1
|
Abiola TT, Rioux B, Johal S, Mention MM, Brunissen F, Woolley JM, Allais F, Stavros VG. Insight into the Photodynamics of Photostabilizer Molecules. J Phys Chem A 2022; 126:8388-8397. [DOI: 10.1021/acs.jpca.2c05580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Temitope T. Abiola
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7ALUnited Kingdom
| | - Benjamin Rioux
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Sharanjit Johal
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7ALUnited Kingdom
| | - Matthieu M. Mention
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Fanny Brunissen
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Jack M. Woolley
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7ALUnited Kingdom
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - Vasilios G. Stavros
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7ALUnited Kingdom
| |
Collapse
|
2
|
Ventura E, Andrade do Monte S, T. do Casal M, Pinheiro M, Toldo JM, Barbatti M. Modeling the heating and cooling of a chromophore after photoexcitation. Phys Chem Chem Phys 2022; 24:9403-9410. [PMID: 35385568 PMCID: PMC9020442 DOI: 10.1039/d2cp00686c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heating of a chromophore due to internal conversion and its cooling down due to energy dissipation to the solvent are crucial phenomena to characterize molecular photoprocesses. In this work, we simulated the ab initio nonadiabatic dynamics of cytosine, a prototypical chromophore undergoing ultrafast internal conversion, in three solvents—argon matrix, benzene, and water—spanning an extensive range of interactions. We implemented an analytical energy-transfer model to analyze these data and extract heating and cooling times. The model accounts for nonadiabatic effects, and excited- and ground-state energy transfer, and can analyze data from any dataset containing kinetic energy as a function of time. Cytosine heats up in the subpicosecond scale and cools down within 25, 4, and 1.3 ps in argon, benzene, and water, respectively. The time constants reveal that a significant fraction of the benzene and water heating occurs while cytosine is still electronically excited. An analytical energy-transfer model is implemented to obtain a chromophore's heating and cooling times in a given solvent by using quantities available in nonadiabatic dynamics simulations.![]()
Collapse
Affiliation(s)
- Elizete Ventura
- Universidade Federal da Paraíba, 58059-900, João Pessoa-PB, Brazil
| | | | | | - Max Pinheiro
- Aix Marseille University, CNRS, ICR, Marseille, France
| | | | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
3
|
Abiola TT, Rioux B, Toldo JM, Alarcan J, Woolley JM, Turner MAP, Coxon DJL, Telles do Casal M, Peyrot C, Mention MM, Buma WJ, Ashfold MNR, Braeuning A, Barbatti M, Stavros VG, Allais F. Towards developing novel and sustainable molecular light-to-heat converters. Chem Sci 2021; 12:15239-15252. [PMID: 34976344 PMCID: PMC8634993 DOI: 10.1039/d1sc05077j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Light-to-heat conversion materials generate great interest due to their widespread applications, notable exemplars being solar energy harvesting and photoprotection. Another more recently identified potential application for such materials is in molecular heaters for agriculture, whose function is to protect crops from extreme cold weather and extend both the growing season and the geographic areas capable of supporting growth, all of which could help reduce food security challenges. To address this demand, a new series of phenolic-based barbituric absorbers of ultraviolet (UV) radiation has been designed and synthesised in a sustainable manner. The photophysics of these molecules has been studied in solution using femtosecond transient electronic and vibrational absorption spectroscopies, allied with computational simulations and their potential toxicity assessed by in silico studies. Following photoexcitation to the lowest singlet excited state, these barbituric absorbers repopulate the electronic ground state with high fidelity on an ultrafast time scale (within a few picoseconds). The energy relaxation pathway includes a twisted intramolecular charge-transfer state as the system evolves out of the Franck–Condon region, internal conversion to the ground electronic state, and subsequent vibrational cooling. These barbituric absorbers display promising light-to-heat conversion capabilities, are predicted to be non-toxic, and demand further study within neighbouring application-based fields. The synthesis and photophysical properties of phenolic barbiturics are reported. These molecules convert absorbed ultraviolet light to heat with high fidelity and may be suitable for inclusion in foliar sprays to boost crop protection and production.![]()
Collapse
Affiliation(s)
- Temitope T Abiola
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Benjamin Rioux
- URD Agro-Biotechnologies (ABI), CEBB, AgroParisTech 51110 Pomacle France
| | | | - Jimmy Alarcan
- Department of Food Safety, German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 10589 Berlin Germany
| | - Jack M Woolley
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Matthew A P Turner
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK .,Department of Physics, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Daniel J L Coxon
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK .,Department of Physics, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK.,EPSRC Centre for Doctoral Training in Diamond Science and Technology UK
| | | | - Cédric Peyrot
- URD Agro-Biotechnologies (ABI), CEBB, AgroParisTech 51110 Pomacle France
| | - Matthieu M Mention
- URD Agro-Biotechnologies (ABI), CEBB, AgroParisTech 51110 Pomacle France
| | - Wybren J Buma
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Amsterdam The Netherlands.,Institute for Molecules and Materials, FELIX Laboratory, Radboud University 6525 ED Nijmegen The Netherlands
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 10589 Berlin Germany
| | - Mario Barbatti
- Aix Marseille Université, CNRS, ICR Marseille France .,Institut Universitaire de France 75231 Paris France
| | - Vasilios G Stavros
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Florent Allais
- URD Agro-Biotechnologies (ABI), CEBB, AgroParisTech 51110 Pomacle France
| |
Collapse
|
4
|
McFerrin KG, Pang YP. How the water-soluble hemicarcerand incarcerates guests at room temperature decoded with modular simulations. Commun Chem 2021; 4:26. [PMID: 36697600 PMCID: PMC9814894 DOI: 10.1038/s42004-021-00469-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/04/2021] [Indexed: 01/28/2023] Open
Abstract
Molecular dynamics simulations of hemicarcerands and related variants allow the study of constrictive binding and offer insight into the rules of molecular complexation, but are limited because three-dimensional models of hemicarcerands are tedious to build and their atomic charges are complicated to derive. There have been no molecular dynamics simulations of the reported water-soluble hemicarcerand (Octacid4) that explain how Octacid4 encapsulates guests at 298 K and keeps them encapsulated at 298 K in NMR experiments. Herein we report a modular approach to hemicarcerand simulations that simplifies the model building and charge derivation in a manner reminiscent of the approach to protein simulations with truncated amino acids as building blocks. We also report that in aqueous molecular dynamics simulations at 298 K apo Octacid4 adopts two clusters of conformations one of which has an equatorial portal open but the guest-bound Octacid4 adopts one cluster of conformations with all portals closed. These results explain how Octacid4 incarcerates guests at room temperature and suggest that the guest-induced host conformational change that impedes decomplexation is a previously unrecognized conformational characteristic that promotes strong molecular complexation.
Collapse
Affiliation(s)
| | - Yuan-Ping Pang
- Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Lambert H, Zhang YW, Lee TC. Supramolecular Catalysis of m-Xylene Isomerization by Cucurbiturils: Transition State Stabilization, Vibrational Coupling, and Dynamic Binding Equilibrium. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:11469-11479. [PMID: 32582403 PMCID: PMC7304912 DOI: 10.1021/acs.jpcc.0c02012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/05/2020] [Indexed: 06/11/2023]
Abstract
The ability of cucurbit[6]uril (CB6) and cucurbit[7]uril (CB7) to catalyze the thermally activated 1,2-methyl shift isomerization pathway of m-xylene in vacuum is investigated using infrequent metadynamics. CB6 is predicted to effectively and selectively catalyze the meta-to-para isomerization through stabilization of the transition state (TS) by van der Waals push (packing coefficient ≈74%), while inhibiting the meta-to-ortho pathway by molding effects of the cavity. Interestingly, despite the snug binding, a very low rate of host-guest vibrational energy transfer is revealed using a novel approach of host-guest partition of the mode-specific anharmonic relaxation rates and ab initio molecular dynamics. The weak vibrational coupling suggests that CB can act as a thermal buffer, possibly shielding encapsulated guests from outside vibrational perturbations such as solvent effects. This dynamic effect could provide an additional boost to the reaction rate by blocking the occurrence of reaction barrier recrossing caused by the friction with surrounding molecules. Finally, mean residence times of xylene into the hosts' cavity were estimated for a range of host-guest complexes, revealing a highly dynamic equilibrium allowing very high guest turnover rates that could minimize catalyst inhibition effects commonly suffered by other supramolecular catalysts.
Collapse
Affiliation(s)
- Hugues Lambert
- Institute
of High Performance Computing, A*STAR, 1 Fusionopolis Way, Connexis Tower, Singapore 138632
- Department
of Chemistry, Christopher Ingold Building, University College London (UCL), 20 Gordon Street London WC1H 0AJ, U.K.
- Institute
for Materials Discovery, University College
London (UCL), London WC1E 6BT, U.K.
| | - Yong-Wei Zhang
- Institute
of High Performance Computing, A*STAR, 1 Fusionopolis Way, Connexis Tower, Singapore 138632
| | - Tung-Chun Lee
- Department
of Chemistry, Christopher Ingold Building, University College London (UCL), 20 Gordon Street London WC1H 0AJ, U.K.
- Institute
for Materials Discovery, University College
London (UCL), London WC1E 6BT, U.K.
| |
Collapse
|
6
|
Strehmel B, Schmitz C, Kütahya C, Pang Y, Drewitz A, Mustroph H. Photophysics and photochemistry of NIR absorbers derived from cyanines: key to new technologies based on chemistry 4.0. Beilstein J Org Chem 2020; 16:415-444. [PMID: 32273905 PMCID: PMC7113544 DOI: 10.3762/bjoc.16.40] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Cyanines derived from heptamethines were mainly discussed regarding their functionalization to broaden the solubility in different surroundings exhibiting either hydrophilic or hydrophobic properties and to tailor made the ΔG et photopysical properties with respect to absorption and fluorescence. Electrochemical properties were additionally considered for some selected examples. The cyanines chosen comprised as end groups either indolenine, benzo[e]- or benzo[cd]indolium pattern, which facilitated to shift the absorption between 750-1000 nm. This enabled their use in applications with light sources emitting in the near-infrared (NIR) region selected from high power LEDs or lasers with line-shaped focus. The absorbers considered were discussed regarding their function as sensitizer for applications related to Chemistry 4.0 standards. These were mainly photopolymer coatings, which can be found for applications in the graphic industry or to protect selected substrates. The huge release of heat on demand upon turning ON or OFF the NIR light source enables them for photothermal treatment in processes requesting heat to initiate either chemical (activated reactions) or physical (melting, evaporation) events.
Collapse
Affiliation(s)
- Bernd Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry and Institute for Coatings Surface Chemistry, Adlerstr. 1, D-47798 Krefeld, Germany
| | - Christian Schmitz
- Niederrhein University of Applied Sciences, Department of Chemistry and Institute for Coatings Surface Chemistry, Adlerstr. 1, D-47798 Krefeld, Germany
| | - Ceren Kütahya
- Niederrhein University of Applied Sciences, Department of Chemistry and Institute for Coatings Surface Chemistry, Adlerstr. 1, D-47798 Krefeld, Germany
| | - Yulian Pang
- Niederrhein University of Applied Sciences, Department of Chemistry and Institute for Coatings Surface Chemistry, Adlerstr. 1, D-47798 Krefeld, Germany
| | - Anke Drewitz
- GMBU e.V., Felsbachstraße 7, D-07745 Jena, Germany
| | - Heinz Mustroph
- formerly at FEW Chemicals GmbH, Technikumstraße 1, D-06766 Bitterfeld-Wolfen, Germany
| |
Collapse
|
7
|
Castro AC, Romero-Rivera A, Osuna S, Houk KN, Swart M. Computational NMR Spectra of o-Benzyne and Stable Guests and Their Hemicarceplexes. Chemistry 2020; 26:2626-2634. [PMID: 31765503 DOI: 10.1002/chem.201904756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Indexed: 12/12/2022]
Abstract
The incarceration of o-benzyne and 27 other guest molecules within hemicarcerand 1, as reported experimentally by Warmuth, and Cram and co-workers, has been studied by density functional theory (DFT). The 1 H NMR chemical shifts, rotational mobility, and conformational preference of the guests within the supramolecular cage were determined, which showed intriguing correlations of the chemical shifts with structural parameters of the host-guest system. Furthermore, based on the computed chemical shifts reassignments of some NMR signals are proposed. This affects, in particular, the putative characterization of the volatile benzyne molecule inside a hemicarcerand, for which our CCSD(T) and KT2 results indicate that the experimentally observed signals are most likely not resulting from an isolated o-benzyne within the supramolecular host. Instead, it is shown that the guest reacted with an aromatic ring of the host, and this adduct is responsible for the experimentally observed signals.
Collapse
Affiliation(s)
- Abril C Castro
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus de Montilivi, 17071, Girona, Spain
| | - Adrian Romero-Rivera
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus de Montilivi, 17071, Girona, Spain
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus de Montilivi, 17071, Girona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095-1569, USA
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus de Montilivi, 17071, Girona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|