1
|
Pruccoli A, Zumbusch A. High Sensitivity Stimulated Raman Scattering Microscopy with Electronic Resonance Enhancement. Chemphyschem 2024; 25:e202400309. [PMID: 38923336 DOI: 10.1002/cphc.202400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Raman microscopy is an important tool for labelfree microscopy. However, spontaneous Raman microscopy suffers from slow image acquisition rates and susceptibility to fluorescence background. Coherent Raman microsocopy techniques such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy, by contrast, offer fast imaging capability and robustness against sample fluorescence. Yet, their rather low sensitivity impedes their broader application. This review discusses sensitivity enhancement of SRS microscopy to μ ${\mu }$ M detection levels by using electronically pre-resonant excitation. We present the foundations of this approach, discuss its technological implementation, and show first successful applications. A special emphasis is given to outlining new experimental developments allowing novel types of investigations.
Collapse
Affiliation(s)
- Andrea Pruccoli
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Andreas Zumbusch
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| |
Collapse
|
2
|
Lim MJ, Yagnik G, Henkel C, Frost SF, Bien T, Rothschild KJ. MALDI HiPLEX-IHC: multiomic and multimodal imaging of targeted intact proteins in tissues. Front Chem 2023; 11:1182404. [PMID: 37201132 PMCID: PMC10187789 DOI: 10.3389/fchem.2023.1182404] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is one of the most widely used methods for imaging the spatial distribution of unlabeled small molecules such as metabolites, lipids and drugs in tissues. Recent progress has enabled many improvements including the ability to achieve single cell spatial resolution, 3D-tissue image reconstruction, and the precise identification of different isomeric and isobaric molecules. However, MALDI-MSI of high molecular weight intact proteins in biospecimens has thus far been difficult to achieve. Conventional methods normally require in situ proteolysis and peptide mass fingerprinting, have low spatial resolution, and typically detect only the most highly abundant proteins in an untargeted manner. In addition, MSI-based multiomic and multimodal workflows are needed which can image both small molecules and intact proteins from the same tissue. Such a capability can provide a more comprehensive understanding of the vast complexity of biological systems at the organ, tissue, and cellular levels of both normal and pathological function. A recently introduced top-down spatial imaging approach known as MALDI HiPLEX-IHC (MALDI-IHC for short) provides a basis for achieving this high-information content imaging of tissues and even individual cells. Based on novel photocleavable mass-tags conjugated to antibody probes, high-plex, multimodal and multiomic MALDI-based workflows have been developed to image both small molecules and intact proteins on the same tissue sample. Dual-labeled antibody probes enable multimodal mass spectrometry and fluorescent imaging of targeted intact proteins. A similar approach using the same photocleavable mass-tags can be applied to lectin and other probes. We detail here several examples of MALDI-IHC workflows designed to enable high-plex, multiomic and multimodal imaging of tissues at a spatial resolution as low as 5 µm. This approach is compared to other existing high-plex methods such as imaging mass cytometry, MIBI-TOF, GeoMx and CODEX. Finally, future applications of MALDI-IHC are discussed.
Collapse
Affiliation(s)
- Mark J. Lim
- AmberGen, Inc., Billerica, MA, United States
- *Correspondence: Mark J. Lim, ; Kenneth J. Rothschild,
| | | | | | | | - Tanja Bien
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Kenneth J. Rothschild
- AmberGen, Inc., Billerica, MA, United States
- Department of Physics and Photonics Center, Boston University, Boston, MA, United States
- *Correspondence: Mark J. Lim, ; Kenneth J. Rothschild,
| |
Collapse
|
3
|
Abstract
As an emerging optical imaging modality, stimulated Raman scattering (SRS) microscopy provides invaluable opportunities for chemical biology studies using its rich chemical information. Through rapid progress over the past decade, the development of Raman probes harnessing the chemical biology toolbox has proven to play a key role in advancing SRS microscopy and expanding biological applications. In this perspective, we first discuss the development of biorthogonal SRS imaging using small tagging of triple bonds or isotopes and highlight their unique advantages for metabolic pathway analysis and microbiology investigations. Potential opportunities for chemical biology studies integrating small tagging with SRS imaging are also proposed. We next summarize the current designs of highly sensitive and super-multiplexed SRS probes, as well as provide future directions and considerations for next-generation functional probe design. These rationally designed SRS probes are envisioned to bridge the gap between SRS microscopy and chemical biology research and should benefit their mutual development.
Collapse
Affiliation(s)
- Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
4
|
Abstract
Membrane potential (Vmem) is a fundamental biophysical signal present in all cells. Vmem signals range in time from milliseconds to days, and they span lengths from microns to centimeters. Vmem affects many cellular processes, ranging from neurotransmitter release to cell cycle control to tissue patterning. However, existing tools are not suitable for Vmem quantification in many of these areas. In this review, we outline the diverse biology of Vmem, drafting a wish list of features for a Vmem sensing platform. We then use these guidelines to discuss electrode-based and optical platforms for interrogating Vmem. On the one hand, electrode-based strategies exhibit excellent quantification but are most effective in short-term, cellular recordings. On the other hand, optical strategies provide easier access to diverse samples but generally only detect relative changes in Vmem. By combining the respective strengths of these technologies, recent advances in optical quantification of absolute Vmem enable new inquiries into Vmem biology.
Collapse
Affiliation(s)
- Julia R Lazzari-Dean
- Department of Chemistry, University of California, Berkeley, California 94720, USA; ,
| | - Anneliese M M Gest
- Department of Chemistry, University of California, Berkeley, California 94720, USA; ,
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, California 94720, USA; ,
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Zhuge M, Huang K, Lee HJ, Jiang Y, Tan Y, Lin H, Dong P, Zhao G, Matei D, Yang Q, Cheng J. Ultrasensitive Vibrational Imaging of Retinoids by Visible Preresonance Stimulated Raman Scattering Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003136. [PMID: 33977045 PMCID: PMC8097318 DOI: 10.1002/advs.202003136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/10/2020] [Indexed: 06/07/2023]
Abstract
High-sensitivity chemical imaging offers a window to decipher the molecular orchestra inside a living system. Based on vibrational fingerprint signatures, coherent Raman scattering microscopy provides a label-free approach to map biomolecules and drug molecules inside a cell. Yet, by near-infrared (NIR) pulse excitation, the sensitivity is limited to millimolar concentration for endogenous biomolecules. Here, the imaging sensitivity of stimulated Raman scattering (SRS) is significantly boosted for retinoid molecules to 34 micromolar via electronic preresonance in the visible wavelength regime. Retinoids play critical roles in development, immunity, stem cell differentiation, and lipid metabolism. By visible preresonance SRS (VP-SRS) imaging, retinoid distribution in single embryonic neurons and mouse brain tissues is mapped, retinoid storage in chemoresistant pancreatic and ovarian cancers is revealed, and retinoids stored in protein network and lipid droplets of Caenorahbditis elegans are identified. These results demonstrate VP-SRS microscopy as an ultrasensitive label-free chemical imaging tool and collectively open new opportunities of understanding the function of retinoids in biological systems.
Collapse
Affiliation(s)
- Minghua Zhuge
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Kai‐Chih Huang
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
| | - Hyeon Jeong Lee
- College of Biomedical Engineering and Instrument SciencesZhejiang UniversityHangzhou310027China
| | - Ying Jiang
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
| | - Yuying Tan
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
| | - Haonan Lin
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
| | - Pu‐Ting Dong
- Department of ChemistryBoston UniversityBostonMA02215USA
| | - Guangyuan Zhao
- Department of Obstetrics and GynecologyNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Daniela Matei
- Department of Obstetrics and GynecologyNorthwestern University Feinberg School of MedicineChicagoIL60611USA
- Robert H. Lurie Comprehensive Cancer CenterChicagoIL60611USA
| | - Qing Yang
- State Key Laboratory of Modern Optical InstrumentationCollege of Optical Science and EngineeringZhejiang UniversityHangzhou310027China
- Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuan030006China
| | - Ji‐Xin Cheng
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
- Photonics CenterBoston UniversityBostonMA02215USA
| |
Collapse
|
6
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|