• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4635977)   Today's Articles (648)   Subscriber (50069)
For: Choksi TS, Roling LT, Streibel V, Abild-Pedersen F. Predicting Adsorption Properties of Catalytic Descriptors on Bimetallic Nanoalloys with Site-Specific Precision. J Phys Chem Lett 2019;10:1852-1859. [PMID: 30935205 DOI: 10.1021/acs.jpclett.9b00475] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Number Cited by Other Article(s)
1
Wang L, Ore RM, Jayamaha PK, Wu ZP, Zhong CJ. Density functional theory based computational investigations on the stability of highly active trimetallic PtPdCu nanoalloys for electrochemical oxygen reduction. Faraday Discuss 2023;242:429-442. [PMID: 36173024 DOI: 10.1039/d2fd00101b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
2
Sawant KJ, Zeng Z, Greeley JP. Universal properties of metal-supported oxide films from linear scaling relationships: elucidation of mechanistic origins of strong metal–support interactions. Chem Sci 2023;14:3206-3214. [PMID: 36970101 PMCID: PMC10034000 DOI: 10.1039/d2sc06656d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]  Open
3
Rangarajan S, Tian H. Improving the predictive power of microkinetic models via machine learning. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
4
Ghanekar PG, Deshpande S, Greeley J. Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis. Nat Commun 2022;13:5788. [PMID: 36184625 PMCID: PMC9527237 DOI: 10.1038/s41467-022-33256-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/08/2022] [Indexed: 11/09/2022]  Open
5
Prabhu AM, Choksi TS. Data-driven methods to predict the stability metrics of catalytic nanoparticles. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
6
Yang Z, Gao W. Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022;9:e2106043. [PMID: 35229986 PMCID: PMC9036033 DOI: 10.1002/advs.202106043] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Indexed: 05/28/2023]
7
Bimetallic nitrogen-doped porous graphene for highly efficient magnetic solid phase extraction of 5-nitroimidazoles in environmental water. Anal Chim Acta 2022;1203:339698. [DOI: 10.1016/j.aca.2022.339698] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/17/2023]
8
Lamoureux PS, Choksi TS, Streibel V, Abild-Pedersen F. Combining artificial intelligence and physics-based modeling to directly assess atomic site stabilities: from sub-nanometer clusters to extended surfaces. Phys Chem Chem Phys 2021;23:22022-22034. [PMID: 34570139 DOI: 10.1039/d1cp02198b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
9
Xu J, Cao XM, Hu P. Perspective on computational reaction prediction using machine learning methods in heterogeneous catalysis. Phys Chem Chem Phys 2021;23:11155-11179. [PMID: 33972971 DOI: 10.1039/d1cp01349a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
10
Fung V, Hu G, Ganesh P, Sumpter BG. Machine learned features from density of states for accurate adsorption energy prediction. Nat Commun 2021;12:88. [PMID: 33398014 PMCID: PMC7782579 DOI: 10.1038/s41467-020-20342-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022]  Open
11
Wang Z, Hu P. Rational catalyst design for CO oxidation: a gradient-based optimization strategy. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02053b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
12
Akhade SA, Singh N, Gutiérrez OY, Lopez-Ruiz J, Wang H, Holladay JD, Liu Y, Karkamkar A, Weber RS, Padmaperuma AB, Lee MS, Whyatt GA, Elliott M, Holladay JE, Male JL, Lercher JA, Rousseau R, Glezakou VA. Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review. Chem Rev 2020;120:11370-11419. [PMID: 32941005 DOI: 10.1021/acs.chemrev.0c00158] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
13
Melisande Fischer J, Hunter M, Hankel M, Searles DJ, Parker AJ, Barnard AS. Accurate prediction of binding energies for two‐dimensional catalytic materials using machine learning. ChemCatChem 2020. [DOI: 10.1002/cctc.202000536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
14
Harris JW, Bates JS, Bukowski BC, Greeley J, Gounder R. Opportunities in Catalysis over Metal-Zeotypes Enabled by Descriptions of Active Centers Beyond Their Binding Site. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02102] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
15
Revealing the structure of a catalytic combustion active-site ensemble combining uniform nanocrystal catalysts and theory insights. Proc Natl Acad Sci U S A 2020;117:14721-14729. [PMID: 32554500 DOI: 10.1073/pnas.2002342117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
16
The Challenge of CO Hydrogenation to Methanol: Fundamental Limitations Imposed by Linear Scaling Relations. Top Catal 2020. [DOI: 10.1007/s11244-020-01283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
17
Choksi TS, Streibel V, Abild-Pedersen F. Predicting metal-metal interactions. II. Accelerating generalized schemes through physical insights. J Chem Phys 2020;152:094702. [PMID: 33480718 DOI: 10.1063/1.5141378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
18
Streibel V, Choksi TS, Abild-Pedersen F. Predicting metal-metal interactions. I. The influence of strain on nanoparticle and metal adlayer stabilities. J Chem Phys 2020;152:094701. [PMID: 33480713 DOI: 10.1063/1.5130566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
19
Rück M, Garlyyev B, Mayr F, Bandarenka AS, Gagliardi A. Oxygen Reduction Activities of Strained Platinum Core-Shell Electrocatalysts Predicted by Machine Learning. J Phys Chem Lett 2020;11:1773-1780. [PMID: 32057245 DOI: 10.1021/acs.jpclett.0c00214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
20
Rossi K, Asara GG, Baletto F. Structural Screening and Design of Platinum Nanosamples for Oxygen Reduction. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
21
Montemore MM, Nwaokorie CF, Kayode GO. General screening of surface alloys for catalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00682c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
22
Ding Y, Xu Y, Mao Y, Wang Z, Hu P. Achieving rational design of alloy catalysts using a descriptor based on a quantitative structure–energy equation. Chem Commun (Camb) 2020;56:3214-3217. [PMID: 32073043 DOI: 10.1039/c9cc09251j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
23
Varghese JJ. Computational design of catalysts for bio-waste upgrading. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
24
García-Muelas R, López N. Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals. Nat Commun 2019;10:4687. [PMID: 31615991 PMCID: PMC6794282 DOI: 10.1038/s41467-019-12709-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022]  Open
25
Timoshenko J, Frenkel AI. “Inverting” X-ray Absorption Spectra of Catalysts by Machine Learning in Search for Activity Descriptors. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03599] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
26
Schlexer Lamoureux P, Winther KT, Garrido Torres JA, Streibel V, Zhao M, Bajdich M, Abild‐Pedersen F, Bligaard T. Machine Learning for Computational Heterogeneous Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900595] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA