1
|
Sunny AS, Cleven EC, Kumar P, Venkataramani S, Walls JD, Ramamurthy V. Structure, Dynamics, and Reactivity of Encapsulated Molecules in Restricted Spaces: Arylazoisoxazoles within an Octa Acid Capsule. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17638-17655. [PMID: 39110852 DOI: 10.1021/acs.langmuir.4c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In this study, a well-defined organic capsule assembled from two octa acid (OA) molecules acting as host and select arylazoisoxazoles (AAIO) acting as guests were employed to demonstrate that confined molecules have restricted freedom that translates into reaction selectivity in both ground and excited states. The behavior of these AAIO guests in confined capsules was found to be different from that found in both crystals, where there is very little freedom, and in isotropic solvents, where there is complete freedom. Through one-dimensional (1D) and two-dimensional (2D) 1H NMR spectroscopic experiments, we have established a relationship between structure, dynamics and reactivity of molecules confined in an OA capsule. Introduction of CF3 and CH3 substitution at the 4-position of the aryl group of AAIO reveals that in addition to space confinement, weak interactions between the guest and the OA capsule control the dynamics and reactivity of guest molecules. 1H NMR studies revealed that there is a temperature-dependence to guest molecules tumbling (180° rotation along the capsular short axis) within an OA capsule. While 1H NMR points to the occurrence of tumbling motion, MD simulations and simulation of the temperature-dependent NMR signals provide an insight into the mechanism of tumbling within OA capsules. Thermal and photochemical isomerization of AAIO were found to occur within an OA capsule just as in organic solvents. The observed selectivity noted during thermal and photo induced isomerization of OA encapsulated AAIOs can be qualitatively understood in terms of the well-known concepts due to Bell-Evans-Polanyi (BEP principle), Hammond and Zimmerman.
Collapse
Affiliation(s)
- Amal Sam Sunny
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Elliott C Cleven
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Knowledge City, Manauli 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Knowledge City, Manauli 140306, Punjab, India
| | - Jamie D Walls
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | |
Collapse
|
2
|
Martin SM, Hamburger RC, Huang T, Fredin LA, Young ER. Controlling excited-state dynamics via protonation of naphthalene-based azo dyes. Phys Chem Chem Phys 2024; 26:10804-10813. [PMID: 38517000 DOI: 10.1039/d4cp00242c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Azo dyes are a class of photoactive dyes that constitute a major focus of chemical research due to their applications in numerous industrial functions. This work explores the impact of protonation on the photophysics of four naphthalene-based azo dyes. The pKa value of the dyes increases proportionally with decreasing Hammett parameter of p-phenyl substituents from 8.1 (R = -H, σ = 0) to 10.6 (R = -NMe2, σ = -0.83) in acetonitrile. Protonation of the dyes shuts down the steady-state photoisomerization observed in the unprotonated moieties. Fluorescence measurements reveal a lower quantum yield with more electron-donating p-phenyl substituents, with overall lower fluorescence quantum yields than the unprotonated dyes. Transient absorption spectroscopy reveals four excited-state lifetimes (<1 ps, ∼3 ps, ∼13 ps, and ∼200 ps) exhibiting faster excited-state dynamics than observed in the unprotonated forms (for 1-3: 0.7-1.5 ps, ∼3-4 ps, 20-40 ps, 20-300 min; for 4: 0.7 ps, 4.8 ps, 17.8 ps, 40 ps, 8 min). Time-dependent density functional theory (TDDFT) elucidates the reason for the loss of isomerization in the protonated dyes, revealing a significant change in the lowest excited state potential energy nature and landscape upon protonation. Protonation impedes relaxation along the typical rotational and inversion isomerization axes, locking the dyes into a trans-configuration that rapidly decays back to the ground state.
Collapse
Affiliation(s)
- Shea M Martin
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Robert C Hamburger
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Tao Huang
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Elizabeth R Young
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| |
Collapse
|
3
|
Gaur AK, Gupta D, Mahadevan A, Kumar P, Kumar H, Nampoothiry DN, Kaur N, Thakur SK, Singh S, Slanina T, Venkataramani S. Bistable Aryl Azopyrazolium Ionic Photoswitches in Water. J Am Chem Soc 2023; 145:10584-10594. [PMID: 37133353 DOI: 10.1021/jacs.2c13733] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report a new class of arylazopyrazolium-based ionic photoswitches (AAPIPs). These AAPIPs with different counter ions have been accessed through a modular synthetic approach in high yields. More importantly, the AAPIPs exhibit excellent reversible photoswitching and exceptional thermal stability in water. The effects of solvents, counter ions, substitutions, concentration, pH, and glutathione (GSH) have been evaluated using spectroscopic investigations. The results revealed that the bistability of studied AAPIPs is robust and near quantitative. The thermal half-life of Z isomers is extremely high in water (up to years), and it can be lowered electronically by the electron-withdrawing groups or highly basic pH.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Debapriya Gupta
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Anjali Mahadevan
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Pravesh Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Himanshu Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Dhanyaj Narayanan Nampoothiry
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Navneet Kaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sandeep Kumar Thakur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sanjay Singh
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542, Prague 6, Prague 160 00, Czech Republic
| | - Sugumar Venkataramani
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| |
Collapse
|
4
|
Dutta Choudhury S. Multiple Effects of an Anionic Cyclodextrin Macrocycle on the Reversible Isomerization of a Photoactive Guest Dye. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14819-14826. [PMID: 36398364 DOI: 10.1021/acs.langmuir.2c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding and controlling the reversible isomerization of photoactive molecules in order to obtain a tunable optical response is desirable for many photofunctional applications. This study describes the interesting effects of an anionic cyclodextrin host (sulfated-βCD, SCD) on the photoisomerization and protonation equilibrium of an important hemicyanine dye (trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide, DSP). The SCD host assists in unlocking the photoisomerization potential of DSP by promoting protonation of the dye. It also assists in stabilizing the cis isomer of the protonated dye, thereby significantly delaying the reverse cis to trans isomerization of DSPH+. Furthermore, the interplay of both hydrophobic and electrostatic interactions in the complex formation of SCD with DSPH+ makes the reverse cis to trans isomerization of DSPH+ amenable to influence by the added salt. The stimuli-responsive reversible isomerization of SCD-DSPH+ is an interesting case from the perspective of chemical sensing or light operated functional materials with host-guest systems.
Collapse
Affiliation(s)
- Sharmistha Dutta Choudhury
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai400 085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai400094, India
| |
Collapse
|
5
|
Obloy LM, El-Khoury PZ, Tarnovsky AN. Excited-State-Selective Ultrafast Relaxation Dynamics and Photoisomerization of trans-4,4'-Azopyridine. J Phys Chem Lett 2022; 13:10863-10870. [PMID: 36384033 DOI: 10.1021/acs.jpclett.2c02523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Excited-state dynamics of trans-4,4'-azopyridine in ethanol is studied using femtosecond transient absorption with 30 fs temporal resolution. Exciting the system at three different wavelengths, 460 and 290 (275) nm, to access the S1 nπ* and S2 ππ* electronic states, respectively, reveals a 195 cm-1 vibrational coherence, which suggests that the same mode is active in both nπ* and ππ* relaxation channels. Following S1-excitation, relaxation proceeds via a nonrotational pathway, where a fraction of the nπ* population is trapped in a planar minimum (lifetime, 2.1 ps), while the remaining population travels further to a second shallow minimum (lifetime, 300 fs) prior to decay into the ground state. Population of the S2 state leads to 30 fs nonrotational relaxation with a concurrent buildup of nπ* population and nearly simultaneous formation of hot ground-state species. An increase in the cis-isomer quantum yield upon ππ* versus nπ* excitation is observed, which is opposite to trans-azobenzene.
Collapse
Affiliation(s)
- Laura M Obloy
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Patrick Z El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Alexander N Tarnovsky
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
6
|
Khadka D, Kulasekharan R, Ramamurthy V. Role of Supramolecular Steric Compression During Photoinduced Intramolecular Hydrogen Abstraction Reactions of Ketones and Thioketones. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Ramamurthy V, Sen P, Elles CG. Ultrafast Excited State Dynamics of Spatially Confined Organic Molecules. J Phys Chem A 2022; 126:4681-4699. [PMID: 35786917 DOI: 10.1021/acs.jpca.2c03276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This Feature Article highlights the role of spatial confinement in controlling the fundamental behavior of molecules. Select examples illustrate the value of using space as a tool to control and understand excited-state dynamics through a combination of ultrafast spectroscopy and conventional steady-state methods. Molecules of interest were confined within a closed molecular capsule, derived from a cavitand known as octa acid (OA), whose internal void space is sufficient to accommodate molecules as long as tetracene and as wide as pyrene. The free space, i.e., the space that is left following the occupation of the guest within the host, is shown to play a significant role in altering the behavior of guest molecules in the excited state. The results reported here suggest that in addition to weak interactions that are commonly emphasized in supramolecular chemistry, the extent of empty space (i.e., the remaining void space within the capsule) is important in controlling the excited-state behavior of confined molecules on ultrafast time scales. For example, the role of free space in controlling the excited-state dynamics of guest molecules is highlighted by probing the cis-trans isomerization of stilbenes and azobenzenes within the OA capsule. Isomerization of both types of molecule are slowed when they are confined within a small space, with encapsulated azobenzenes taking a different reaction pathway compared to that in solution upon excitation to S2. In addition to steric constraints, confinement of reactive molecules in a small space helps to override the need for diffusion to bring the reactants together, thus enabling the measurement of processes that occur faster than the time scale for diffusion. The advantages of reducing free space and confining reactive molecules are illustrated by recording unprecedented excimer emission from anthracene and by measuring ultrafast electron transfer rates across the organic molecular wall. By monitoring the translational motion of anthracene pairs in a restricted space, it has been possible to document the pathway undertaken by excited anthracene from inception to the formation of the excimer on the excited-state surface. Similarly, ultrafast electron transfer experiments pursued here have established that the process is not hindered by a molecular wall. Apparently, the electron can cross the OA capsule wall provided the donor and acceptor are in close proximity. Measurements on the ultrafast time scale provide crucial insights for each of the examples presented here, emphasizing the value of both "space" and "time" in controlling and understanding the dynamics of excited molecules.
Collapse
Affiliation(s)
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Christopher G Elles
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
8
|
Jayawardana SG, Madura EC, García-López V. Photocatalytic molecular containers enable unique reactivity modes in confinement. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Gao Y, Wang Y, Guo Z, Wan Y, Li C, Yang B, Yang W, Ma X. Ultrafast Photophysics of Multiple-Resonance Ultrapure Blue Emitters. J Phys Chem B 2022; 126:2729-2739. [PMID: 35381179 DOI: 10.1021/acs.jpcb.2c00144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters are becoming increasingly attractive due to their applications in high-resolution organic light-emitting diode (OLED) display technology. Here, we present an investigation on the photophysics of two MR-TADF emitters (t-DABNA and TBN-TPA) by using quantum chamical calculation and ultrafast transient absorption (TA) spectroscopy. Compared with one-step structural planarization of t-DABNA, TBN-TPA undergoes two-step relaxation in S1 state, i.e., fast twisting of the peripheral group and subsequent restrained planarization of the B-N framework. The efficient twisting motion of the peripheral group largely reduces the energy level of the TBN-TPA system and correspondingly increases the barrier for subsequent planarization, which is favored for the narrowband emission. Our work provides a detailed picture for the excited-state deactivation of peripheral group-modified MR-TADF emitters without a pronounced charge-transfer (CT) characteristic mixed in the lowest-lying fluorescent state, which might be helpful for the future design of narrowband OLED emitters.
Collapse
Affiliation(s)
- Yixuan Gao
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Yaxin Wang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China.,Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
10
|
Sah C, Mahadevan A, Kumar P, Venkataramani S. The curious case of the photochemistry of 2-hydroxyphenylazo-3,5-dimethylisoxazole: Unravelling the process among tautomer-ization, photoisomerization, and conformational changes. Phys Chem Chem Phys 2022; 24:7848-7855. [DOI: 10.1039/d1cp05344b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoswitching in azo compounds is well established. Typically, the planar trans molecule (native) can undergo isomerization to cis isomer and vice versa in solution by light. However, observing such photochemistry...
Collapse
|
11
|
Sartin MM, Osawa M, Takeuchi S, Tahara T. Ultrafast dynamics of an azobenzene-containing molecular shuttle based on a rotaxane. Chem Commun (Camb) 2021; 58:961-964. [PMID: 34935779 DOI: 10.1039/d1cc06093g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultrafast spectroscopic study was carried out for a photoisomerizable, rotaxane-based molecular shuttle, in which photoisomerization of the azobenzene moiety of the thread-like guest drives a shuttling motion of a cyclodextrin host. Femtosecond upconversion and time-resolved absorption measurements revealed distinct S1 dynamics with time constants of 1.2 and 17 ps. Both time constants are smaller when the cyclodextrin host is absent, implying that, within the S1 state, there are mutiple barriers to the isomerization and subsequent shuttling, due to steric interference from the cyclodextrin.
Collapse
Affiliation(s)
- Matthew M Sartin
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Masahisa Osawa
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Wortmann S, Schloeglmann S, Nuernberger P. Sensitivity of Isomerization Kinetics of 1,3,5-Triphenylformazan on Cosolvents Added to Toluene. J Org Chem 2021; 87:1745-1755. [PMID: 34843237 DOI: 10.1021/acs.joc.1c01928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formazan molecules exhibit photochromism because isomerization processes following excitation may occur in both the azo group and the hydrazone group; thus, each formazan may be present in various forms with different colors. The ratio of these forms depends on the illumination conditions and the environment of the formazan with a most incisive sensibility of the thermal anti-syn relaxation of the C═N toward slight traces of impurities in toluene solutions, as reported most prominently for 1,3,5-triphenylformazan. Here, we study the latter compound with transient absorption spectroscopy to investigate the role of these traces by adding small amounts of both protic and aprotic cosolvents. Whereas the activation barrier decreases if the binary solvent mixture has a higher polarity, the role of hydrogen bonding can have a reverse impact on the thermal isomerization rate. Both the addition of an aprotic cosolvent and the addition of a protic cosolvent can slow the reaction due to their hydrogen-bond accepting and hydrogen-bond donating properties, respectively. In the case of methanol as a cosolvent, this effect outweighed that of the polarity increase for small concentrations, which was not observed for the fluorinated alcohol hexafluoroisopropanol. The results are explained in the context of a competition between solute-cosolvent and cosolvent-cosolvent hydrogen bonding.
Collapse
Affiliation(s)
- Svenja Wortmann
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Sylvia Schloeglmann
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
13
|
Heisler IA, Meech SR. Altered relaxation dynamics of excited state reactions by confinement in reverse micelles probed by ultrafast fluorescence up-conversion. Chem Soc Rev 2021; 50:11486-11502. [PMID: 34661209 DOI: 10.1039/d1cs00516b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chemical reactions in confined environments are important in areas as diverse as heterogenous catalysis, environmental chemistry and biochemistry, yet they are much less well understood than the equivalent reactions in either the gas phase or in free solution. The understanding of chemical reactions in solution was greatly enhanced by real time studies of model reactions, through ultrafast spectroscopy (especially when supported by molecular dynamics simulation). Here we review some of the efforts that have been made to adapt this approach to the investigation of reactions in confined media. Specifically, we review the application of ultrafast fluorescence spectroscopy to measure reaction dynamics in the nanoconfined water phase of reverse micelles, as a function of the droplet radius and the charge on the interface. Methods of measurement and modelling of the reactions are outlined. In all of the cases studied (which are focused on ultrafast intramolecular reactions) the effect of confinement was to suppress the reaction. Even in the largest micelles the result in the bulk aqueous phase was not usually recovered, suggesting an important role for specific interactions between reactant and environment, for example at the interface. There was no simple one-to-one correspondence with direct measures of the dynamics of the confined phase. Thus, understanding the effect of confinement on reaction rate appears to require not only knowledge of the dynamics of the reaction in solutions and the effect of confinement on the medium, but also of the interaction between reactant and confining medium.
Collapse
Affiliation(s)
- Ismael A Heisler
- Departamento de Física, Universidade Federal do Paraná, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
14
|
Otolski CJ, Raj AM, Ramamurthy V, Elles CG. Spatial confinement alters the ultrafast photoisomerization dynamics of azobenzenes. Chem Sci 2020; 11:9513-9523. [PMID: 34094217 PMCID: PMC8162038 DOI: 10.1039/d0sc03955a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans-azobenzene (t-Az) and several alkyl-substituted t-Az derivatives encapsulated in a water-soluble supramolecular host-guest complex. Encapsulation increases the excited-state lifetimes and alters the yields of the trans → cis photoisomerization reaction compared with solution. Kinetic modeling of the transient spectra for unsubstituted t-Az following nπ* and ππ* excitation reveals steric trapping of excited-state species, as well as an adiabatic excited-state trans → cis isomerization pathway for confined molecules that is not observed in solution. Analysis of the transient spectra following ππ* excitation for a series of 4-alkyl and 4,4'-dialkyl substituted t-Az molecules suggests that additional crowding due to lengthening of the alkyl tails results in deeper trapping of the excited-state species, including distorted trans and cis structures. The variation of the dynamics due to crowding in the confined environment provides new evidence to explain the violation of Kasha's rule for nπ* and ππ* excitation of azobenzenes based on competition between in-plane inversion and out-of-plane rotation channels.
Collapse
Affiliation(s)
| | - A Mohan Raj
- Department of Chemistry, University of Miami Coral Gables Florida USA
| | | | | |
Collapse
|
15
|
Marefat Khah A, Reinholdt P, Nuernberger P, Kongsted J, Hättig C. Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation. J Chem Theory Comput 2020; 16:5203-5211. [DOI: 10.1021/acs.jctc.0c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Christof Hättig
- Quantum Chemistry Group, Ruhr University of Bochum, D-44780 Bochum, Germany
| |
Collapse
|
16
|
Balakina MY, Shalin NI, Sharipova AV, Fominykh OD. The effect of cyano-containing acceptor moieties on the photoisomerisation mechanisms and UV/vis spectra of azochromophores with switchable nonlinear optical activity. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1800851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Marina Yu. Balakina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
- Kazan Federal University, Alexander Butlerov Institute of Chemistry, Kazan, Russian Federation
| | - Nikita I. Shalin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
- Kazan Federal University, Alexander Butlerov Institute of Chemistry, Kazan, Russian Federation
| | - Anastasiya V. Sharipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Olga D. Fominykh
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
17
|
Sotome H, Okajima H, Nagasaka T, Tachii Y, Sakamoto A, Kobatake S, Irie M, Miyasaka H. Geometrical Evolution and Formation of the Photoproduct in the Cycloreversion Reaction of a Diarylethene Derivative Probed by Vibrational Spectroscopy. Chemphyschem 2020; 21:1524-1530. [PMID: 32489017 DOI: 10.1002/cphc.202000315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Indexed: 02/04/2023]
Abstract
The geometrical evolution of the reactant and formation of the photoproduct in the cycloreversion reaction of a diarylethene derivative were probed using time-resolved absorption spectroscopies in the visible to near-infrared and mid-infrared regions. The time-domain vibrational data in the visible region show that the initially formed Franck-Condon state is geometrically relaxed into the minimum in the excited state potential energy surface, concomitantly with the low-frequency coherent vibrations. Theoretical calculations indicate that the nuclear displacement in this coherent vibration is nearly parallel to that in the geometrical relaxation. Time-resolved mid-infrared spectroscopy directly detected the formation of the open-ring isomer with the same time constant as the decrease of the closed-ring isomer in the excited state minimum. This observation reveals that no detectable intermediate, in which the population is accumulated, is present between the excited closed-ring isomer and the open-ring isomer in the ground state.
Collapse
Affiliation(s)
- Hikaru Sotome
- Division of Frontier Materials Science and, Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Hajime Okajima
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan
| | - Tatsuhiro Nagasaka
- Division of Frontier Materials Science and, Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yuka Tachii
- Division of Frontier Materials Science and, Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Akira Sakamoto
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan
| | - Seiya Kobatake
- Department of Applied Chemistry Graduate School of Engineering, Osaka City University, Sumiyoshi, Osaka, Japan
| | - Masahiro Irie
- Department of Chemistry and, Research Center for Smart Molecules, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and, Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
18
|
Nagasaka T, Sotome H, Morikawa S, Uriarte LM, Sliwa M, Kawai T, Miyasaka H. Restriction of the conrotatory motion in photo-induced 6π electrocyclic reaction: formation of the excited state of the closed-ring isomer in the cyclization. RSC Adv 2020; 10:20038-20045. [PMID: 35520419 PMCID: PMC9054205 DOI: 10.1039/d0ra03523h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
The electrocyclic reaction dynamics of a photochromic dithiazolylarylene derivative, 2,3-dithiazolylbenzothiophene (DTA) was investigated by using time-resolved transient absorption and fluorescence spectroscopies. The closed-ring isomer of DTA undergoes cycloreversion through the conical intersection mediating the potential energy surfaces of the excited and ground states, which is in agreement with the Woodward–Hoffmann rules for the electrocyclic reactions of 6π electron systems. On the other hand, a large portion of the open-ring isomer undergoes cyclization along the distinct reaction scheme, in which the cyclization takes place in the excited state manifold leading to the formation of the excited state of the closed-ring isomer. The suppression of the geometrical motion of DTA due to the intramolecular interaction could open a new efficient reaction pathway resulting in the formation of the electronically excited state of the product. Restriction of the molecular geometry opens up a novel pathway in the cyclization reaction of a photochromic dithiazolylarylene derivative.![]()
Collapse
Affiliation(s)
- Tatsuhiro Nagasaka
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Soichiro Morikawa
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Lucas Martinez Uriarte
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman Lille 59000 France
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman Lille 59000 France
| | - Tsuyoshi Kawai
- Graduate School of Science and Technology, Division of Materials Science, Nara Institute of Science and Technology Ikoma Nara 630-0192 Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
19
|
Shi Y, Zhao X, Wang C, Wang Y, Zhang S, Li P, Feng X, Jin B, Yuan M, Cui S, Sun Y, Zhang B, Sun S, Jin X, Wang H, Zhao G. Ultrafast Nonadiabatic Photoisomerization Dynamics Mechanism for the UV Photoprotection of Stilbenoids in Grape Skin. Chem Asian J 2020; 15:1478-1483. [PMID: 32196972 DOI: 10.1002/asia.202000219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Natural UV photoprotection plays a vital role in physiological protection. It has been reported that UVC radiation can make resveratrol (RSV) and piceatannol (PIC) accumulate in grape skin. In this work, we demonstrated that RSV and PIC could significantly absorb UVA and UVB, and confirmed their satisfactory photostability. Furthermore, we clarified the UV photoprotection mechanism of typical stilbenoids of RSV and PIC for the first time by using combined femtosecond transient absorption (FTA) spectroscopy and time-dependent density functional theory (TD-DFT) calculations. RSV and PIC can be photoexcited to the excited state after UVA and UVB absorption. Subsequently, the photoisomerized RSV and PIC quickly relax to the ground state via nonadiabatic transition from the S1 state at a conical intersection (CI) position between potential energy surfaces (PESs) of S1 and S0 states. This ultrafast trans-cis photoisomerization will take place within a few tens of picoseconds. As a result, the UV energy absorbed by RSV and PIC could be dissipated by an ultrafast nonadiabatic photoisomerization process.
Collapse
Affiliation(s)
- Yanan Shi
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Xiaoying Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Chao Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Ye Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Peng Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266235, P. R. China
| | - Xia Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Bing Jin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Minghu Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shen Cui
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Yan Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shuqing Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Xiaoning Jin
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Haiyuan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
20
|
Isac DL, Airinei A, Homocianu M, Fifere N, Cojocaru C, Hulubei C. Photochromic properties of some azomaleimide derivatives and DFT quantum chemical study of thermal cis-trans isomerization pathways. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Mohan A, Sasikumar D, Bhat V, Hariharan M. Metastable Chiral Azobenzenes Stabilized in a Double Racemate. Angew Chem Int Ed Engl 2020; 59:3201-3208. [DOI: 10.1002/anie.201910687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Amalu Mohan
- School of chemistryIndian institute of science education and Research Thiruvananthapuram (IISER-TVM) Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Devika Sasikumar
- School of chemistryIndian institute of science education and Research Thiruvananthapuram (IISER-TVM) Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Vinayak Bhat
- School of chemistryIndian institute of science education and Research Thiruvananthapuram (IISER-TVM) Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Mahesh Hariharan
- School of chemistryIndian institute of science education and Research Thiruvananthapuram (IISER-TVM) Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
22
|
|
23
|
Megow S, Fitschen HL, Tuczek F, Temps F. Ultrafast Photodynamics of an Azopyridine-Functionalized Iron(II) Complex: Implications for the Concept of Ligand-Driven Light-Induced Spin Change. J Phys Chem Lett 2019; 10:6048-6054. [PMID: 31549841 DOI: 10.1021/acs.jpclett.9b02083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report on the ultrafast photodynamics of an iron(II) complex with a photoisomerizable pentadentate azo-tetrapyridylamino ligand after irradiation with ultraviolet light. The results of femtosecond transient electronic absorption spectroscopy performed on the low-spin (LS) form of the title complex show that initial excitation of the ππ* state of the azopyridine unit in the ligand at λpump = 312 nm is followed by an ultrafast intersystem crossing (ISC) that leads to the formation of a metal-centered (MC) 5T state, in competition with the intended photoswitching of the azopyridine unit. Additional measurements carried out upon excitation of the singlet metal-to-ligand charge-transfer (1MLCT) transition at λpump = 455 nm suggest that this energy transfer occurs via an MLCT state. The resulting high-spin (HS) 5T state of the complex is metastable and recovers to the LS ground state with a time constant of ∼3 ns. The implications of these observations on the ligand-driven light-induced spin change concept are discussed.
Collapse
Affiliation(s)
- Sebastian Megow
- Institut für Physikalische Chemie , Christian-Albrechts-Universität , Olshausenstrasse 40 , 24098 Kiel , Germany
| | - Henrike-Leonie Fitschen
- Institut für Anorganische Chemie , Christian-Albrechts-Universität , Olshausenstrasse 40 , 24098 Kiel , Germany
| | - Felix Tuczek
- Institut für Anorganische Chemie , Christian-Albrechts-Universität , Olshausenstrasse 40 , 24098 Kiel , Germany
| | - Friedrich Temps
- Institut für Physikalische Chemie , Christian-Albrechts-Universität , Olshausenstrasse 40 , 24098 Kiel , Germany
| |
Collapse
|
24
|
Raj AM, Sharma G, Prabhakar R, Ramamurthy V. Space Constrained Stereoselective Geometric Isomerization of 1,2-Diphenylcyclopropane and Stilbenes in an Aqueous Medium. Org Lett 2019; 21:5243-5247. [PMID: 31247756 DOI: 10.1021/acs.orglett.9b01176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Confinement provided by the reaction space alters the photostationary state isomer distribution during the geometric isomerization of excited 1,2-diphenylcyclopropane and stilbenes. The selectivity in 1,2-diphenylcyclopropane is suggested to result from the supramolecular steric hindrance exerted by the medium for the rotational motion. The alteration in the selectivity between a dimethyl and n-propyl substituted stilbenes is attributed to the medium influence on the location of the transition state on the ground state surface.
Collapse
Affiliation(s)
- A Mohan Raj
- Department of Chemistry , University of Miami , Coral Cables , Florida 33124 , United States
| | - Gaurav Sharma
- Department of Chemistry , University of Miami , Coral Cables , Florida 33124 , United States
| | - Rajeev Prabhakar
- Department of Chemistry , University of Miami , Coral Cables , Florida 33124 , United States
| | - V Ramamurthy
- Department of Chemistry , University of Miami , Coral Cables , Florida 33124 , United States
| |
Collapse
|
25
|
Otolski CJ, Mohan Raj A, Sharma G, Prabhakar R, Ramamurthy V, Elles CG. Ultrafast trans → cis Photoisomerization Dynamics of Alkyl-Substituted Stilbenes in a Supramolecular Capsule. J Phys Chem A 2019; 123:5061-5071. [PMID: 31140802 DOI: 10.1021/acs.jpca.9b03285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ultrafast spectroscopy reveals the effects of confinement on the excited-state photoisomerization dynamics for a series of alkyl-substituted trans-stilbenes encapsulated in the hydrophobic cavity of an aqueous supramolecular organic host-guest complex. Compared with the solvated compounds, encapsulated trans-stilbenes have broader excited-state absorption spectra, excited-state lifetimes that are 3-4 times longer, and photoisomerization quantum yields that are 1.7-6.5 times lower in the restricted environment. The organic capsule disrupts the equilibrium structure and restricts torsional rotation around the central C═C double bond in the excited state, which is an important motion for the relaxation of trans-stilbene from S1 to S0. The location and identity of alkyl substituents play a significant role in determining the excited-state dynamics and photoisomerization quantum yields by tuning the relative crowding inside the capsule. The results are discussed in terms of distortions of the ground- and excited-state potential energy surfaces, including the topology of the S1-S0 conical intersection.
Collapse
Affiliation(s)
- Christopher J Otolski
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - A Mohan Raj
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Gaurav Sharma
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Rajeev Prabhakar
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | | | - Christopher G Elles
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
26
|
Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range. Nat Commun 2019; 10:2390. [PMID: 31160552 PMCID: PMC6546742 DOI: 10.1038/s41467-019-10251-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Light is an exceptional external stimulus for establishing precise control over the properties and functions of chemical and biological systems, which is enabled through the use of molecular photoswitches. Ideal photoswitches are operated with visible light only, show large separation of absorption bands and are functional in various solvents including water, posing an unmet challenge. Here we show a class of fully-visible-light-operated molecular photoswitches, Iminothioindoxyls (ITIs) that meet these requirements. ITIs show a band separation of over 100 nm, isomerize on picosecond time scale and thermally relax on millisecond time scale. Using a combination of advanced spectroscopic and computational techniques, we provide the rationale for the switching behavior of ITIs and the influence of structural modifications and environment, including aqueous solution, on their photochemical properties. This research paves the way for the development of improved photo-controlled systems for a wide variety of applications that require fast responsive functions. The design of photoswitches which operate in the visible light regime, show a large separation of absorption bands and are functional in various solvents is challenging. Here the authors report Iminothioindoxyls as visible-light operated photoswitches with a band separation of 100 nm.
Collapse
|
27
|
Aulin YV, Liu M, Piotrowiak P. Ultrafast Vibrational Cooling Inside of a Molecular Container. J Phys Chem Lett 2019; 10:2434-2438. [PMID: 31018088 DOI: 10.1021/acs.jpclett.9b00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vibrational cooling of azulene encapsulated in a hemicarcerand molecular container was studied by pump-probe spectroscopy. Within 1.5 ps of excitation of azulene to the S1 state, rapid internal conversion through a conical intersection leads to the formation of a vibrationally hot (∼1080 K) ground state, the subsequent cooling of which can be monitored by tracking the evolution of the red-shifted hot band at the edge of the ground-state absorption. It was found that the cooling of the hot S0 state of azulene in the host-guest complex (hemicarceplex) is 2-4 times faster than that in common organic solvents. Such large acceleration points to a high density of matching vibrational modes and efficient mechanical coupling between the guest and the host. The experimental observations were fully corroborated by the results of molecular dynamics simulations.
Collapse
Affiliation(s)
- Yaroslav V Aulin
- Department of Chemistry , Rutgers University-Newark , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Mengdi Liu
- Department of Chemistry , Rutgers University-Newark , 73 Warren Street , Newark , New Jersey 07102 , United States
| | - Piotr Piotrowiak
- Department of Chemistry , Rutgers University-Newark , 73 Warren Street , Newark , New Jersey 07102 , United States
| |
Collapse
|
28
|
Philip AM, Gudem M, Sebastian E, Hariharan M. Decoding the Curious Tale of Atypical Intersystem Crossing Dynamics in Regioisomeric Acetylanthracenes. J Phys Chem A 2019; 123:6105-6112. [DOI: 10.1021/acs.jpca.9b00766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Abbey M. Philip
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Mahesh Gudem
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
29
|
Qian S, Li S, Xiong W, Khan H, Huang J, Zhang W. A new visible light and temperature responsive diblock copolymer. Polym Chem 2019. [DOI: 10.1039/c9py01050e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A visible light and temperature responsive diblock copolymer of poly[6-(2,6,2′,6′-tetramethoxy-4′-oxyazobenzene) hexyl methacrylate]-block-poly(N-isopropylacrylamide) (PmAzo-b-PNIPAM) was synthesized via RAFT polymerization by carefully tuning the polymerization conditions.
Collapse
Affiliation(s)
- Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Weifeng Xiong
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Habib Khan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Jing Huang
- Sinopec Research Institute of Petroleum Engineering
- Beijing
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|