1
|
Jelenfi DP, Tajti A, Szalay PG. Interpretation of molecular electron transport in ab initio many-electron framework incorporating zero-point nuclear motion effects. J Comput Chem 2024; 45:1968-1979. [PMID: 38703360 DOI: 10.1002/jcc.27381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
A computational methodology, founded on chemical concepts, is presented for interpreting the role of nuclear motion in the electron transport through single-molecule junctions (SMJ) using many-electron ab initio quantum chemical calculations. Within this approach the many-electron states of the system, computed at the SOS-ADC(2) level, are followed along the individual normal modes of the encapsulated molecules. The inspection of the changes in the partial charge distribution of the many-electron states allows the quantification of the electron transport and the estimation of transmission probabilities. This analysis improves the understanding of the relationship between internal motions and electron transport. Two SMJ model systems are studied for validation purposes, constructed from a conductor (BDA, benzene-1,4-diamine) and an insulator molecule (DABCO, 1,4-diazabicyclo[2.2.2]octane). The trends of the resulting transmission probabilities are in agreement with the experimental observations, demonstrating the capability of the approach to distinguish between conductor and insulator type systems, thereby offering a straightforward and cost-effective tool for such classifications via quantum chemical calculations.
Collapse
Affiliation(s)
- Dávid P Jelenfi
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Chemistry, Laboratory of Theoretical Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Tajti
- Institute of Chemistry, Laboratory of Theoretical Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Péter G Szalay
- Institute of Chemistry, Laboratory of Theoretical Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Qi Q, Tian G, Ma L. Enhancing the thermopower of single-molecule junctions by edge substitution effects. Phys Chem Chem Phys 2024; 26:11340-11346. [PMID: 38564269 DOI: 10.1039/d3cp06176k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Heteroatom substitution and anchoring groups have an important impact on the thermoelectric properties of single-molecule junctions. Herein, thermoelectric properties of several anthracene derivative based single-molecule junctions are studied by means of first-principles calculations. In particular, we pay great attention to the edge substitution effects and find that edge substitution with nitrogen can induce a transmission peak near the Fermi energy, leading to large transmission coefficients and electrical conductance at the Fermi energy. Additionally, the steep shape of the transmission function gives rise to a high Seebeck coefficient. Therefore, an enhanced power factor can be expected. The robustness of this edge substitution effect has been examined by altering the electrode distance and introducing heteroatoms at different positions. The enhancement of the power factor due to edge substitution makes the studied single-molecule junction a promising candidate for efficient thermoelectric devices.
Collapse
Affiliation(s)
- Qiang Qi
- State Key Laboratory of Metastable Material Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Guangjun Tian
- State Key Laboratory of Metastable Material Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Liang Ma
- State Key Laboratory of Metastable Material Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| |
Collapse
|
3
|
Bajaj A, Ali ME. Anti-ohmic nanoconductors: myth, reality and promise. Phys Chem Chem Phys 2023; 25:9607-9616. [PMID: 36942699 DOI: 10.1039/d3cp00366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The recent accomplishment in the design of molecular nanowires characterized by increasing conductance with length has led to the origin of an extraordinary new family of molecular junctions referred to as "anti-ohmic" wires. Herein, this highly desirable, non-classical behavior, has been examined for molecules long-enough to exhibit pronounced diradical character in their ground state within the unrestricted DFT formalism with spin symmetry breaking. We demonstrate that highly conjugated acenes signal higher resistance in an open-shell singlet (OSS) configuration as compared to their closed-shell counterparts. This anomaly has been further proven for experimentally certified cumulene wires, which reveals phenomenal modulation in the transport characteristics such that an increasing conductance is observed in the closed-shell limit, while higher cumulenes in the OSS ground state yield regular decay of conductance.
Collapse
Affiliation(s)
- Ashima Bajaj
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| |
Collapse
|
4
|
Feng A, Zhou Y, Al-Shebami MAY, Chen L, Pan Z, Xu W, Zhao S, Zeng B, Xiao Z, Yang Y, Hong W. σ-σ Stacked supramolecular junctions. Nat Chem 2022; 14:1158-1164. [PMID: 35902741 DOI: 10.1038/s41557-022-01003-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Intermolecular charge transport plays an essential role in organic electronic materials and biological systems. To date, experimental investigations of intermolecular charge transport in molecular materials and electronic devices have been restricted to conjugated systems in which π-π stacking interactions are involved. Herein we demonstrate that the σ-σ stacking interactions between neighbouring non-conjugated molecules offer an efficient pathway for charge transport through supramolecular junctions. The conductance of σ-σ stacked molecular junctions formed between two non-conjugated cyclohexanethiol or single-anchored adamantane molecules is comparable to that of π-π stacked molecular junctions formed between π-conjugated benzene rings. The current-voltage characteristics and flicker noise analysis demonstrate the existence of stacked molecular junctions formed between the electrode pairs and exhibit the characteristics of through-space charge transport. Density functional theory calculations combined with the non-equilibrium Green's function method reveal that efficient charge transport occurs between two molecules configured with σ-σ stacking interactions.
Collapse
Affiliation(s)
- Anni Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Mohammed A Y Al-Shebami
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Zhichao Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Biaofeng Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Garner MH, Koerstz M, Jensen JH, Solomon GC. Substituent Control of σ-Interference Effects in the Transmission of Saturated Molecules. ACS PHYSICAL CHEMISTRY AU 2022; 2:282-288. [PMID: 36855417 PMCID: PMC9955259 DOI: 10.1021/acsphyschemau.2c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The single-molecule conductance of saturated molecules can potentially be fully suppressed by destructive quantum interference in their σ-system. However, only few molecules with σ-interference have been identified, and the structure-property relationship remains to be elucidated. Here, we explore the role of substituents in modulating the electronic transmission of saturated molecules. In functionalized bicyclo[2.2.2]octanes, the transmission is suppressed by σ-interference when fluorine substituents are applied. For bicyclo[2.2.2]octasilane and -octagermanes, the transmission is suppressed when carbon-based substituents are used, and such molecules are likely to be highly insulating. For the carbon-based substituents, we find a strong correlation between the appropriate Hammett constants and the transmission. The substituent effect enables systematic optimization of the insulating properties of saturated molecular cores.
Collapse
Affiliation(s)
- Marc H. Garner
- Nano-Science
Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark,Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Mads Koerstz
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Jan H. Jensen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Gemma C. Solomon
- Nano-Science
Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark,Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark,
| |
Collapse
|
6
|
Zhang B, Garner MH, Li L, Campos LM, Solomon GC, Venkataraman L. Destructive quantum interference in heterocyclic alkanes: the search for ultra-short molecular insulators. Chem Sci 2021; 12:10299-10305. [PMID: 34476051 PMCID: PMC8386164 DOI: 10.1039/d1sc02287c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/25/2021] [Indexed: 11/21/2022] Open
Abstract
Designing highly insulating sub-nanometer molecules is difficult because tunneling conductance increases exponentially with decreasing molecular length. This challenge is further enhanced by the fact that most molecules cannot achieve full conductance suppression with destructive quantum interference. Here, we present results for a series of small saturated heterocyclic alkanes where we show that conductance is suppressed due to destructive interference. Using the STM-BJ technique and density functional theory calculations, we confirm that their single-molecule junction conductance is lower than analogous alkanes of similar length. We rationalize the suppression of conductance in the junctions through analysis of the computed ballistic current density. We find there are highly symmetric ring currents, which reverse direction at the antiresonance in the Landauer transmission near the Fermi energy. This pattern has not been seen in earlier studies of larger bicyclic systems exhibiting interference effects and constitutes clear-cut evidence of destructive σ-interference. The finding of heterocyclic alkanes with destructive quantum interference charts a pathway for chemical design of short molecular insulators using organic molecules.
Collapse
Affiliation(s)
- Boyuan Zhang
- Department of Applied Physics and Applied Mathematics, Columbia University, New York New York 10027 USA
| | - Marc H Garner
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Liang Li
- Department of Chemistry, Columbia University, New York New York 10027 USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York New York 10027 USA
| | - Gemma C Solomon
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Latha Venkataraman
- Department of Applied Physics and Applied Mathematics, Columbia University, New York New York 10027 USA .,Department of Chemistry, Columbia University, New York New York 10027 USA
| |
Collapse
|
7
|
Valdiviezo J, Rocha P, Polakovsky A, Palma JL. Nonexponential Length Dependence of Molecular Conductance in Acene-Based Molecular Wires. ACS Sens 2021; 6:477-484. [PMID: 33411533 DOI: 10.1021/acssensors.0c02049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the nonresonant regime, molecular conductance decays exponentially with distance, limiting the fabrication of efficient molecular semiconductors at the nanoscale. In this work, we calculate the conductance of a series of acene derivatives connected to gold electrodes using density functional theory (DFT) combined with the nonequilibrium Green's function (NEGF) formalism. We show that these systems have near length-independent conductance and can exhibit a conductance increase with molecular length depending on the connection to the electrodes. The analysis of the molecular orbital energies and transmission functions attribute this behavior to the dramatic decrease of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap with length, which shifts the transmission peaks near the Fermi level. These results demonstrate that the anchoring configuration determines the conductance behavior of acene derivatives, which are optimal building blocks to fabricate single-molecule devices with tunable charge transport properties.
Collapse
Affiliation(s)
- Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Paulina Rocha
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Anastazia Polakovsky
- Department of Chemistry, The Pennsylvania State University Fayette, The Eberly Campus, Lemont Furnace, Pennsylvania 15456, United States
| | - Julio L. Palma
- Department of Chemistry, The Pennsylvania State University Fayette, The Eberly Campus, Lemont Furnace, Pennsylvania 15456, United States
| |
Collapse
|
8
|
Biswas A, Ward MD, Wang T, Zhu L, Huang HT, Badding JV, Crespi VH, Strobel TA. Evidence for Orientational Order in Nanothreads Derived from Thiophene. J Phys Chem Lett 2019; 10:7164-7171. [PMID: 31601100 DOI: 10.1021/acs.jpclett.9b02546] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanothreads are one-dimensional sp3 hydrocarbons that pack within pseudohexagonal crystalline lattices. They are believed to lack long-range order along the thread axis and also lack interthread registry. Here we investigate the phase behavior of thiophene up to 35 GPa and establish a pressure-induced phase transition sequence that mirrors previous observations in low-temperature studies. Slow compression to 35 GPa results in the formation of a recoverable saturated product with a 2D monoclinic diffraction pattern along (0001) that agrees closely with atomistic simulations for single crystals of thiophene-derived nanothreads. Paradoxically, this lower-symmetry packing signals a higher degree of structural order since it must arise from constituents with a consistent azimuthal orientation about their shared axis. The simplicity of thiophene reaction pathways (with only four carbon atoms per ring) apparently yields the first nanothreads with orientational order, a striking outcome considering that a single point defect in a 1D system can disrupt long-range structural order.
Collapse
Affiliation(s)
| | - Matthew D Ward
- Geophysical Laboratory , Carnegie Institution for Science , 5251 Broad Branch Road NW , Washington , D.C. 20015 , United States
| | | | - Li Zhu
- Geophysical Laboratory , Carnegie Institution for Science , 5251 Broad Branch Road NW , Washington , D.C. 20015 , United States
| | | | | | | | - Timothy A Strobel
- Geophysical Laboratory , Carnegie Institution for Science , 5251 Broad Branch Road NW , Washington , D.C. 20015 , United States
| |
Collapse
|
9
|
Garner MH, Li H, Neupane M, Zou Q, Liu T, Su TA, Shangguan Z, Paley DW, Ng F, Xiao S, Nuckolls C, Venkataraman L, Solomon GC. Permethylation Introduces Destructive Quantum Interference in Saturated Silanes. J Am Chem Soc 2019; 141:15471-15476. [PMID: 31500410 DOI: 10.1021/jacs.9b06965] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The single-molecule conductance of silanes is suppressed due to destructive quantum interference in conformations with cisoid dihedral angles along the molecular backbone. Yet, despite the structural similarity, σ-interference effects have not been observed in alkanes. Here we report that the methyl substituents used in silanes are a prerequisite for σ-interference in these systems. Through density functional theory calculations, we find that the destructive interference is not evident to the same extent in nonmethylated silanes. We find the same is true in alkanes as the transmission is significantly suppressed in permethylated cyclic and bicyclic alkanes. Using scanning tunneling microscope break-junction method we determine the single-molecule conductance of functionalized cyclohexane and bicyclo[2.2.2]octane that are found to be higher than that of equivalent permethylated silanes. Rather than the difference between carbon and silicon atoms in the molecular backbones, our calculations reveal that it is primarily the difference between hydrogen and methyl substituents that result in the different electron transport properties of nonmethylated alkanes and permethylated silanes. Chemical substituents play an important role in determining the single-molecule conductance of saturated molecules, and this must be considered when we improve and expand the chemical design of insulating organic molecules.
Collapse
Affiliation(s)
- Marc H Garner
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5, 2100 Copenhagen Ø , Denmark
| | - Haixing Li
- Department of Applied Physics and Applied Mathematics , Columbia University , New York , New York 10027 , United States
| | - Madhav Neupane
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Qi Zou
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Taifeng Liu
- Department of Chemistry , Columbia University , New York , New York 10027 , United States.,The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Optoelectronic Nano Materials and Devices Institute, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Timothy A Su
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Zhichun Shangguan
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Optoelectronic Nano Materials and Devices Institute, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Daniel W Paley
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Fay Ng
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Shengxiong Xiao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Optoelectronic Nano Materials and Devices Institute, Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China
| | - Colin Nuckolls
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Latha Venkataraman
- Department of Applied Physics and Applied Mathematics , Columbia University , New York , New York 10027 , United States.,Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Gemma C Solomon
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5, 2100 Copenhagen Ø , Denmark
| |
Collapse
|