1
|
Guzman-Juarez B, Abdelaal AB, Reven L. NMR Characterization of Nanoscale Surface Patterning in Mixed Ligand Nanoparticles. ACS NANO 2022; 16:20116-20128. [PMID: 36411252 DOI: 10.1021/acsnano.2c03707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spontaneous phase separation in binary mixed ligand shells is a proposed strategy to create patchy nanoparticles. The surface anisotropy, providing directionality along with interfacial properties emerging from both ligands, is highly desirable for targeted drug delivery, catalysis, and other applications. However, characterization of phase separation on the nanoscale remains quite challenging. Here we have adapted solid-state 1H spin diffusion NMR experiments designed to detect and quantify spatial heterogeneity in polymeric materials to nanoparticles (NPs) functionalized with mixed short ligands. Janus NPs and physical mixtures of homoligand 3.5 nm diameter ZrO2 NPs, with aromatic (phenylphosphonic acid, PPA) and aliphatic (oleic acid, OA) ligands, were used to calibrate the 1H spin diffusion experiments. The Janus NPs, prepared by a facile wax/water Pickering emulsion method, and mixed ligand NPs, produced by ligand exchange, both with 1:1 PPA:OA ligand compositions, display strikingly different solvent and particle-particle interactions. 1H spin diffusion NMR experiments are most consistent with a lamellar surface pattern for the mixed ligand ZrO2 NPs. Solid-state 1H spin diffusion NMR is shown to be a valuable additional characterization tool for mixed ligand NPs, as it not only detects the presence of nanoscale phase separation but also allows measurement of the domain sizes and geometries of the surface phase separation.
Collapse
Affiliation(s)
- Brenda Guzman-Juarez
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| | - Ahmed Bahaeldin Abdelaal
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| | - Linda Reven
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| |
Collapse
|
2
|
Juramy M, Mollica G. Recent Progress in Nuclear Magnetic Resonance Strategies for Time-Resolved Atomic-Level Investigation of Crystallization from Solution. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Prisco NA, Pinon AC, Emsley L, Chmelka BF. Scaling analyses for hyperpolarization transfer across a spin-diffusion barrier and into bulk solid media. Phys Chem Chem Phys 2021; 23:1006-1020. [PMID: 33404028 DOI: 10.1039/d0cp03195j] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
By analogy to heat and mass transfer film theory, a general approach is introduced for determining hyperpolarization transfer rates between dilute electron spins and a surrounding nuclear ensemble. These analyses provide new quantitative relationships for understanding, predicting, and optimizing the effectiveness of hyperpolarization protocols, such as Dynamic Nuclear Polarization (DNP) under magic-angle spinning conditions. An empirical DNP polarization-transfer coefficient is measured as a function of the bulk matrix 1H spin density and indicates the presence of two distinct kinetic regimes associated with different rate-limiting polarization transfer phenomena. Dimensional property relationships are derived and used to evaluate the competitive rates of spin polarization generation, propagation, and dissipation that govern hyperpolarization transfer between large coupled spin ensembles. The quantitative analyses agree closely with experimental measurements for the accumulation, propagation, and dissipation of hyperpolarization in solids and provide evidence for kinetically-limited transfer associated with a spin-diffusion barrier. The results and classical approach yield general design criteria for analyzing and optimizing polarization transfer processes involving complex interfaces and composite media for applications in materials science, physical chemistry and nuclear spintronics.
Collapse
Affiliation(s)
- Nathan A Prisco
- Department of Chemical Engineering, University of California Santa Barbara, USA.
| | - Arthur C Pinon
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California Santa Barbara, USA.
| |
Collapse
|
4
|
Kunhi Mohamed A, Moutzouri P, Berruyer P, Walder BJ, Siramanont J, Harris M, Negroni M, Galmarini SC, Parker SC, Scrivener KL, Emsley L, Bowen P. The Atomic-Level Structure of Cementitious Calcium Aluminate Silicate Hydrate. J Am Chem Soc 2020; 142:11060-11071. [PMID: 32406680 DOI: 10.1021/jacs.0c02988] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Despite use of blended cements containing significant amounts of aluminum for over 30 years, the structural nature of aluminum in the main hydration product, calcium aluminate silicate hydrate (C-A-S-H), remains elusive. Using first-principles calculations, we predict that aluminum is incorporated into the bridging sites of the linear silicate chains and that at high Ca:Si and H2O ratios, the stable coordination number of aluminum is six. Specifically, we predict that silicate-bridging [AlO2(OH)4]5- complexes are favored, stabilized by hydroxyl ligands and charge balancing calcium ions in the interlayer space. This structure is then confirmed experimentally by one- and two-dimensional dynamic nuclear polarization enhanced 27Al and 29Si solid-state NMR experiments. We notably assign a narrow 27Al NMR signal at 5 ppm to the silicate-bridging [AlO2(OH)4]5- sites and show that this signal correlates to 29Si NMR signals from silicates in C-A-S-H, conflicting with its conventional assignment to a "third aluminate hydrate" (TAH) phase. We therefore conclude that TAH does not exist. This resolves a long-standing dilemma about the location and nature of the six-fold-coordinated aluminum observed by 27Al NMR in C-A-S-H samples.
Collapse
Affiliation(s)
- Aslam Kunhi Mohamed
- Laboratory of Construction Materials, Institut des Matériaux, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Institute for Building Materials, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Pinelopi Moutzouri
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pierrick Berruyer
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Brennan J Walder
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jirawan Siramanont
- Laboratory of Construction Materials, Institut des Matériaux, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,SCG CEMENT Co., Ltd., Saraburi 18260, Thailand
| | - Maya Harris
- Laboratory of Construction Materials, Institut des Matériaux, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mattia Negroni
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandra C Galmarini
- Building Energy Materials and Components, EMPA, CH-8600 Dübendorf, Switzerland
| | - Stephen C Parker
- Computational Solid State Chemistry Group, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Karen L Scrivener
- Laboratory of Construction Materials, Institut des Matériaux, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul Bowen
- Laboratory of Construction Materials, Institut des Matériaux, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|