1
|
Zhang C, Zheng K, Li C, Zhang R, Zhu Y, Xia L, Ma Y, Wyss HM, Cheng X, He S. Single-Molecule Protein Analysis by Centrifugal Droplet Immuno-PCR with Magnetic Nanoparticles. Anal Chem 2024; 96:1872-1879. [PMID: 38225884 DOI: 10.1021/acs.analchem.3c03724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Detecting proteins in ultralow concentrations in complex media is important for many applications but often relies on complicated techniques. Herein, a single-molecule protein analyzer with the potential for high-throughput applications is reported. Gold-coated magnetic nanoparticles with DNA-labeled antibodies were used for target recognition and separation. The immunocomplex was loaded into microdroplets generated with centrifugation. Immuno-PCR amplification of the DNA enabled the quantification of proteins at the level of single molecules. As an example, ultrasensitive detection of α-synuclein, a biomarker for neurodegenerative diseases, is achieved. The limit of detection was determined to be ∼50 aM in buffer and ∼170 aM in serum. The method exhibited high specificity and could be used to analyze post-translational modifications such as protein phosphorylation. This study will inspire wider studies on single-molecule protein detection, especially in disease diagnostics, biomarker discovery, and drug development.
Collapse
Affiliation(s)
- Chuan Zhang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Kaixin Zheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Chi Li
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Ranran Zhang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Yicheng Zhu
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Linxiao Xia
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Yicheng Ma
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Hans M Wyss
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Xiaoyu Cheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
- Ningbo Research Institute, Ningbo 310050, China
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
| | - Sailing He
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
- Ningbo Research Institute, Ningbo 310050, China
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
- Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, Stockholm S-100 44, Sweden
| |
Collapse
|
2
|
Joshi PB, Wilson AJ. Plasmonically enhanced electrochemistry boosted by nonaqueous solvent. J Chem Phys 2022; 156:241101. [DOI: 10.1063/5.0094694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmon excitation of metal electrodes is known to enhance important energy related electrochemical transformations in aqueous media. However, the low solubility of nonpolar gases and molecular reagents involved in many energy conversion reactions limits the number of products formed per unit time in aqueous media. In this Communication, we use linear sweep voltammetry to measure how electrochemical H2O reduction in a nonaqueous solvent, acetonitrile, is enhanced by excitation of a plasmonic electrode. Plasmonically excited electrochemically roughened Au electrodes are found to produce photopotentials as large as 175 mV, which can be harnessed to lower the applied electrical bias required to drive the formation of H2. As the solvent polarity increases, by an increase in the concentration of H2O, the measured photopotential rapidly drops off to ∼50 mV. We propose a mechanism by which an increase in the H2O concentration increasingly stabilizes the photocharged plasmonic electrode, lowering the photopotential available to assist in the electrochemical reaction. Our study demonstrates that solvent polarity is an essential experimental parameter to optimize plasmonic enhancement in electrochemistry.
Collapse
Affiliation(s)
- Padmanabh B. Joshi
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| | - Andrew J. Wilson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
| |
Collapse
|
3
|
Hastman DA, Chaturvedi P, Oh E, Melinger JS, Medintz IL, Vuković L, Díaz SA. Mechanistic Understanding of DNA Denaturation in Nanoscale Thermal Gradients Created by Femtosecond Excitation of Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3404-3417. [PMID: 34982525 DOI: 10.1021/acsami.1c19411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is significant interest in developing photothermal systems that can precisely control the structure and function of biomolecules through local temperature modulation. One specific application is the denaturation of double-stranded (ds) DNA through femtosecond (fs) laser pulse optical heating of gold nanoparticles (AuNPs); however, the mechanism of DNA melting in these systems is not fully understood. Here, we utilize 55 nm AuNPs with surface-tethered dsDNA, which are locally heated using fs laser pulses to induce DNA melting. By varying the dsDNA distance from the AuNP surface and the laser pulse energy fluence, this system is used to study how the nanosecond duration temperature increase and the steep temperature gradient around the AuNP affect dsDNA dehybridization. Through modifying the distance between the dsDNA and AuNP surface by 3.8 nm in total and the pulse energy fluence from 7.1 to 14.1 J/m2, the dehybridization rates ranged from 0.002 to 0.05 DNA per pulse, and the total amount of DNA released into solution was controlled over a range of 26-93% in only 100 s of irradiation. By shifting the dsDNA position as little as ∼1.1 nm, the average dsDNA dehybridization rate is altered up to 30 ± 2%, providing a high level of control over DNA melting and release. By comparing the theoretical temperature around the dsDNA to the experimentally derived temperature, we find that maximum or peak temperatures have a greater influence on the dehybridization rate when the dsDNA is closer to the AuNP surface and when lower laser pulse fluences are used. Furthermore, molecular dynamics simulations mimicking the photothermal heat pulse around a AuNP provide mechanistic insight into the stochastic nature of dehybridization and demonstrate increased base pair separation near the AuNP surface during laser pulse heating when compared to steady-state heating. Understanding how biological materials respond to the short-lived and non-uniform temperature increases innate to fs laser pulse optical heating of AuNPs is critical to improving the functionality and precision of this technique so that it may be implemented into more complex biological systems.
Collapse
Affiliation(s)
- David A Hastman
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, D.C. 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Parth Chaturvedi
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, D.C. 20375, United States
| | - Lela Vuković
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, D.C. 20375, United States
| |
Collapse
|
4
|
Reinhardt PA, Crawford AP, West CA, DeLong G, Link S, Masiello DJ, Willets KA. Toward Quantitative Nanothermometry Using Single-Molecule Counting. J Phys Chem B 2021; 125:12197-12205. [PMID: 34723520 DOI: 10.1021/acs.jpcb.1c08348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Photothermal heating of nanoparticles has applications in nanomedicine, photocatalysis, photoelectrochemistry, and data storage, but accurate measurements of temperature at the nanoparticle surface are lacking. Here we demonstrate progress toward a super-resolution DNA nanothermometry technique capable of reporting the surface temperature on single plasmonic nanoparticles. Gold nanoparticles are functionalized with double-stranded DNA, and the extent of DNA denaturation under heating conditions serves as a reporter of temperature. Fluorescently labeled DNA oligomers are used to probe the denatured DNA through transient binding interactions. By counting the number of fluorescent binding events as a function of temperature, we reconstruct DNA melting curves that reproduce trends seen for solution-phase DNA. In addition, we demonstrate our ability to control the temperature of denaturation by changing the Na+ concentration and the base pair length of the double-stranded DNA on the nanoparticle surface. This degree of control allows us to select narrow temperature windows to probe, providing quantitative measurements of temperature at nanoscale surfaces.
Collapse
Affiliation(s)
- Phillip A Reinhardt
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Abigail P Crawford
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Claire A West
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gabe DeLong
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Stephan Link
- Department of Chemistry and Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Katherine A Willets
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
5
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Warkentin CL, Yu Z, Sarkar A, Frontiera RR. Decoding Chemical and Physical Processes Driving Plasmonic Photocatalysis Using Surface-Enhanced Raman Spectroscopies. Acc Chem Res 2021; 54:2457-2466. [PMID: 33957039 DOI: 10.1021/acs.accounts.1c00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In order to mitigate the advancing effects of environmental pollution and climate change, immediate action is needed on social, political, and industrial fronts. One segment of industry that contributes significantly to this current crisis is bulk chemical production, where fossil fuels are primarily used to drive reactions at high temperatures and pressures. Toward mitigating the environmental impact of these processes, solar energy has shown promise as a clean and renewable alternative for the photocatalytic synthesis of chemicals. In recent decades, plasmonic materials have emerged as candidates for making this a reality. Because of their unique and tunable interactions with light, plasmonic materials can be used to create energy-rich nanoscale environments. In fact, there is a growing library of chemical reactions that can utilize this plasmonic energy to drive industrially relevant chemistries under standard ambient conditions. However, the efficiency of these reactions is typically low, and a lack of mechanistic understanding of how energy is transferred from plasmons to molecules hinders reaction optimization for use on large scales.To decode the complex chemical and physical processes involved in plasmon-driven photocatalytic reactions, we use surface-enhanced Raman spectroscopy (SERS). In this Account, we detail SERS techniques that we have used and are developing to study molecular transformations, charge transfer, and plasmonic heating in dynamic plasmon-molecule systems on time scales ranging from seconds to femtoseconds. SERS is an ideal analytical tool for understanding plasmon-molecule interactions, as it gives highly specific information about molecular vibrations with high sensitivity, down to the single-molecule level. Importantly, SERS allows for simultaneous pumping of a plasmonic resonance and probing of the enhanced Raman signal from nearby molecules. We have already used these techniques to study a plasmon-driven methyl migration with nanoscale spatial specificity and to understand the charge transfer mechanism and role of heating in the plasmon-mediated dimerization of 4-nitrobenzenethiol. Importantly, from this work we conclude that direct charge transfer, not heating, may play a significant role in driving many plasmon-driven reactions. Despite these recent insights, more work is needed in order to obtain a comprehensive understanding of the broad range of chemistries accessible in plasmon-molecule systems. In the future, our continued development of these SERS-based techniques shows promise in answering questions regarding direct charge transfer, resonance energy transfer, and excitation conditions in plasmon-mediated chemistries.
Collapse
Affiliation(s)
| | - Ziwei Yu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Arghya Sarkar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R. Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Cheng X, Yin W. Probing Biosensing Interfaces With Single Molecule Localization Microscopy (SMLM). Front Chem 2021; 9:655324. [PMID: 33996750 PMCID: PMC8117217 DOI: 10.3389/fchem.2021.655324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
Far field single molecule localization microscopy (SMLM) has been established as a powerful tool to study biological structures with resolution far below the diffraction limit of conventional light microscopy. In recent years, the applications of SMLM have reached beyond traditional cellular imaging. Nanostructured interfaces are enriched with information that determines their function, playing key roles in applications such as chemical catalysis and biological sensing. SMLM enables detailed study of interfaces at an individual molecular level, allowing measurements of reaction kinetics, and detection of rare events not accessible to ensemble measurements. This paper provides an update to the progress made to the use of SMLM in characterizing nanostructured biointerfaces, focusing on practical aspects, recent advances, and emerging opportunities from an analytical chemistry perspective.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory for Modern Optical Instrumentations, National Engineering Research Center of Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Wei Yin
- Core Facilities, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Hartland GV. Virtual Issue on Super-Resolution Far-Field Optical Microscopy. J Phys Chem B 2021; 124:1581-1584. [PMID: 32131600 DOI: 10.1021/acs.jpcb.0c01501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Chattopadhyay S, Biteen JS. Super-Resolution Characterization of Heterogeneous Light-Matter Interactions between Single Dye Molecules and Plasmonic Nanoparticles. Anal Chem 2021; 93:430-444. [PMID: 33100005 DOI: 10.1021/acs.analchem.0c04280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Saaj Chattopadhyay
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Hauwiller MR, Ye X, Jones MR, Chan CM, Calvin JJ, Crook MF, Zheng H, Alivisatos AP. Tracking the Effects of Ligands on Oxidative Etching of Gold Nanorods in Graphene Liquid Cell Electron Microscopy. ACS NANO 2020; 14:10239-10250. [PMID: 32806045 DOI: 10.1021/acsnano.0c03601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface ligands impact the properties and chemistry of nanocrystals, but observing ligand binding locations and their effect on nanocrystal shape transformations is challenging. Using graphene liquid cell electron microscopy and the controllable, oxidative etching of gold nanocrystals, the effect of different ligands on nanocrystal etching can be tracked with nanometer spatial resolution. The chemical environment of liquids irradiated with high-energy electrons is complex and potentially harsh, yet it is possible to observe clear evidence for differential binding properties of specific ligands to the nanorods' surface. Exchanging CTAB ligands for PEG-alkanethiol ligands causes the nanorods to etch at a different, constant rate while still maintaining their aspect ratio. Adding cysteine ligands that bind preferentially to nanorod tips induces etching predominantly on the sides of the rods. This etching at the sides leads to Rayleigh instabilities and eventually breaks apart the nanorod into two separate nanoparticles. The shape transformation is controlled by the interplay between atom removal and diffusion of surface atoms and ligands. These in situ observations are confirmed with ex situ colloidal etching reactions of gold nanorods in solution. The ability to monitor the effect of ligands on nanocrystal shape transformations will enable future in situ studies of nanocrystals surfaces and ligand binding positions.
Collapse
Affiliation(s)
- Matthew R Hauwiller
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Xingchen Ye
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Matthew R Jones
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Cindy M Chan
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Jason J Calvin
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Michelle F Crook
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | - Haimei Zheng
- Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, University of California-Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Hartland GV. Virtual Issue on Super-Resolution Far-Field Optical Microscopy. J Phys Chem A 2020; 124:1669-1672. [PMID: 32131601 DOI: 10.1021/acs.jpca.0c01500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Richard-Lacroix M, Deckert V. Direct molecular-level near-field plasmon and temperature assessment in a single plasmonic hotspot. LIGHT, SCIENCE & APPLICATIONS 2020; 9:35. [PMID: 32194949 PMCID: PMC7061098 DOI: 10.1038/s41377-020-0260-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 05/06/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is currently widely recognized as an essential but still emergent technique for exploring the nanoscale. However, our lack of comprehension of crucial parameters still limits its potential as a user-friendly analytical tool. The tip's surface plasmon resonance, heating due to near-field temperature rise, and spatial resolution are undoubtedly three challenging experimental parameters to unravel. However, they are also the most fundamentally relevant parameters to explore, because they ultimately influence the state of the investigated molecule and consequently the probed signal. Here we propose a straightforward and purely experimental method to access quantitative information of the plasmon resonance and near-field temperature experienced exclusively by the molecules directly contributing to the TERS signal. The detailed near-field optical response, both at the molecular level and as a function of time, is evaluated using standard TERS experimental equipment by simultaneously probing the Stokes and anti-Stokes spectral intensities. Self-assembled 16-mercaptohexadodecanoic acid monolayers covalently bond to an ultra-flat gold surface were used as a demonstrator. Observation of blinking lines in the spectra also provides crucial information on the lateral resolution and indication of atomic-scale thermally induced morphological changes of the tip during the experiment. This study provides access to unprecedented molecular-level information on physical parameters that crucially affect experiments under TERS conditions. The study thereby improves the usability of TERS in day-to-day operation. The obtained information is of central importance for any experimental plasmonic investigation and for the application of TERS in the field of nanoscale thermometry.
Collapse
Affiliation(s)
- Marie Richard-Lacroix
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, D-07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | - Volker Deckert
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, D-07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
| |
Collapse
|
13
|
Horáček M, Engels DJ, Zijlstra P. Dynamic single-molecule counting for the quantification and optimization of nanoparticle functionalization protocols. NANOSCALE 2020; 12:4128-4136. [PMID: 32022064 DOI: 10.1039/c9nr10218c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Applications of colloidal particles in the fields of i.e. biosensors, molecular targeting, or drug-delivery require their functionalization with biologically active and specific molecular ligands. Functionalization protocols often result in a heterogeneous population of particles with a varying density, spatial distribution and orientation of the functional groups on the particle surface. A lack of methods to directly resolve these molecular properties of the particle's surface hampers optimization of functionalization protocols and applications. Here quantitative single-molecule interaction kinetics is used to count the number of ligands on the surface of hundreds of individual nanoparticles simultaneously. By analyzing the waiting-time between single-molecule binding events we quantify the particle functionalization both accurately and precisely for a large range of ligand densities. We observe significant particle-to-particle differences in functionalization which are dominated by the particle-size distribution for high molecular densities, but are substantially broadened for sparsely functionalized particles. From time-dependent studies we find that ligand reorganization on long timescales drastically reduces this heterogeneity, a process that has remained hidden up to now in ensemble-averaged studies. The quantitative single-molecule counting therefore provides a direct route to quantification and optimization of coupling protocols towards molecularly controlled colloidal interfaces.
Collapse
Affiliation(s)
- Matěj Horáček
- Faculty of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands. and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - Dion J Engels
- Faculty of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| | - Peter Zijlstra
- Faculty of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands. and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|