported lipid bilayer and accordingly the number of ligand-receptor pairs there can be increased by deforming a vesicle. Herein, I (i) estimate theoretically the corresponding deformation energy assuming a disk-like or elongated shape of vesicles, (ii) present the equations allowing one to track such deformations by employing total internal reflection fluorescence microscopy and surface plasmon resonance, and (iii) briefly discuss some related experimental studies.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
12
|
Zeng S, Li S, Utterström J, Wen C, Selegård R, Zhang SL, Aili D, Zhang Z. Mechanism and Kinetics of Lipid Bilayer Formation in Solid-State Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1446-1453. [PMID: 31971393 DOI: 10.1021/acs.langmuir.9b03637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solid-state nanopores provide a highly versatile platform for rapid electrical detection and analysis of single molecules. Lipid bilayer coating of the nanopores can reduce nonspecific analyte adsorption to the nanopore sidewalls and increase the sensing selectivity by providing possibilities for tethering specific ligands in a cell-membrane mimicking environment. However, the mechanism and kinetics of lipid bilayer formation from vesicles remain unclear in the presence of nanopores. In this work, we used a silicon-based, truncated pyramidal nanopore array as the support for lipid bilayer formation. Lipid bilayer formation in the nanopores was monitored in real time by the change in ionic current through the nanopores. Statistical analysis revealed that a lipid bilayer is formed from the instantaneous rupture of individual vesicle upon adsorption in the nanopores, differing from the generally agreed mechanism that lipid bilayer forms at a high vesicle surface coverage on a planar support. The dependence of the lipid bilayer formation process on the applied bias, vesicle size, and concentration was systematically studied. In addition, the nonfouling properties of the lipid bilayer coated nanopores were demonstrated during long single-stranded DNA translocation through the nanopore array. The findings indicate that the lipid bilayer formation process can be modulated by introducing nanocavities intentionally on the planar surface to create active sites or changing the vesicle size and concentration.
Collapse
Affiliation(s)
- Shuangshuang Zeng
- Division of Solid-State Electronics, Department of Electrical Engineering , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Shiyu Li
- Division of Solid-State Electronics, Department of Electrical Engineering , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Johanna Utterström
- Laboratory of Molecular Materials, Division of Molecular Physics, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Chenyu Wen
- Division of Solid-State Electronics, Department of Electrical Engineering , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Molecular Physics, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Shi-Li Zhang
- Division of Solid-State Electronics, Department of Electrical Engineering , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Molecular Physics, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Zhen Zhang
- Division of Solid-State Electronics, Department of Electrical Engineering , Uppsala University , SE-751 21 Uppsala , Sweden
| |
Collapse
|
13
|
Kataoka-Hamai C, Kawakami K. Interaction Mechanisms of Giant Unilamellar Vesicles with Hydrophobic Glass Surfaces and Silicone Oil-Water Interfaces: Adsorption, Deformation, Rupture, Dynamic Shape Changes, Internal Vesicle Formation, and Desorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16136-16145. [PMID: 31697503 DOI: 10.1021/acs.langmuir.9b02472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phospholipid monolayers at oil-water interfaces are often obtained via vesicle adsorption. However, the interaction mechanisms of vesicles with these oil-water interfaces remain unclear. Herein, we studied the adsorption of giant unilamellar vesicles (GUVs) of approximately 2-5 μm diameter onto silicone oil-water interfaces and glass surfaces modified with hexamethyldisilazane (HMDS) and octadecyltrimethoxysilane (ODTMS) using fluorescence microscopy. The GUVs exhibited various modes of interaction, adsorbing on the silanized glass surfaces without sizable deformation, whereas GUVs bound to the silicone oil-water interface exhibited large deformation. After adsorption, GUV rupture occurred within 350, 110, and 3 ms on HMDS-modified glass, ODTMS-modified glass, and silicone oil-water interface, respectively. On glass surfaces, GUV rupture was often initiated and proceeded with pore formation near the surface. The monolayer patches formed by GUV rupture on HMDS-modified glass remained for at least 1 h over an area approximately twice of that estimated from the original GUV. On the ODTMS-modified glass and silicone oil surfaces, the monolayer patch structures disappeared in milliseconds owing to lipid diffusion across the interface. When adsorbed on the oil-water interface, the GUVs spontaneously underwent dynamic shape changes, internal vesicle formation, and desorption without rupture. Thus, it can be concluded that these different pathways arose from different lipid-surface affinities.
Collapse
Affiliation(s)
- Chiho Kataoka-Hamai
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Kohsaku Kawakami
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| |
Collapse
|
14
|
Su H, Liu HY, Pappa AM, Hidalgo TC, Cavassin P, Inal S, Owens RM, Daniel S. Facile Generation of Biomimetic-Supported Lipid Bilayers on Conducting Polymer Surfaces for Membrane Biosensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43799-43810. [PMID: 31659897 DOI: 10.1021/acsami.9b10303] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Membrane biosensors that can rapidly sense pathogen interaction and disrupting agents are needed to identify and screen new drugs to combat antibiotic resistance. Bioelectronic devices have the capability to read out both ionic and electrical signals, but their compatibility with biological membranes is somewhat limited. Supported lipid bilayers (SLBs) have served as useful biomimetics for a myriad of research topics involving biological membranes. However, SLBs are traditionally made on inert, rigid, inorganic surfaces. Here, we demonstrate a versatile and facile method for generating SLBs on a conducting polymer device using a solvent-assisted lipid bilayer (SALB) technique. We use this bioelectronic device to form both mammalian and bacterial membrane mimetics to sense the membrane interactions with a bacterial toxin (α-hemolysin) and an antibiotic compound (polymyxin B), respectively. Our results show that we can form high quality bilayers of both types and sense these particular interactions with them, discriminating between pore formation, in the case of α-hemolysin, and disruption of the bilayer, in the case of polymyxin B. The SALB formation method is compatible with many membrane compositions that will not form via common vesicle fusion methods and works well in microfluidic devices. This, combined with the massive parallelization possible for the fabrication of electronic devices, can lead to miniaturized multiplexed devices for rapid data acquisition necessary to identify antibiotic targets that specifically disrupt bacterial, but not mammalian membranes, or identify bacterial toxins that strongly interact with mammalian membranes.
Collapse
Affiliation(s)
- Hui Su
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Han-Yuan Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Anna-Maria Pappa
- Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge CB3 0AS , U.K
| | - Tania Cecilia Hidalgo
- Biological and Environmental Science and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal , Makkah Province 23955-6900 , Saudi Arabia
| | - Priscila Cavassin
- Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge CB3 0AS , U.K
| | - Sahika Inal
- Biological and Environmental Science and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal , Makkah Province 23955-6900 , Saudi Arabia
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge CB3 0AS , U.K
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
15
|
Noguchi H. Detachment of a fluid membrane from a substrate and vesiculation. SOFT MATTER 2019; 15:8741-8748. [PMID: 31577325 DOI: 10.1039/c9sm01622h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The detachment dynamics of a fluid membrane with isotropic spontaneous curvature from a flat substrate are studied by using meshless membrane simulations. The membrane is detached from an open edge leading to vesicle formation. With strong adhesion, the competition between the bending and adhesion energies determines the minimum value of the spontaneous curvature for the detachment. In contrast, with weak adhesion, detachment occurs at smaller spontaneous curvatures due to the membrane thermal undulation. When parts of the membrane are pinned on the substrate, the detachment becomes slower and a remaining membrane patch forms straight or concave membrane edges. The edge undulation induces vesiculation of long strips and disk-shaped patches. Therefore, membrane rolling is obtained only for membrane strips shorter than the wavelength for deformation into unduloids. This suggests that the rolling observed for Ca2+-dependent membrane-binding proteins annexins A3, A4, A5, and A13 results from the anisotropic spontaneous curvature induced by the proteins.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan. and Institut Lumière Matière, UMR 5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| |
Collapse
|
16
|
Zhdanov VP. Intracellular RNA delivery by lipid nanoparticles: Diffusion, degradation, and release. Biosystems 2019; 185:104032. [PMID: 31563119 DOI: 10.1016/j.biosystems.2019.104032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/15/2019] [Indexed: 01/09/2023]
Abstract
Various RNAs (siRNAs, miRNAs, or mRNAs) can be delivered into cells by lipid nanoparticles (LNPs) of 50-150 nm in diameter. The subsequent RNA release from LNPs may occur via various scenarios. Herein, two related kinetic models are proposed. The first model takes into account that LNPs are often porous so that RNA molecules diffuse in and detach from nanopores. The analysis is focused on RNA diffusion from a pore. The analytical expression obtained for the RNA escape rate constant is used to identify the difference in the release of siRNAs, miRNAs, and mRNAs. The key message here is that the mRNA diffusion from pores appears to be too slow, and accordingly the mRNA release seems to occur primarily via degradation of LNPs. The second coarse-grained model describes the diffusion-mediated release of RNA from a LNP in the situation when this process is accompanied by the LNP degradation at the lipid-solution interface. The corresponding kinetics are shown in detail at different relative rates of the RNA diffusion and LNP degradation. Potentially, this can help to interpret drug plasma levels after various dosing regimens.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
17
|
Jõemetsa S, Spustova K, Kustanovich K, Ainla A, Schindler S, Eigler S, Lobovkina T, Lara-Avila S, Jesorka A, Gözen I. Molecular Lipid Films on Microengineering Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10286-10298. [PMID: 31369272 DOI: 10.1021/acs.langmuir.9b01120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we have systematically investigated the formation of molecular phospholipid films on a variety of solid substrates fabricated from typical surface engineering materials and the fluidic properties of the lipid membranes formed on these substrates. The surface materials comprise of borosilicate glass, mica, SiO2, Al (native oxide), Al2O3, TiO2, ITO, SiC, Au, Teflon AF, SU-8, and graphene. We deposited the lipid films from small unilamellar vesicles (SUVs) by means of an open-space microfluidic device, observed the formation and development of the films by laser scanning confocal microscopy, and evaluated the mode and degree of coverage, fluidity, and integrity. In addition to previously established mechanisms of lipid membrane-surface interaction upon bulk addition of SUVs on solid supports, we observed nontrivial lipid adhesion phenomena, including reverse rolling of spreading bilayers, spontaneous nucleation and growth of multilamellar vesicles, and the formation of intact circular patches of double lipid bilayer membranes. Our findings allow for accurate prediction of membrane-surface interactions in microfabricated devices and experimental environments where model membranes are used as functional biomimetic coatings.
Collapse
Affiliation(s)
- Silver Jõemetsa
- Department of Physics , Chalmers University of Technology , Fysikgränd 3 , 412 96 Gothenburg , Sweden
| | - Karolina Spustova
- Centre for Molecular Medicine Norway, Faculty of Medicine , University of Oslo , Gaustadalléen 21 , 0349 Oslo , Norway
| | - Kiryl Kustanovich
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , Kemigården 4 , 412 96 Gothenburg , Sweden
| | - Alar Ainla
- International Iberian Nanotechnology Laboratory , Av. Mestre José Veiga , 4715-330 Braga , Portugal
| | - Severin Schindler
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , Kemigården 4 , 412 96 Gothenburg , Sweden
| | - Siegfried Eigler
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Tatsiana Lobovkina
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , Kemigården 4 , 412 96 Gothenburg , Sweden
| | - Samuel Lara-Avila
- Department of Microtechnology and Nanoscience , Chalmers University of Technology , Kemivägen 9 , 412 96 , Gothenburg , Sweden
- National Physical Laboratory , Hampton Road , TW11 0LW Teddington , U.K
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , Kemigården 4 , 412 96 Gothenburg , Sweden
| | - Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine , University of Oslo , Gaustadalléen 21 , 0349 Oslo , Norway
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , Kemigården 4 , 412 96 Gothenburg , Sweden
- Department of Chemistry, Faculty of Mathematics and Natural Sciences , University of Oslo , Sem Sælands vei 26 , 0371 Oslo , Norway
| |
Collapse
|
18
|
Sut TN, Jackman JA, Yoon BK, Park S, Kolahdouzan K, Ma GJ, Zhdanov VP, Cho NJ. Influence of NaCl Concentration on Bicelle-Mediated SLB Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10658-10666. [PMID: 31318563 DOI: 10.1021/acs.langmuir.9b01644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The deposition of two-dimensional bicellar disks on hydrophilic surfaces is an emerging approach to fabricate supported lipid bilayers (SLBs) that requires minimal sample preparation, works at low lipid concentrations, and yields high-quality SLBs. While basic operating steps in the fabrication protocol mimic aspects of the conventional vesicle fusion method, lipid bicelles and vesicles have distinct architectural properties, and understanding how experimental parameters affect the efficiency of bicelle-mediated SLB formation remains to be investigated. Herein, using the quartz crystal microbalance-dissipation and localized surface plasmon resonance techniques, we investigated the effect of bulk NaCl concentration on bicelle-mediated SLB formation on silicon dioxide surfaces. For comparison, similar experiments were conducted with vesicles as well. In both cases, SLB formation was observed to occur rapidly provided that the NaCl concentration was sufficiently high (>50 mM). Under such conditions, the effect of NaCl concentration on SLB formation was minor in the case of bicelles and significant in the case of vesicles where it is expected to be related primarily to osmotic pressure. At lower NaCl concentrations, bicelles also formed SLBs but slowly, whereas adsorbed vesicles remained intact. These findings were complemented by time-lapsed fluorescence microscopy imaging and fluorescence recovery after photobleaching measurements that corroborated bicelle-mediated SLB formation across the range of tested NaCl concentrations. The results are discussed by comparing the architectural properties of bicelles and vesicles along with theoretical analysis of the corresponding adsorption kinetics.
Collapse
Affiliation(s)
- Tun Naw Sut
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Joshua A Jackman
- School of Chemical Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Soohyun Park
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Kavoos Kolahdouzan
- Department of Chemistry , Pomona College , 645 North College Avenue , Claremont , California 91711 , United States
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Vladimir P Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk 630090 , Russia
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive 637459 , Singapore
| |
Collapse
|
19
|
Sut TN, Jackman JA, Cho NJ. Understanding How Membrane Surface Charge Influences Lipid Bicelle Adsorption onto Oxide Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8436-8444. [PMID: 31141663 DOI: 10.1021/acs.langmuir.9b00570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The adsorption of two-dimensional bicellar disks onto solid supports is an emerging fabrication technique to form supported lipid bilayers (SLBs) that is efficient and requires minimal sample preparation. To date, nearly all relevant studies have focused on zwitterionic lipid compositions and silica-based surfaces, and extending the scope of investigation to other lipid compositions and surfaces would improve our understanding of application possibilities and underpinning formation processes. Herein, using the quartz crystal microbalance-dissipation technique, we systematically investigated the adsorption of charged lipid bicelles onto silicon dioxide, titanium oxide, and aluminum oxide surfaces. Depending on the lipid composition and substrate, we observed different adsorption pathways, including (i) SLB formation via one- or two-step adsorption kinetics, (ii) monotonic adsorption without SLB formation, and (iii) negligible adsorption. On each substrate, SLB formation could be achieved with particular lipid compositions, whereas the trend in adsorption pathways varied according to the substrate and could be controlled by adjusting the bicelle?substrate interaction strength. To rationalize these findings, we discuss how electrostatic and hydration forces affect bicelle?substrate interactions on different oxide surfaces. Collectively, our findings demonstrate the broad utility of lipid bicelles for SLB formation while revealing physicochemical insights into the role of interfacial forces in controlling bicelle adsorption pathways.
Collapse
Affiliation(s)
- Tun Naw Sut
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
| | - Joshua A Jackman
- School of Chemical Engineering , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue 639798 , Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive 637459 , Singapore
| |
Collapse
|