1
|
Hofmann A, Cakaj A, Kolb L, Noguchi Y, Brütting W. Enhancement of Spontaneous Orientation Polarization in Glassy Organic Semiconductor Mixtures. J Phys Chem B 2025; 129:779-787. [PMID: 39754589 DOI: 10.1021/acs.jpcb.4c07138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The alignment of permanent dipole moments and the resulting spontaneous orientation polarization (SOP) are commonly observed in evaporated neat films of polar organic molecules and lead to a so-called giant surface potential. In the case of mixed films, often enhanced molecular orientation is observed, i.e., a higher degree of alignment, in comparison to neat layers, if it is diluted into a suitable (nonpolar) host. So far, different possible influences on molecular orientation have been discussed, with the most prominent probably being the so-called surface equilibration model. In this contribution, we discuss how surface equilibration can influence orientation in mixed layers and which other intermolecular interactions have to be considered to explain the observed enhancement of SOP in mixed layers.
Collapse
Affiliation(s)
| | - Albin Cakaj
- Institut für Physik, Universität Augsburg, 86159 Augsburg, Germany
| | - Lea Kolb
- Institut für Physik, Universität Augsburg, 86159 Augsburg, Germany
| | - Yutaka Noguchi
- School of Science & Technology, Meiji University, 214-8571 Kawasaki, Japan
| | | |
Collapse
|
2
|
Orszulak L, Lamrani T, Bernat R, Tarnacka M, Żakowiecki D, Jurkiewicz K, Zioła P, Mrozek-Wilczkiewicz A, Zięba A, Kamiński K, Kamińska E. The Influence of PVP Polymer Topology on the Liquid Crystalline Order of Itraconazole in Binary Systems. Mol Pharm 2024; 21:3027-3039. [PMID: 38755753 DOI: 10.1021/acs.molpharmaceut.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This study presents a novel approach by utilizing poly(vinylpyrrolidone)s (PVPs) with various topologies as potential matrices for the liquid crystalline (LC) active pharmaceutical ingredient itraconazole (ITZ). We examined amorphous solid dispersions (ASDs) composed of ITZ and (i) self-synthesized linear PVP, (ii) self-synthesized star-shaped PVP, and (iii) commercial linear PVP K30. Differential scanning calorimetry, X-ray diffraction, and broad-band dielectric spectroscopy were employed to get a comprehensive insight into the thermal and structural properties, as well as global and local molecular dynamics of ITZ-PVP systems. The primary objective was to assess the influence of PVPs' topology and the composition of ASD on the LC ordering, changes in the temperature of transitions between mesophases, the rate of their restoration, and finally the solubility of ITZ in the prepared ASDs. Our research clearly showed that regardless of the PVP type, both LC transitions, from smectic (Sm) to nematic (N) and from N to isotropic (I) phases, are effectively suppressed. Moreover, a significant difference in the miscibility of different PVPs with the investigated API was found. This phenomenon also affected the solubility of API, which was the greatest, up to 100 μg/mL in the case of starPVP 85:15 w/w mixture in comparison to neat crystalline API (5 μg/mL). Obtained data emphasize the crucial role of the polymer's topology in designing new pharmaceutical formulations.
Collapse
Affiliation(s)
- Luiza Orszulak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-007 Katowice, Poland
| | - Taoufik Lamrani
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Roksana Bernat
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Magdalena Tarnacka
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Daniel Żakowiecki
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany
| | - Karolina Jurkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Patryk Zioła
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
- Biotechnology Centre, Silesian University of Technology, Boleslawa Krzywoustego 8, 44-100 Gliwice, Poland
| | - Andrzej Zięba
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
3
|
Ju J, Chatterjee D, Voyles PM, Bock H, Ediger MD. Vapor-to-glass preparation of biaxially aligned organic semiconductors. J Chem Phys 2023; 159:211101. [PMID: 38038197 DOI: 10.1063/5.0174819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Physical vapor deposition (PVD) provides a route to prepare highly stable and anisotropic organic glasses that are utilized in multi-layer structures such as organic light-emitting devices. While previous work has demonstrated that anisotropic glasses with uniaxial symmetry can be prepared by PVD, here, we prepare biaxially aligned glasses in which molecular orientation has a preferred in-plane direction. With the collective effect of the surface equilibration mechanism and template growth on an aligned substrate, macroscopic biaxial alignment is achieved in depositions as much as 180 K below the clearing point TLC-iso (and 50 K below the glass transition temperature Tg) with single-component disk-like (phenanthroperylene ester) and rod-like (itraconazole) mesogens. The preparation of biaxially aligned organic semiconductors adds a new dimension of structural control for vapor-deposited glasses and may enable polarized emission and in-plane control of charge mobility.
Collapse
Affiliation(s)
- Jianzhu Ju
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Debaditya Chatterjee
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Paul M Voyles
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 33600 Pessac, France
| | - Mark D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
4
|
Cakaj A, Schmid M, Hofmann A, Brütting W. Controlling Spontaneous Orientation Polarization in Organic Semiconductors─The Case of Phosphine Oxides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54721-54731. [PMID: 37970727 DOI: 10.1021/acsami.3c13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Upon film growth by physical vapor deposition, the preferential orientation of polar organic molecules can result in a nonzero permanent dipole moment (PDM) alignment, causing a macroscopic film polarization. This effect, known as spontaneous orientation polarization (SOP), was studied in the case of different phosphine oxides (POs). We investigate the control of SOP by molecular design and film-growth conditions. Our results show that using less polar POs with just one phosphor-oxygen bond yields an exceptionally high degree of SOP with the so-called giant surface potential (slope), reaching more than 150 mV nm-1 in a neat bis-4-(N-carbazol(yl)phenyl)phenyl phosphine oxide (BCPO) film grown at room temperature. Additionally, by altering the evaporation rate and substrate temperature, we are able to control the SOP magnitude over a broad range from 0 to almost 300 mV nm-1. Diluting BCPO in a nonpolar host enhances the PDM alignment only marginally, but combining temperature control with dipolar doping can result in highly aligned molecules with more than 80% of their PDMs standing upright on the substrate on average.
Collapse
Affiliation(s)
- Albin Cakaj
- Institute of Physics, University of Augsburg, Augsburg 86135, Germany
| | - Markus Schmid
- Institute of Physics, University of Augsburg, Augsburg 86135, Germany
| | - Alexander Hofmann
- Institute of Physics, University of Augsburg, Augsburg 86135, Germany
| | - Wolfgang Brütting
- Institute of Physics, University of Augsburg, Augsburg 86135, Germany
| |
Collapse
|
5
|
Ferron T, Fiori ME, Ediger MD, DeLongchamp DM, Sunday DF. Composition Dictates Molecular Orientation at the Heterointerfaces of Vapor-Deposited Glasses. JACS AU 2023; 3:1931-1938. [PMID: 37502150 PMCID: PMC10369407 DOI: 10.1021/jacsau.3c00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023]
Abstract
Physical vapor deposition (PVD) can prepare organic glasses with a preferred molecular orientation. The relationships between deposition conditions and orientation have been extensively investigated in the film bulk. The role of interfaces on the structure is less well understood and remains a key knowledge gap, as the interfacial region can govern glass stability and optoelectronic properties. Robust experimental characterization has remained elusive due to complexities in interrogating molecular organization in amorphous, organic materials. Polarized soft X-rays are sensitive to both the composition and the orientation of transition dipole moments in the film, making them uniquely suited to probe molecular orientation in amorphous soft matter. Here, we utilize polarized resonant soft X-ray reflectivity (P-RSoXR) to simultaneously depth profile the composition and molecular orientation of a bilayer prepared through the physical vapor deposition of 1,4-di-[4-(N,N-diphenyl)amino]styryl-benzene (DSA-Ph) on a film of aluminum-tris(8-hydroxyquinoline) (Alq3). The bulk orientation of the DSA-Ph layer is controlled by varying deposition conditions. Utilizing P-RSoXR to depth profile the films enables determination of both the bulk orientation of DSA-Ph and the orientation near the Alq3 interface. At the Alq3 surface, DSA-Ph always lies with its long axis parallel to the interface, before transitioning into the bulk orientation. This is likely due to the lower mobility and higher glass transition of Alq3, as the first several monolayers of DSA-Ph deposited on Alq3 appear to behave as a blend. We further show how orientation at the interface correlates with the bulk behavior of a codeposited glass of similar blend composition, demonstrating a straightforward approach to predicting molecular orientation at heterointerfaces. This work provides key insights into how molecules orient during vapor deposition and offers methods to predict this property, a critical step toward controlling interfacial behavior in soft matter.
Collapse
Affiliation(s)
- Thomas
J. Ferron
- National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Marie E. Fiori
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - M. D. Ediger
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Dean M. DeLongchamp
- National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Daniel F. Sunday
- National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
6
|
Chatterjee D, Huang S, Gu K, Ju J, Yu J, Bock H, Yu L, Ediger MD, Voyles PM. Using 4D STEM to Probe Mesoscale Order in Molecular Glass Films Prepared by Physical Vapor Deposition. NANO LETTERS 2023; 23:2009-2015. [PMID: 36799489 DOI: 10.1021/acs.nanolett.3c00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Physical vapor deposition can be used to prepare highly stable organic glass systems where the molecules show orientational and translational ordering at the nanoscale. We have used low-dose four-dimensional scanning transmission electron microscopy (4D STEM), enabled by a fast direct electron detector, to map columnar order in glassy samples of a discotic mesogen using a 2 nm probe. Both vapor-deposited and liquid-cooled glassy films show domains of similar orientation, but their size varies from tens to hundreds of nanometers, depending on processing. Domain sizes are consistent with surface-diffusion-mediated ordering during film deposition. These results demonstrate the ability of low-dose 4D STEM to characterize a mesoscale structure in a molecular glass system which may be relevant to organic electronics.
Collapse
Affiliation(s)
- Debaditya Chatterjee
- Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Applied Materials Inc., Santa Clara, California, 95054 United States
| | - Shuoyuan Huang
- Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Kaichen Gu
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jianzhu Ju
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Junguang Yu
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Harald Bock
- Centre de Recherche Paul Pascal-CNRS & Université de Bordeaux, 33600 Pessac, France
| | - Lian Yu
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - M D Ediger
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Paul M Voyles
- Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
He S, Pakhomenko E, Holmes RJ. Process Engineered Spontaneous Orientation Polarization in Organic Light-Emitting Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1652-1660. [PMID: 36548807 DOI: 10.1021/acsami.2c17960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polar molecules with appreciable permanent dipole moments (PDMs) are widely used as the electron transport layer (ETL) in organic light-emitting devices (OLEDs). When the PDMs spontaneously align, a macroscopic polarization field can be observed, a phenomenon known as spontaneous orientation polarization (SOP). The presence of SOP in the ETL induces considerable surface potential and charge accumulation that is capable of quenching excitons and reducing device efficiency. While prior work has shown that the degree of SOP is sensitive to film processing conditions, this work considers SOP formation by quantitatively treating the vapor-deposited film as a supercooled glass, in analogy to prior work on birefringence in organic thin films. Importantly, the impact of varying thin-film deposition rate and relative temperature is unified into a single framework, providing a useful tool to predict the SOP formation efficiency for a polar material, as well as in blends of polar materials. Finally, in situ photoluminescence characterization and efficiency measurements reveal that SOP-induced exciton-polaron quenching can be reduced through an appropriate choice of processing conditions, leading to enhanced OLED efficiency.
Collapse
Affiliation(s)
- Siliang He
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Evgeny Pakhomenko
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Russell J Holmes
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, United States
| |
Collapse
|
8
|
Beena Unni A, Mroczka R, Kubacki J, Adrjanowicz K. Experimental evidence for the presence of irreversibly adsorbed material in vapor deposited glasses. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Li Y, Yu J, Tan X, Yu L. Surface Mobility of Amorphous Indomethacin Containing Moisture and a Surfactant: A Concentration-Temperature Superposition Principle. Mol Pharm 2022; 19:2962-2970. [PMID: 35816108 DOI: 10.1021/acs.molpharmaceut.2c00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An amorphous material can have vastly higher mobility on the surface than in the bulk and, as a result, shows fast surface crystallization. Most amorphous materials contain multiple components, but the effect of composition on surface dynamics remains poorly understood. In this study, the surface mobility of amorphous indomethacin was measured using the method of surface-grating decay in the presence of moisture and the surfactant Tween 20. It is found that both components significantly enhance the surface mobility, and their effects are well described by the principle of concentration-temperature superposition (CTS); that is, the same surface dynamics is observed at the same Tg-normalized temperature T/Tg, where Tg is the composition-dependent glass transition temperature. For doped indomethacin showing CTS, the mechanism of surface evolution for a 1000 nm wavelength surface grating transitions from viscous flow at high temperatures to surface diffusion at low temperatures at 1.04 Tg. For the surfactant-doped system, the Tg used is the value for the surface layer that reflects the surface enrichment of the surfactant (measured by X-ray photoelectron spectroscopy). At a high surfactant concentration (>10% by weight), the surface-grating decay rate in the surface-diffusion regime is limited by the large, slow-diffusing surfactant molecules; in this case, CTS holds only for the viscous-flow regime. The CTS principle allows the prediction of the surface dynamics of multicomponent amorphous materials.
Collapse
Affiliation(s)
- Yuhui Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Junguang Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xiao Tan
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
10
|
Unni AB, Winkler R, Duarte DM, Tu W, Chat K, Adrjanowicz K. Vapor-Deposited Thin Films: Studying Crystallization and α-relaxation Dynamics of the Molecular Drug Celecoxib. J Phys Chem B 2022; 126:3789-3798. [PMID: 35580265 PMCID: PMC9150116 DOI: 10.1021/acs.jpcb.2c01284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Crystallization is one of the major challenges in using glassy solids for technological applications. Considering pharmaceutical drugs, maintaining a stable amorphous form is highly desirable for improved solubility. Glasses prepared by the physical vapor deposition technique got attention because they possess very high stability, taking thousands of years for an ordinary glass to achieve. In this work, we have investigated the effect of reducing film thickness on the α-relaxation dynamics and crystallization tendency of vapor-deposited films of celecoxib (CXB), a pharmaceutical substance. We have scrutinized its crystallization behavior above and below the glass-transition temperature (Tg). Even though vapor deposition of CXB cannot inhibit crystallization completely, we found a significant decrease in the crystallization rate with decreasing film thickness. Finally, we have observed striking differences in relaxation dynamics of vapor-deposited thin films above the Tg compared to spin-coated counterparts of the same thickness.
Collapse
Affiliation(s)
- Aparna Beena Unni
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Roksana Winkler
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Daniel Marques Duarte
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Wenkang Tu
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Katarzyna Chat
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.,Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
11
|
Rodriguez-Tinoco C, Gonzalez-Silveira M, Ramos MA, Rodriguez-Viejo J. Ultrastable glasses: new perspectives for an old problem. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:325-406. [DOI: 10.1007/s40766-022-00029-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2025]
Abstract
AbstractUltrastable glasses (mostly prepared from the vapor phase under optimized deposition conditions) represent a unique class of materials with low enthalpies and high kinetic stabilities. These highly stable and dense glasses show unique physicochemical properties, such as high thermal stability, improved mechanical properties or anomalous transitions into the supercooled liquid, offering unprecedented opportunities to understand many aspects of the glassy state. Their improved properties with respect to liquid-cooled glasses also open new prospects to their use in applications where liquid-cooled glasses failed or where not considered as usable materials. In this review article we summarize the state of the art of vapor-deposited (and other) ultrastable glasses with a focus on the mechanism of equilibration, the transformation to the liquid state and the low temperature properties. The review contains information on organic, metallic, polymeric and chalcogenide glasses and an updated list with relevant properties of all materials known today to form a stable glass.
Collapse
|
12
|
Bishop C, Bagchi K, Toney MF, Ediger MD. Vapor deposition rate modifies anisotropic glassy structure of an anthracene-based organic semiconductor. J Chem Phys 2022; 156:014504. [PMID: 34998353 DOI: 10.1063/5.0074092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We control the anisotropic molecular packing of vapor-deposited glasses of ABH113, a deuterated anthracene derivative with promise for future organic light emitting diode materials, by changing the deposition rate and substrate temperature at which they are prepared. We find that at substrate temperatures from 0.65 Tg to 0.92 Tg, the deposition rate significantly modifies the orientational order in the vapor-deposited glasses as characterized by x-ray scattering and birefringence. Both measures of anisotropic order can be described by a single deposition rate-substrate temperature superposition (RTS). This supports the applicability of the surface equilibration mechanism and generalizes the RTS principle from previous model systems with liquid crystalline order to non-mesogenic organic semiconductors. We find that vapor-deposited glasses of ABH113 have significantly enhanced density and thermal stability compared to their counterparts prepared by liquid-cooling. For organic semiconductors, the results of this study provide an efficient guide for using the deposition rate to prepare stable glasses with controlled molecular packing.
Collapse
Affiliation(s)
- Camille Bishop
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kushal Bagchi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael F Toney
- College of Engineering and Applied Science, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
13
|
Surface equilibration mechanism controls the molecular packing of glassy molecular semiconductors at organic interfaces. Proc Natl Acad Sci U S A 2021; 118:2111988118. [PMID: 34645709 DOI: 10.1073/pnas.2111988118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Glasses prepared by physical vapor deposition (PVD) are anisotropic, and the average molecular orientation can be varied significantly by controlling the deposition conditions. While previous work has characterized the average structure of thick PVD glasses, most experiments are not sensitive to the structure near an underlying substrate or interface. Given the profound influence of the substrate on the growth of crystalline or liquid crystalline materials, an underlying substrate might be expected to substantially alter the structure of a PVD glass, and this near-interface structure is important for the function of organic electronic devices prepared by PVD, such as organic light-emitting diodes. To study molecular packing near buried organic-organic interfaces, we prepare superlattice structures (stacks of 5- or 10-nm layers) of organic semiconductors, Alq3 (Tris-(8-hydroxyquinoline)aluminum) and DSA-Ph (1,4-di-[4-(N,N-diphenyl)amino]styrylbenzene), using PVD. Superlattice structures significantly increase the fraction of the films near buried interfaces, thereby allowing for quantitative characterization of interfacial packing. Remarkably, both X-ray scattering and spectroscopic ellipsometry indicate that the substrate exerts a negligible influence on PVD glass structure. Thus, the surface equilibration mechanism previously advanced for thick films can successfully describe PVD glass structure even within the first monolayer of deposition on an organic substrate.
Collapse
|
14
|
Yang L, Vajente G, Fazio M, Ananyeva A, Billingsley G, Markosyan A, Bassiri R, Prasai K, Fejer MM, Chicoine M, Schiettekatte F, Menoni CS. Enhanced medium-range order in vapor-deposited germania glasses at elevated temperatures. SCIENCE ADVANCES 2021; 7:eabh1117. [PMID: 34516775 PMCID: PMC8442899 DOI: 10.1126/sciadv.abh1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Glasses are nonequilibrium solids with properties highly dependent on their method of preparation. In vapor-deposited molecular glasses, structural organization could be readily tuned with deposition rate and substrate temperature. Here, we show that the atomic arrangement of strong network-forming GeO2 glass is modified at medium range (<2 nm) through vapor deposition at elevated temperatures. Raman spectral signatures distinctively show that the population of six-membered GeO4 rings increases at elevated substrate temperatures. Deposition near the glass transition temperature is more efficient than postgrowth annealing in modifying atomic structure at medium range. The enhanced medium-range organization correlates with reduction of the room temperature internal friction. Identifying the microscopic origin of room temperature internal friction in amorphous oxides is paramount to design the next-generation interference coatings for mirrors of the end test masses of gravitational wave interferometers, in which the room temperature internal friction is a main source of noise limiting their sensitivity.
Collapse
Affiliation(s)
- Le Yang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Gabriele Vajente
- LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mariana Fazio
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Alena Ananyeva
- LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Ashot Markosyan
- Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Riccardo Bassiri
- Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Kiran Prasai
- Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Martin M. Fejer
- Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Martin Chicoine
- Départment de Physique, Université de Montréal, Québec H3C 3J7, Canada
| | | | - Carmen S. Menoni
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
15
|
Luo P, Zhu F, Lv YM, Lu Z, Shen LQ, Zhao R, Sun YT, Vaughan GBM, di Michiel M, Ruta B, Bai HY, Wang WH. Microscopic Structural Evolution during Ultrastable Metallic Glass Formation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40098-40105. [PMID: 34375527 DOI: 10.1021/acsami.1c10716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
By decreasing the rate of physical vapor deposition, ZrCuAl metallic glasses with improved stability and mechanical performances can be formed, while the microscopic structural mechanisms remain unclear. Here, with scanning transmission electron microscopy and high-energy synchrotron X-ray diffraction, we found that the metallic glass deposited at a higher rate exhibits a heterogeneous structure with compositional fluctuations at a distance of a few nanometers, which gradually disappear on decreasing the deposition rate; eventually, a homogeneous structure is developed approaching ultrastability. This microscopic structural evolution suggests the existence of the following two dynamical processes during ultrastable metallic glass formation: a faster diffusion process driven by the kinetic energy of the depositing atoms, which results in nanoscale compositional fluctuations, and a slower collective relaxation process that eliminates the compositional and structural heterogeneity, equilibrates the deposited atoms, and strengthens the local atomic connectivity.
Collapse
Affiliation(s)
- Peng Luo
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fan Zhu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Yu-Miao Lv
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Lu
- World Premier International Research Centers Initiative (WPI), Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Lai-Quan Shen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Zhao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi-Tao Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Gavin B M Vaughan
- ESRF-The European Synchrotron, CS 40220, Grenoble 38043 Cedex 9, France
| | - Marco di Michiel
- ESRF-The European Synchrotron, CS 40220, Grenoble 38043 Cedex 9, France
| | - Beatrice Ruta
- ESRF-The European Synchrotron, CS 40220, Grenoble 38043 Cedex 9, France
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne 69622, France
| | - Hai-Yang Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Hua Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Abstract
When aged below the glass transition temperature, [Formula: see text], the density of a glass cannot exceed that of the metastable supercooled liquid (SCL) state, unless crystals are nucleated. The only exception is when another polyamorphic SCL state exists, with a density higher than that of the ordinary SCL. Experimentally, such polyamorphic states and their corresponding liquid-liquid phase transitions have only been observed in network-forming systems or those with polymorphic crystalline states. In otherwise simple liquids, such phase transitions have not been observed, either in aged or vapor-deposited stable glasses, even near the Kauzmann temperature. Here, we report that the density of thin vapor-deposited films of N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) can exceed their corresponding SCL density by as much as 3.5% and can even exceed the crystal density under certain deposition conditions. We identify a previously unidentified high-density supercooled liquid (HD-SCL) phase with a liquid-liquid phase transition temperature ([Formula: see text]) ∼35 K below the nominal glass transition temperature of the ordinary SCL. The HD-SCL state is observed in glasses deposited in the thickness range of 25 to 55 nm, where thin films of the ordinary SCL have exceptionally enhanced surface mobility with large mobility gradients. The enhanced mobility enables vapor-deposited thin films to overcome kinetic barriers for relaxation and access the HD-SCL state. The HD-SCL state is only thermodynamically favored in thin films and transforms rapidly to the ordinary SCL when the vapor deposition is continued to form films with thicknesses more than 60 nm.
Collapse
|
17
|
Smith RS, Tylinski M, Kimmel GA, Kay BD. Crystallization kinetics of amorphous acetonitrile nanoscale films. J Chem Phys 2021; 154:144703. [PMID: 33858151 DOI: 10.1063/5.0045461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We measure the isothermal crystallization kinetics of amorphous acetonitrile films using molecular beam dosing and reflection adsorption infrared spectroscopy techniques. Experiments on a graphene covered Pt(111) substrate revealed that the crystallization rate slows dramatically during long time periods and that the overall kinetics cannot be described by a simple application of the Avrami equation. The crystallization kinetics also have a thickness dependence with the thinner films crystallizing much slower than the thicker ones. Additional experiments showed that decane layers at both the substrate and vacuum interfaces can also affect the crystallization rates. A comparison of the crystallization rates for CH3CN and CD3CN films showed only an isotope effect of ∼1.09. When amorphous films were deposited on a crystalline film, the crystalline layer did not act as a template for the formation of a crystalline growth front. These overall results suggest that the crystallization kinetics are complicated, indicating the possibility of multiple nucleation and growth mechanisms.
Collapse
Affiliation(s)
- R Scott Smith
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - M Tylinski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Greg A Kimmel
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Bruce D Kay
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
18
|
Bishop C, Chen Z, Toney MF, Bock H, Yu L, Ediger MD. Using Deposition Rate and Substrate Temperature to Manipulate Liquid Crystal-Like Order in a Vapor-Deposited Hexagonal Columnar Glass. J Phys Chem B 2021; 125:2761-2770. [PMID: 33683124 DOI: 10.1021/acs.jpcb.0c11564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate vapor-deposited glasses of a phenanthroperylene ester, known to form an equilibrium hexagonal columnar phase, and show that liquid crystal-like order can be manipulated by the choice of deposition rate and substrate temperature during deposition. We find that rate-temperature superposition (RTS)-the equivalence of lowering the deposition rate and increasing the substrate temperature-can be used to predict and control the molecular orientation in vapor-deposited glasses over a wide range of substrate temperatures (0.75-1.0 Tg). This work extends RTS to a new structural motif, hexagonal columnar liquid crystal order, which is being explored for organic electronic applications. By several metrics, including the apparent average face-to-face nearest-neighbor distance, physical vapor deposition (PVD) glasses of the phenanthroperylene ester are as ordered as the glass prepared by cooling the equilibrium liquid crystal. By other measures, the PVD glasses are less ordered than the cooled liquid crystal. We explain the difference in the maximum attainable order with the existence of a gradient in molecular mobility at the free surface of a liquid crystal and its impact upon different mechanisms of structural rearrangement. This free surface equilibration mechanism explains the success of the RTS principle and provides guidance regarding the types of order most readily enhanced by vapor deposition. This work extends the applicability of RTS to include molecular systems with a diverse range of higher-order liquid-crystalline morphologies that could be useful for new organic electronic applications.
Collapse
Affiliation(s)
- Camille Bishop
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Zhenxuan Chen
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, Wisconsin 53705, United States
| | - Michael F Toney
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Harald Bock
- Centre de Recherche Paul Pascal, CNRS & Université de Bordeaux, 115, av. Schweitzer, 33600 Pessac, France
| | - Lian Yu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, Wisconsin 53705, United States
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| |
Collapse
|
19
|
Gunawardana HDCN, Osada K, Koswattage KR, Noguchi Y. Enhancement of the molecular orientation of TPBi in coevaporated films of UGH‐2 host molecules. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.6933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Kohei Osada
- School of Science & Technology Meiji University Kawasaki Japan
| | | | - Yutaka Noguchi
- School of Science & Technology Meiji University Kawasaki Japan
| |
Collapse
|
20
|
Tourlakis GM, Adamopoulos SAT, Gavra IK, Milpanis AA, Tsagri LF, Pachygianni ASG, Chatzikokolis SS, Tsekouras AA. Sign flipping of spontaneous polarization in vapour-deposited films of small polar organic molecules. Phys Chem Chem Phys 2021; 23:14352-14362. [PMID: 34169950 DOI: 10.1039/d1cp01584b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Films of polar molecules vapour-deposited on sufficiently cold substrates are not only amorphous, but also exhibit charge polarization across their thickness. This is an effect known for 50 years, but it is very poorly understood and no mechanism exists in the literature that can explain and predict it. We investigated this bulk effect for 18 small organic molecules as a function of substrate temperature (30-130 K). We found that, as a rule, alcohol films have the negative end on the vacuum side at all temperatures. Alkyl acetates and toluene showed positive voltages which reached a maximum around the middle of the temperature range investigated. Tetrahydrofuran showed positive voltages which dropped with increasing deposition temperature. Diethyl ether, acetone, propanal, and butanal showed positive film voltages at low temperatures, negative at intermediate temperatures and again positive voltages at higher temperatures. In all cases, film voltages were monitored during heating leading to film evaporation. Film voltages were irreversibly eliminated before film elimination, but voltage profiles during temperature ramps differed vastly depending on compound and deposition temperature. In general, there was a gradual voltage reduction, but propanal, butanal, and diethyl ether showed a change in voltage sign during temperature ramp in films deposited at low temperatures. All these data expand substantially the experimental information regarding spontaneous polarization in vapour-deposited films, but still require complementary measurements as well as numerical simulations for a detailed explanation of the phenomenon.
Collapse
Affiliation(s)
- Georgios M Tourlakis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Sotirios Alexandros T Adamopoulos
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Irini K Gavra
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Alexandros A Milpanis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Liveria F Tsagri
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Aikaterini Sofia G Pachygianni
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Stylianos S Chatzikokolis
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| | - Athanassios A Tsekouras
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784, Greece.
| |
Collapse
|
21
|
Bagchi K, Fiori ME, Bishop C, Toney MF, Ediger MD. Stable Glasses of Organic Semiconductor Resist Crystallization. J Phys Chem B 2020; 125:461-466. [DOI: 10.1021/acs.jpcb.0c09925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kushal Bagchi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Marie E. Fiori
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Camille Bishop
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - M. F. Toney
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
Beasley MS, Kasting BJ, Tracy ME, Guiseppi-Elie A, Richert R, Ediger MD. Physical vapor deposition of a polyamorphic system: Triphenyl phosphite. J Chem Phys 2020; 153:124511. [PMID: 33003706 DOI: 10.1063/5.0019872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In situ AC nanocalorimetry and dielectric spectroscopy were used to analyze films of vapor-deposited triphenyl phosphite. The goal of this work was to investigate the properties of vapor-deposited glasses of this known polyamorphic system and to determine which liquid is formed when the glass is heated. We find that triphenyl phosphite forms a kinetically stable glass when prepared at substrate temperatures of 0.75-0.95Tg, where Tg is the glass transition temperature. Regardless of the substrate temperature utilized during deposition of triphenyl phosphite, heating a vapor-deposited glass always forms the ordinary supercooled liquid (liquid 1). The identity of liquid 1 was confirmed by both the calorimetric signal and the shape and position of the dielectric spectra. For the purposes of comparison, the glacial phase of triphenyl phosphite (liquid 2) was prepared by the conventional method of annealing liquid 1. We speculate that these new results and previous work on vapor deposition of other polyamorphic systems can be explained by the free surface structure being similar to one polyamorph even in a temperature regime where the other polyamorph is more thermodynamically stable in the bulk.
Collapse
Affiliation(s)
- M S Beasley
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - B J Kasting
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - M E Tracy
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - A Guiseppi-Elie
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - R Richert
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
23
|
Bagchi K, Ediger MD. Controlling Structure and Properties of Vapor-Deposited Glasses of Organic Semiconductors: Recent Advances and Challenges. J Phys Chem Lett 2020; 11:6935-6945. [PMID: 32787194 DOI: 10.1021/acs.jpclett.0c01682] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The past decade has seen great progress in manipulating the structure of vapor-deposited glasses of organic semiconductors. Upon varying the substrate temperature during deposition, glasses with a wide range of density and molecular orientation can be prepared from a given molecule. We review recent studies that show the structure of vapor-deposited glasses can be tuned to significantly improve the external quantum efficiency and lifetime of organic light-emitting diodes (OLEDs). We highlight the ability of molecular simulations to reproduce experimentally observed structures, setting the stage for in silico design of vapor-deposited glasses in the coming decade. Finally, we identify research opportunities for improving the properties of organic semiconductors by controlling the structure of vapor-deposited glasses.
Collapse
Affiliation(s)
- Kushal Bagchi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Bagchi K, Deng C, Bishop C, Li Y, Jackson NE, Yu L, Toney MF, de Pablo JJ, Ediger MD. Over What Length Scale Does an Inorganic Substrate Perturb the Structure of a Glassy Organic Semiconductor? ACS APPLIED MATERIALS & INTERFACES 2020; 12:26717-26726. [PMID: 32402187 DOI: 10.1021/acsami.0c06428] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While the bulk structure of vapor-deposited glasses has been extensively studied, structure at buried interfaces has received little attention, despite being important for organic electronic applications. To learn about glass structure at buried interfaces, we study the structure of vapor-deposited glasses of the organic semiconductor DSA-Ph (1,4-di-[4-(N,N-diphenyl)amino]styrylbenzene) as a function of film thickness; the structure is probed with grazing incidence X-ray scattering. We deposit on silicon and gold substrates and span a film thickness range of 10-600 nm. Our experiments demonstrate that interfacial molecular packing in vapor-deposited glasses of DSA-Ph is more disordered compared to the bulk. At a deposition temperature near room temperature, we estimate ∼8 nm near the substrate can have modified molecular packing. Molecular dynamics simulations of a coarse-grained representation of DSA-Ph reveal a similar length scale. In both the simulations and the experiments, deposition temperature controls glass structure beyond this interfacial layer of a few nanometers.
Collapse
Affiliation(s)
- Kushal Bagchi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Chuting Deng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Camille Bishop
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yuhui Li
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| | - Nicholas E Jackson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lian Yu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| | - M F Toney
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - J J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Li Y, Zhang W, Bishop C, Huang C, Ediger MD, Yu L. Surface diffusion in glasses of rod-like molecules posaconazole and itraconazole: effect of interfacial molecular alignment and bulk penetration. SOFT MATTER 2020; 16:5062-5070. [PMID: 32453335 DOI: 10.1039/d0sm00353k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The method of surface grating decay has been used to measure surface diffusion in the glasses of two rod-like molecules posaconazole (POS) and itraconazole (ITZ). Although structurally similar antifungal medicines, ITZ forms liquid-crystalline phases while POS does not. Surface diffusion in these systems is significantly slower than in the glasses of quasi-spherical molecules of similar volume when compared at the glass transition temperature Tg. Between the two systems, ITZ has slower surface diffusion. These results are explained on the basis of the near-vertical orientation of the rod-like molecules at the surface and their deep penetration into the bulk where mobility is low. For molecular glasses without extensive hydrogen bonds, we find that the surface diffusion coefficient at Tg decreases smoothly with the penetration depth of surface molecules and the trend has the double-exponential form for the surface mobility gradient observed in simulations. This supports the view that these molecular glasses have a similar mobility vs. depth profile and their different surface diffusion rates arise simply from the different depths at which molecules are anchored. Our results also provide support for a previously observed correlation between the rate of surface diffusion and the fragility of the bulk liquid.
Collapse
Affiliation(s)
- Yuhui Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Bishop C, Li Y, Toney MF, Yu L, Ediger MD. Molecular Orientation for Vapor-Deposited Organic Glasses Follows Rate-Temperature Superposition: The Case of Posaconazole. J Phys Chem B 2020; 124:2505-2513. [DOI: 10.1021/acs.jpcb.0c00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camille Bishop
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yuhui Li
- School of Pharmacy, University of Wisconsin−Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Michael F. Toney
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Lian Yu
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin−Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|