1
|
Azmy A, Zhao X, Angeli GK, Welton C, Raval P, Wojtas L, Zibouche N, Manjunatha Reddy GN, Trikalitis PN, Cai J, Spanopoulos I. One-Year Water-Stable and Porous Bi(III) Halide Semiconductor with Broad-Spectrum Antibacterial Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42717-42729. [PMID: 37639320 DOI: 10.1021/acsami.3c06394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hybrid metal halide semiconductors are a unique family of materials with immense potential for numerous applications. For this to materialize, environmental stability and toxicity deficiencies must be simultaneously addressed. We report here a porous, visible light semiconductor, namely, (DHS)Bi2I8 (DHS = [2.2.2] cryptand), which consists of nontoxic, earth-abundant elements, and is water-stable for more than a year. Gas- and vapor-sorption studies revealed that it can selectively and reversibly adsorb H2O and D2O at room temperature (RT) while remaining impervious to N2 and CO2. Solid-state NMR measurements and density functional theory (DFT) calculations verified the incorporation of H2O and D2O in the molecular cages, validating the porous nature. In addition to porosity, the material exhibits broad band-edge light emission centered at 600 nm with a full width at half-maximum (fwhm) of 99 nm, which is maintained after 6 months of immersion in H2O. Moreover, (DHS)Bi2I8 exhibits bacteriocidal action against three Gram-positive and three Gram-negative bacteria, including antibiotic-resistant strains. This performance, coupled with the recorded water stability and porous nature, renders it suitable for a plethora of applications, from solid-state batteries to water purification and disinfection.
Collapse
Affiliation(s)
- Ali Azmy
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xue Zhao
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Giasemi K Angeli
- Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - Claire Welton
- Univ. Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Parth Raval
- Univ. Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Nourdine Zibouche
- Department of Chemistry, Lancaster University, Bailrigg, LancasterLA1 4YB, U.K
| | - G N Manjunatha Reddy
- Univ. Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | | | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
2
|
Meng L, Vu TV, Criscenti LJ, Ho TA, Qin Y, Fan H. Theoretical and Experimental Advances in High-Pressure Behaviors of Nanoparticles. Chem Rev 2023; 123:10206-10257. [PMID: 37523660 DOI: 10.1021/acs.chemrev.3c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure-structure-property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis. In the present review, we discuss experimental progress in NP high-pressure research conducted primarily over roughly the past four years on semiconductor NPs, metal and metal oxide NPs, and perovskite NPs. We focus on the pressure-induced behaviors of NPs at both the atomic- and mesoscales, inorganic NP property changes upon compression, and the structural and property transitions of perovskite NPs under pressure. We further discuss in depth progress on molecular modeling, including simulations of ligand behavior, phase-change chalcogenides, layered transition metal dichalcogenides, boron nitride, and inorganic and hybrid organic-inorganic perovskites NPs. These models now provide both mechanistic explanations of experimental observations and predictive guidelines for future experimental design. We conclude with a summary and our insights on future directions for exploration of nanomaterial phase transition, coupling, growth, and nanoelectronic and photonic properties.
Collapse
Affiliation(s)
- Lingyao Meng
- Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - Tuan V Vu
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Louise J Criscenti
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tuan A Ho
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Yang Qin
- Department of Chemical & Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Mansfield, Connecticut 06269, United States
| | - Hongyou Fan
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
3
|
Li Z, Jia B, Fang S, Li Q, Tian F, Li H, Liu R, Liu Y, Zhang L, Liu S(F, Liu B. Pressure-Tuning Photothermal Synergy to Optimize the Photoelectronic Properties in Amorphous Halide Perovskite Cs 3 Bi 2 I 9. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205837. [PMID: 36581471 PMCID: PMC9951572 DOI: 10.1002/advs.202205837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Effective modification of the structure and properties of halide perovskites via the pressure engineering strategy has attracted enormous interest in the past decade. However, sufficient effort and insights regarding the potential properties and applications of the high-pressure amorphous phase are still lacking. Here, the superior and tunable photoelectric properties that occur in the pressure-induced amorphization process of the halide perovskite Cs3 Bi2 I9 are demonstrated. With increasing pressure, the photocurrent with xenon lamp illumination exhibits a rapid increase and achieves an almost five orders of magnitude increment compared to its initial value. Impressively, a broadband photoresponse from 520 to 1650 nm with an optimal responsivity of 6.81 mA W-1 and fast response times of 95/96 ms at 1650 nm is achieved upon successive compression. The high-gain, fast, broadband, and dramatically enhanced photoresponse properties of Cs3 Bi2 I9 are the result of comprehensive photoconductive and photothermoelectric mechanisms, which are associated with enhanced orbital coupling caused by an increase in BiI interactions in the [BiI6 ]3- cluster, even in the amorphous state. These findings provide new insights for further exploring the potential properties and applications of amorphous perovskites.
Collapse
Affiliation(s)
- Zonglun Li
- State Key Laboratory of Superhard MaterialsJilin UniversityChangchun130012P. R. China
| | - Binxia Jia
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Sixue Fang
- State Key Laboratory of Superhard MaterialsJilin UniversityChangchun130012P. R. China
| | - Quanjun Li
- State Key Laboratory of Superhard MaterialsJilin UniversityChangchun130012P. R. China
| | - Fuyu Tian
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and EngineeringJilin UniversityChangchun130012P. R. China
| | - Haiyan Li
- State Key Laboratory of Superhard MaterialsJilin UniversityChangchun130012P. R. China
| | - Ran Liu
- State Key Laboratory of Superhard MaterialsJilin UniversityChangchun130012P. R. China
| | - Yucheng Liu
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Lijun Zhang
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and EngineeringJilin UniversityChangchun130012P. R. China
| | - Shengzhong (Frank) Liu
- Key Laboratory of Applied Surface and Colloid ChemistryNational Ministry of EducationShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Bingbing Liu
- State Key Laboratory of Superhard MaterialsJilin UniversityChangchun130012P. R. China
| |
Collapse
|
4
|
Wang J, Wang L, Li Y, Fu R, Feng Y, Chang D, Yuan Y, Gao H, Jiang S, Wang F, Guo E, Cheng J, Wang K, Guo H, Zou B. Pressure-Induced Metallization of Lead-Free Halide Double Perovskite (NH 4 ) 2 PtI 6. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203442. [PMID: 35971181 PMCID: PMC9534948 DOI: 10.1002/advs.202203442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Metallization has recently garnered significant interest due to its ability to greatly facilitate chemical reactions and dramatically change the properties of materials. Materials displaying metallization under low pressure are highly desired for understanding their potential properties. In this work, the effects of the pressure on the structural and electronic properties of lead-free halide double perovskite (NH4 )2 PtI6 are investigated systematically. Remarkably, an unprecedented bandgap narrowing down to the Shockley-Queisser limit is observed at a very low pressure of 0.12 GPa, showing great promise in optoelectronic applications. More interestingly, the metallization of (NH4 )2 PtI6 is initiated at 14.2 GPa, the lowest metallization pressure ever reported in halide perovskites, which is related to the continuous increase in the overlap between the valence and conduction band of I 5p orbital. Its structural evolution upon compression before the metallic transition is also tracked, from cubic Fm-3m to tetragonal P4/mnc and then to monoclinic C2/c phase, which is mainly associated with the rotation and distortions within the [PtI6 ]2- octahedra. These findings represent a significant step toward revealing the structure-property relationships of (NH4 )2 PtI6 , and also prove that high-pressure technique is an efficient tool to design and realize superior optoelectronic materials.
Collapse
Affiliation(s)
- Jiaxiang Wang
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Lingrui Wang
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Yuqiang Li
- Tianjin Key Laboratory of Optoelectronic Detection Technology and SystemsSchool of Electrical and Electronic EngineeringTiangong UniversityTianjin300387P. R. China
| | - Ruijing Fu
- School of Applied Physics and MaterialsWuyi UniversityJiangmen529020P. R. China
| | - Youjia Feng
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Duanhua Chang
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Yifang Yuan
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Han Gao
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Sheng Jiang
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210P. R. China
| | - Fei Wang
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Er‐jia Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Jinguang Cheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard MaterialsCollege of PhysicsJilin UniversityChangchun130012P. R. China
| | - Haizhong Guo
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard MaterialsCollege of PhysicsJilin UniversityChangchun130012P. R. China
| |
Collapse
|
5
|
Fang Y, Shao T, Zhang L, Sui L, Wu G, Yuan K, Wang K, Zou B. Harvesting High-Quality White-Light Emitting and Remarkable Emission Enhancement in One-Dimensional Halide Perovskites Upon Compression. JACS AU 2021; 1:459-466. [PMID: 34467308 PMCID: PMC8395689 DOI: 10.1021/jacsau.1c00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 06/13/2023]
Abstract
The pressure induced emission (PIE) behavior of halide perovskites has attracted extensive interest due to its potential application in pressure sensors and trademark security. However, the PIE phenomenon of white-light-emitting hybrid perovskites (WHPs) is rare, and that at pressures above 10.0 GPa has never been reported. Here, we effectively adjusted the perovskite to emit high-quality "cold" or "warm" white light and successfully realized pressure-induced emission (PIE) upon even higher pressure up to 35.1 GPa in one-dimensional halide perovskite C4N2H14PbCl4. We reveal that the degree of structural distortion and the rearrangement of the multiple self-trapped states position are consistent with the intriguing photoluminescence variation, which is further supported by in situ high-pressure synchrotron X-ray diffraction experiments and time-resolved photoluminescence decay dynamics data. The underlying relationship between octahedron behavior and emission plays a key role to obtain high-quality white emission perovskites. We anticipate that this work enhances our understanding of structure-dependent self-trapped exciton (STE) emission characteristics and stimulates the design of high-performance WHPs for next generation white LED lighting devices.
Collapse
Affiliation(s)
- Yuanyuan Fang
- State
Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Tianyin Shao
- State
Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Long Zhang
- State
Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Laizhi Sui
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guorong Wu
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Kaijun Yuan
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Kai Wang
- State
Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Bo Zou
- State
Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Zhao D, Wang M, Xiao G, Zou B. Thinking about the Development of High-Pressure Experimental Chemistry. J Phys Chem Lett 2020; 11:7297-7306. [PMID: 32787316 DOI: 10.1021/acs.jpclett.0c02030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-pressure chemistry is an interdisciplinary science which uses high-pressure experiments and theories to study the interactions, reactions, and transformations among atoms or molecules. It has been extensively studied thus far and achieved rapid development over the past decades. However, what is next for high-pressure chemistry? In this Perspective, we mainly focus on the development of high-pressure experimental chemistry from our own viewpoint. An overview of the series of topics is as follows: (I) high pressure used as an effective tool to help resolve scientific disputes regarding phenomena observed under ambient conditions; (II) high-pressure reactions of interest to synthetic chemists; (III) utilizing chemical methods to quench the high-pressure phase; (IV) using high pressure to achieve what chemists want to do but could not do; (V) potential applications of in situ properties under high pressure. This Perspective is expected to offer future research opportunities for researchers to develop high-pressure chemistry and to inspire new endeavors in this area to promote the field of compression chemistry science.
Collapse
Affiliation(s)
- Dianlong Zhao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Meiyi Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Zhang L, Wang K, Lin Y, Zou B. Pressure Effects on the Electronic and Optical Properties in Low-Dimensional Metal Halide Perovskites. J Phys Chem Lett 2020; 11:4693-4701. [PMID: 32453961 DOI: 10.1021/acs.jpclett.0c01014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal halide perovskites have shown enormous potential in perovskite solar cells and light-emitting diodes and made unprecedented progress in the past decade. Pressure engineering as an effective technique can systematically modify the electronic structures and physical properties of functional materials. Low-dimensional metal halide perovskites (0D, 1D, and 2D) with a variety of compositions have soft lattices that allow pressure to drastically modulate their structures and properties. High-pressure investigations have obtained a comprehensive understanding of their structure-property relationships. Simultaneously, discoveries of novel pressure-driven properties, such as metallization and partially retained band gap narrowing have contributed significantly to the further development of such materials. In this Perspective, we mainly highlight the effect of pressure on the properties and structures of low-dimensional metal halide perovskites, which is essential for designing new perovskite materials and advancing applications.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yu Lin
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Fu Z, Wang K, Zou B. Recent advances in organic pressure-responsive luminescent materials. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Shalan AE, Kazim S, Ahmad S. Lead-Free Perovskites: Metals Substitution towards Environmentally Benign Solar Cell Fabrication. CHEMSUSCHEM 2019; 12:4116-4139. [PMID: 31231941 DOI: 10.1002/cssc.201901296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Perovskite solar cells have attracted significant attention during the current decade owing to their efficacy and photovoltaics performance, which has reached a new milestone in the thin-film category. Perovskite solar cells have witnessed a remarkable 25.2 % light-to-electricity conversion efficiency; however, the toxicity of the commonly employed Pb counterpart towards humans as well as the environment, in addition to material instability, are current bottlenecks towards commercial application. The scientific community has explored other metal ions as substitutions for Pb, while preserving the unique properties of the material, to produce environment-friendly perovskites. In this Review, we highlight the recent developments and challenges of Pb-free halide perovskite-based light harvesters for solar cell applications. This summary is intended to aid in the further development of a materials library for this sustainable technology.
Collapse
Affiliation(s)
- Ahmed Esmail Shalan
- BCMaterials-Basque Center for Materials, Applications, and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Samrana Kazim
- BCMaterials-Basque Center for Materials, Applications, and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa, 48940, Spain
- IKERBASQUE-Basque Foundation for Science, Bilbao, 48013, Spain
| | - Shahzada Ahmad
- BCMaterials-Basque Center for Materials, Applications, and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa, 48940, Spain
- IKERBASQUE-Basque Foundation for Science, Bilbao, 48013, Spain
| |
Collapse
|
10
|
Wu L, Dong Z, Zhang L, Liu C, Wang K, Zou B. High-Pressure Band-Gap Engineering and Metallization in the Perovskite Derivative Cs 3 Sb 2 I 9. CHEMSUSCHEM 2019; 12:3971-3976. [PMID: 31318167 DOI: 10.1002/cssc.201901388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Among photovoltaic materials, the antimony-based, perovskite-like structure Cs3 Sb2 I9 stands out owing to its low toxicity and air stability. Here, changes in the optoelectronic properties and crystal structure of the lead-free perovskite derivative Cs3 Sb2 I9 are reported, caused by pressure-induced lattice compression. At 20.0 GPa, Cs3 Sb2 I9 with a wide band gap (2.34 eV) successfully broke through the Shockley-Queisser limit (1.34 eV), accompanied by clear piezochromism from orange-yellow to opaque black. Additionally, Cs3 Sb2 I9 experienced completely reversible amorphization at 20.0 GPa. These optical changes could be attributed to atomic-orbital overlap enhancement caused by contraction of the Sb-I bond length and diminution of the Sb-I bond angle. In addition, Cs3 Sb2 I9 underwent a transition from semiconductor to conductor upon compression and obtained metallic properties at 44.3 GPa, indicating new electronic properties. The obtained results may further broaden the research prospects of halide perovskite materials in the field of photovoltaics.
Collapse
Affiliation(s)
- Lianwei Wu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P.R. China
| | - Zhiying Dong
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, P.R. China
| | - Long Zhang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P.R. China
| | - Cailong Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P.R. China
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, P.R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P.R. China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|