1
|
Wang ZX, Liu KQ, Li F, Li HY, Wang W, Gao H. Long-term stable electrochemiluminescence of perovskite quantum dots in aqueous media. Chem Commun (Camb) 2024; 60:10962-10965. [PMID: 39259168 DOI: 10.1039/d4cc03979c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
We develop a novel electrochemiluminescence (ECL) emitter of aqueous-based perovskite quantum dots, with long-term stable ECL emission in aqueous media. Moreover, an electron transfer annihilation mechanism of ECL generation is proposed, revealed by the experimental results. This study opens a door for exploring efficient perovskite-based ECL emitters.
Collapse
Affiliation(s)
- Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Kai-Qi Liu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Feng Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Hang Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
2
|
Dou Z, Lin Z, Wang R, Han M, Ding J, Wang H, Luo X, Cheng Y, Han N. High-pressure effects on the electronic properties and photoluminescence of Ag-doped CsCu 2I 3. Phys Chem Chem Phys 2024. [PMID: 39015083 DOI: 10.1039/d4cp01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
CsCu2I3 is a popular lead-free metal halide perovskite with good thermal and air stability. To facilitate its applications in optoelectronics, Ag doping and high pressure are employed in this work to improve the optoelectronic properties of CsCu2I3. Using first-principles calculations and experiments, the structural phase change of 10% Ag-doped CsCu2I3 is found to occur at about 4.0 GPa. This reveals the regulation of band structures by hydrostatic pressure. In addition, the high pressure not only increases the emission energy of photoluminescence of 10% Ag-doped CsCu2I3 by more than 0.2 eV, but also increases the emission intensity by multiple times. Finally, the origin of luminescence in 10% Ag-doped CsCu2I3 is attributed to the I vacancies. This work provides insight into the structure and optoelectronic properties of 10% Ag-doped CsCu2I3, and offers significant guidance for the design and manufacturing of future luminescence devices.
Collapse
Affiliation(s)
- Zan Dou
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Zhihua Lin
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Rong Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Mengmeng Han
- China Petroleum Engineering & Construction Corp. North China Company, Middle Jianshe Road, Renqiu 062552, China
| | - Jianxu Ding
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Haoyu Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Xiaoguang Luo
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Nannan Han
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| |
Collapse
|
3
|
López C, Abia C, Gainza J, Rodrigues JE, Martinelli B, Serrano-Sánchez F, Silva RS, Ferrer MM, Dura OJ, Martínez JL, Fernández-Díaz MT, Alonso JA. Unveiling the Structural Properties, Optical Behavior, and Thermoelectric Performance of 2D CsSn 2Br 5 Halide Obtained by Mechanochemistry. Inorg Chem 2024; 63:12641-12650. [PMID: 38920333 PMCID: PMC11234366 DOI: 10.1021/acs.inorgchem.4c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Metal halide perovskites with a two-dimensional structure are utilized in photovoltaics and optoelectronics. High-crystallinity CsSn2Br5 specimens have been synthesized via ball milling. Differential scanning calorimetry curves show melting at 553 K (endothermic) and recrystallization at 516 K (exothermic). Structural analysis using synchrotron X-ray diffraction data, collected from 100 to 373 K, allows for the determination of Debye model parameters. This analysis provides insights into the relative Cs-Br and Sn-Br chemical bonds within the tetragonal structure (space group: I4/mcm), which remains stable throughout the temperature range studied. Combined with neutron data, X-N techniques permit the identification of the Sn2+ lone electron pair (5s2) in the two-dimensional framework, occupying empty space opposite to the four Sn-Br bonds of the pyramidal [SnBr4] coordination polyhedra. Additionally, diffuse reflectance UV-vis spectroscopy unveils an indirect optical gap of approximately ∼3.3 eV, aligning with the calculated value from the B3LYP-DFT method (∼3.2 eV). The material exhibits a positive Seebeck coefficient as high as 6.5 × 104 μV K-1 at 350 K, which evolves down to negative values of -3.0 × 103 μV K-1 at 550 K, surpassing values reported for other halide perovskites. Notably, the thermal conductivity remains exceptionally low, between 0.32 and 0.25 W m-1 K-1.
Collapse
Affiliation(s)
- Carlos
Alberto López
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
- INTEQUI,
(UNSL-CONICET) and Facultad de Química, Bioquímica y
Farmacia, UNSL, Almirante
Brown 1455, 5700 San Luis, Argentina
| | - Carmen Abia
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
- Institut
Laue Langevin, 38042 Grenoble, Cedex, France
| | - Javier Gainza
- European Synchrotron
Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - João Elias Rodrigues
- CELLS−ALBA
Synchrotron Light Facility, Cerdanyola del Valles, Barcelona E-08290, Spain
| | - Brenda Martinelli
- CCAF, PPGCEM/CDTec, Federal University of Pelotas, 96010-610 Pelotas, Rio Grande do Sul, Brazil
| | | | - Romualdo Santos Silva
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Mateus M. Ferrer
- CCAF, PPGCEM/CDTec, Federal University of Pelotas, 96010-610 Pelotas, Rio Grande do Sul, Brazil
| | - Oscar J. Dura
- Departamento
de Física Aplicada, Universidad de
Castilla-La Mancha, Ciudad
Real E-13071, Spain
| | - José Luis Martínez
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
| | | | - José Antonio Alonso
- Instituto
de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Wei H, Yang Q, Li G, Liu X, Huang J, Wang C, Li X, Cai G. InCl 3-Assisted Surface Defects Restoring to Enhance Lead-Free Cs 2ZrCl 6 Nanocrystals for X-Ray Imaging and Blue LED Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309926. [PMID: 38196153 DOI: 10.1002/smll.202309926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Indexed: 01/11/2024]
Abstract
As one type of recent emerging lead-free perovskites, Cs2ZrCl6 nanocrystals are widely concerned, benefiting from the eminent designability, high X-ray cutoff efficiency, and favorable stability. Improving the luminescence performance of Cs2ZrCl6 nanocrystals has great importance to cater for practical applications. In view of the surface defects frequently formed by the liquid phase method, the particle morphology and surface quality of this material are expected to be regulated if certain intervention is made in the synthesis process. In the work, differing from normal cell lattice modulation based on the ion doping, the grain size and surface morphology of Cs2ZrCl6 nanocrystals are optimized via adding a certain amount of InCl3 to the synthetic solution. The surface defects are restored to inhibit the defect-induced non-radiative transition, resulting in the improvement of the luminescence properties. Moreover, a flexible Cs2ZrCl6@polydimethylsiloxane film with excellent heat, water, and bending resistance and a light-emitting diode (LED) device are fabricated, exhibiting excellent application potential for X-ray imaging and blue LED.
Collapse
Affiliation(s)
- Hanqi Wei
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qihua Yang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Guihua Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Xuan Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Junben Huang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Chujie Wang
- Hangzhou TiRay Technology Co. Ltd., Hangzhou, 311112, P. R. China
| | - Xiaoming Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China
| | - Gemei Cai
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
5
|
Clinckemalie L, Pradhan B, Brande RV, Zhang H, Vandenwijngaerden J, Saha RA, Romolini G, Sun L, Vandenbroucke D, Bonn M, Wang HI, Debroye E. Phase-engineering compact and flexible CsPbBr 3 microcrystal films for robust X-ray detection. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:655-663. [PMID: 38188498 PMCID: PMC10766070 DOI: 10.1039/d3tc01903a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
All-inorganic CsPbBr3 perovskites have gained significant attention due to their potential in direct X-ray detection. The fabrication of stable, pinhole-free thick films remains challenging, hindering their integration in durable, large-area high-resolution devices. In this study, we propose a facile strategy using a non-conductive polymer to create a flexible, compact thick film under ambient conditions. Furthermore, we investigate the effect of introducing the 2D CsPb2Br5 phase into CsPbBr3 perovskite crystals on their photophysical properties and charge transport. Upon X-ray exposure, the devices consisting of the dual phase exhibit improved stability and more effective operation at higher voltages. Rietveld refinement shows that, due to the presence of the second phase, local distortions and Pb-vacancies are introduced within the CsPbBr3 lattice. This in turn presumably increases the ion migration energy barrier, resulting in a very low dark current and hence, enhanced stability. This feature might benefit local charge extraction and, ultimately, the X-ray image resolution. These findings also suggest that introducing a second phase in the perovskite structure can be advantageous for efficient photon-to-charge carrier conversion, as applied in medical imaging.
Collapse
Affiliation(s)
- Lotte Clinckemalie
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Bapi Pradhan
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Roel Vanden Brande
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Heng Zhang
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | | | - Rafikul Ali Saha
- cMACS, Department of Microbial and Molecular Systems, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Giacomo Romolini
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Li Sun
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research 55128 Mainz Germany
| | - Elke Debroye
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
6
|
Yang Z, Meng W, Kang J, Wang X, Shu X, Chen T, Xu R, Xu F, Hong F. Unraveling the Defect-Dominated Broadband Emission Mechanisms in (001)-Preferred Two-Dimensional Layered Antimony-Halide Perovskite Film. J Phys Chem Lett 2022; 13:11736-11744. [PMID: 36515687 DOI: 10.1021/acs.jpclett.2c03151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
By adding molar-controlled SbCl3 in a Cs3Sb2Cl9 precursor, we employed a low-temperature solution-processed approach to prepare high-quality (001)-preferred Cs3Sb2Cl9 thin film, which demonstrates a stable defect-dominated broadband emission at room temperature. Density functional theory calculations reveal that the defect emission originates from the donor-acceptor pair (DAP) recombination between chlorine vacancy (VCl) and cesium vacancy (VCs). Furthermore, VCl + VCs DAP is more stable on the (001) surface. The improved film quality and the more stable VCl + VCs DAP increase the activation energy related to defect states, resulting in an enhancement of the defect emission for the high-quality (001)-preferred film. This work provides deep insight into the key role of the (001) surface in defect emission and a feasible strategy to enhance the defect emission in 2D halide perovskites A3B2X9 (A = CH3NH3, Cs, Rb; B = Bi, Sb; X = Cl, Br, I) by control of the thin film preferred orientation.
Collapse
Affiliation(s)
- Zichen Yang
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Weiwei Meng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan430072, China
| | - Jiaxing Kang
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Xiang Wang
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Xin Shu
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Teng Chen
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai200444, China
| | - Run Xu
- Department of Electronic Information Materials, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
- Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan314113, China
| | - Fei Xu
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
- Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan314113, China
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai200433, China
| | - Feng Hong
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
- Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan314113, China
| |
Collapse
|
7
|
Drushliak V, Szafrański M. Thermodynamic Stability, Structure, and Optical Properties of Perovskite-Related CsPb 2Br 5 Single Crystals under Pressure. Inorg Chem 2022; 61:14389-14396. [PMID: 36047570 PMCID: PMC9477227 DOI: 10.1021/acs.inorgchem.2c02253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
CsPb2Br5 belongs to all inorganic
perovskite-related
quasi-two-dimensional materials that have attracted considerable attention
due to their potential for optoelectronic applications. In this study,
we solve numerous controversies on the physical properties of this
material. We show that optical absorption in the visible spectrum
and green photoluminescence are due to microcrystallites of the three-dimensional
CsPbBr3 perovskite settled on the CsPb2Br5 plates and that carefully cleaned crystal plates are devoid
of these features. The high-pressure structural and spectroscopic
experiments, performed on the single crystals free of CsPbBr3 impurities, evidenced that the layered tetragonal structure of CsPb2Br5 is stable at least up to 6 GPa. The absorption
edge is located in the ultraviolet at around 350 nm and continuously
red shifts under pressure. Moderate band gap narrowing is well correlated
to the pressure-induced changes in the crystal structure. Although
the compressibility of CsPb2Br5 is much higher
than for CsPbBr3, the response in optical properties is
weaker because the Pb–Br layers responsible for the optical
absorption are much less affected by hydrostatic pressure than those
built of Cs+ cations. Our study clarifies the confusing
data in the literature on the optical properties and thermodynamic
stability of CsPb2Br5. The impact of genuinely hydrostatic pressure on the structure
and optical properties of pure CsPb2Br5 was
studied for the first time on single crystals. The results provide
new information about the crystal stability, photoluminescence, and
optical absorption.
Collapse
Affiliation(s)
- Viktoriia Drushliak
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Marek Szafrański
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
8
|
Chen T, Wang C, Xing X, Qin Z, Qin F, Wang Y, Alam MK, Hadjiev VG, Yang G, Ye S, Yang J, Wang R, Yue S, Zhang D, Shang Z, Robles-Hernandez FC, Calderon HA, Wang H, Wang Z, Bao J. Integration of Highly Luminescent Lead Halide Perovskite Nanocrystals on Transparent Lead Halide Nanowire Waveguides through Morphological Transformation and Spontaneous Growth in Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105009. [PMID: 35060296 DOI: 10.1002/smll.202105009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The integration of highly luminescent CsPbBr3 quantum dots on nanowire waveguides has enormous potential applications in nanophotonics, optical sensing, and quantum communications. On the other hand, CsPb2 Br5 nanowires have also attracted a lot of attention due to their unique water stability and controversial luminescent property. Here, the growth of CsPbBr3 nanocrystals on CsPb2 Br5 nanowires is reported first by simply immersing CsPbBr3 powder into pure water, CsPbBr3- γ Xγ (X = Cl, I) nanocrystals on CsPb2 Br5 -γ Xγ nanowires are then synthesized for tunable light sources. Systematic structure and morphology studies, including in situ monitoring, reveal that CsPbBr3 powder is first converted to CsPb2 Br5 microplatelets in water, followed by morphological transformation from CsPb2 Br5 microplatelets to nanowires, which is a kinetic dissolution-recrystallization process controlled by electrolytic dissociation and supersaturation of CsPb2 Br5 . CsPbBr3 nanocrystals are spontaneously formed on CsPb2 Br5 nanowires when nanowires are collected from the aqueous solution. Raman spectroscopy, combined photoluminescence, and SEM imaging confirm that the bright emission originates from CsPbBr3 -γ Xγ nanocrystals while CsPb2 Br5 -γ Xγ nanowires are transparent waveguides. The intimate integration of nanoscale light sources with a nanowire waveguide is demonstrated through the observation of the wave guiding of light from nanocrystals and Fabry-Perot interference modes of the nanowire cavity.
Collapse
Affiliation(s)
- Tao Chen
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Chong Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Xinxin Xing
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Zhaojun Qin
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Fan Qin
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
| | - Yanan Wang
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
| | - Md Kamrul Alam
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
| | - Viktor G Hadjiev
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
| | - Guang Yang
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
| | - Shuming Ye
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Jie Yang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Rongfei Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Shuai Yue
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Di Zhang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhongxia Shang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Francisco C Robles-Hernandez
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Mechanical Engineering Technology, University of Houston, Houston, TX, 77204, USA
| | - Hector A Calderon
- Instituto Politecnico Nacional, ESFM-IPN, UPALM, Departamento de Física, Mexico CDMX, 07338, Mexico
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Jiming Bao
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
9
|
Dong H, Kareem S, Gong X, Ruan J, Gao P, Zhou X, Liu X, Zhao X, Xie Y. Water-Triggered Transformation of Ligand-Free Lead Halide Perovskite Nanocrystal-Embedded Pb(OH)Br with Ultrahigh Stability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23960-23969. [PMID: 33974393 DOI: 10.1021/acsami.1c06627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lead halide perovskite (LHP) nanomaterials have attracted tremendous attention owing to their remarkable optoelectronic properties. However, they are extremely unstable under moist environments, high temperatures, and light illumination due to their intrinsic structural lability, which has been the critical unsolved problem for practical applications. To address this issue, we propose a facile and environmentally friendly ligand-free approach to design and synthesize rod-like CsPb2Br5-embedded Pb(OH)Br with excellent stability under various harsh environments such as soaking in water, heating, and ultraviolet (UV) illumination. Plate-like CsPbBr3- and Cs4PbBr6-embedded Pb(OH)Br powders are first formed by evaporating the solvent in a dispersion of ethanol (or methanol, isopropanol), Cs2CO3, and PbBr2. Upon soaking in water, the plate-like sample undergoes phase transformation from CsPbBr3 and Cs4PbBr6 to CsPb2Br5 and shape conversion from nanoplate to a microrod, leading to the formation of rod-like CsPb2Br5-embedded Pb(OH)Br. The stable Pb(OH)Br coating effectively prevents the luminescent CsPb2Br5 nanocrystals from reacting with water, leading to extremely high aqueous stability of the CsPb2Br5-embedded Pb(OH)Br. The photoluminescence (PL) intensity of the representative CsPb2Br5-embedded Pb(OH)Br sample can maintain 92.2% of the initial PL intensity value even after soaking in room-temperature water for 165 days; in the meantime, the phase and shape are preserved. The typical sample also shows outstanding stability under hot water, UV illumination, and annealing conditions. The ultrahigh aqueous stability, thermal stability, and photostability of the CsPb2Br5-embedded Pb(OH)Br nanomaterials suggest an effective, facile, and environmentally friendly technique to grow perovskite-based nanomaterials for promising practical applications in the optoelectronic field.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Shefiu Kareem
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Jian Ruan
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Peng Gao
- Laboratory of Advanced Functional Materials, Xiamen Institute of Rare-earth Materials, Chinese Academy of Science, No 1300 Jimei Road, Jimei District, 361021 Xiamen, Fujian, P. R. China
| | - Xuedong Zhou
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Xiaoqing Liu
- Center for Materials Research & Testing, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Yi Xie
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan 430070, P. R. China
| |
Collapse
|
10
|
Zou Y, Cai L, Song T, Sun B. Recent Progress on Patterning Strategies for Perovskite Light‐Emitting Diodes toward a Full‐Color Display Prototype. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yatao Zou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 P. R. China
| | - Lei Cai
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 P. R. China
| | - Tao Song
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 P. R. China
| | - Baoquan Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
11
|
Li R, Wang R, Yuan Y, Ding J, Cheng Y, Zhang Z, Huang W. Defect Origin of Emission in CsCu 2I 3 and Pressure-Induced Anomalous Enhancement. J Phys Chem Lett 2021; 12:317-323. [PMID: 33351622 DOI: 10.1021/acs.jpclett.0c03432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lead-free metal halide perovskites CsCu2X3 (X = Cl, Br, I) with a high photoluminescence quantum yield are promising materials for optoelectronic devices. However, the origin of photoluminescence (PL) emission is still under debate, and the anomalous dependence of PL on pressure is unclear. Here, we systemically study the effects of high pressure on the structural, electronic, and optical properties of CsCu2I3 using a diamond anvil cell (DAC) and first-principles calculations. We argue that the ground state structure of CsCu2I3 belongs to the pnma phase rather than the cmcm phase under ambient conditions. There is a structural phase transition from the pnma to the cmcm phase for CsCu2I3 at ∼5 GPa. The optical band gap derivative from absorption spectra increases from 3.57 to 3.62 eV within a pressure range of 0 to 4.03 GPa, and it then decreases over 4.03 GPa. There are two major PL emissions peaks at 2.11 and 2.32 eV, which are attributed to the intrinsic defect related trap states in CsCu2I3. Interestingly, there is an anomalous dependence of both PL emissions on pressure, such that PL peaks show a blueshift and the PL intensity is enhanced from 0 to ∼4 GPa, with redshifting and decreasing at pressures above ∼4 GPa. The anomalous evolution of the two PL emissions also suggests a defect origin of emissions.
Collapse
Affiliation(s)
- Ruiping Li
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Rong Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Ye Yuan
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jianxu Ding
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Zengming Zhang
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
12
|
Abstract
This review provides in-depth insight into the structure–luminescence–application relationship of 0D all-inorganic/organic–inorganic hybrid metal halide luminescent materials.
Collapse
Affiliation(s)
- Mingze Li
- The State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
| | - Zhiguo Xia
- The State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
| |
Collapse
|
13
|
Huang ZP, Ma B, Wang H, Li N, Liu RT, Zhang ZQ, Zhang XD, Zhao JH, Zheng PZ, Wang Q, Zhang HL. In Situ Growth of 3D/2D (CsPbBr 3/CsPb 2Br 5) Perovskite Heterojunctions toward Optoelectronic Devices. J Phys Chem Lett 2020; 11:6007-6015. [PMID: 32628484 DOI: 10.1021/acs.jpclett.0c01757] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) CsPb2Br5 exhibits intriguing functions in enhancing the performance of optoelectronic devices in terms of environmental stability and luminescence properties when composited with other perovskites in different dimensionalities. We built a type I three-dimensional (3D) CsPbBr3/2D CsPb2Br5 heterojunction through phase transition where CsPbBr3 quantum dots in situ grew into 2D CsPb2Br5. A thorough growth mechanism study in combination with excited state dynamic investigations via femtosecond spectroscopy and first-principles calculations revealed that the type I hierarchy enhanced the stability of the heterojunction and spurred its luminous quantum yield by prolonging the lifetime of photogenerated carriers. Mixing the heterojunction with other phosphors yielded white-light-emitting diodes with a color rendering index of 94%. The work thus not only offered one new avenue for building heterojunctions by using the "soft crystal" nature of perovskites but also disentangled the enhanced luminescence mechanism of the heterojunction that can be harnessed for promising applications in the luminescence and display fields.
Collapse
Affiliation(s)
- Zhi-Peng Huang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Bo Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Hao Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Na Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Rui-Tong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Ze-Qi Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Dong Zhang
- National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment, Harbin 150001, China
| | - Ji-Hua Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Pei-Zhu Zheng
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Qiang Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Bonomi S, Patrini M, Bongiovanni G, Malavasi L. Versatile vapor phase deposition approach to cesium tin bromide materials CsSnBr 3, CsSn 2Br 5 and Cs 2SnBr 6. RSC Adv 2020; 10:28478-28482. [PMID: 35520057 PMCID: PMC9055831 DOI: 10.1039/d0ra04680a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
We report on the successful application of RF-magnetron sputtering to deposit, by using a single type of target, three different materials in the form of thin films within the Cs-Sn-Br compositional range, namely, CsSnBr3, CsSn2Br5 and Cs2SnBr6. It is shown that, by playing with the deposition parameters and post-deposition treatments, it is possible to stabilize these three perovskites or perovskite related compounds by exploiting the versatility of vapor phase deposition. Full characterization in terms of crystal structure, optical properties and morphology is reported. The power of vapor phase methods in growing all-inorganic materials of interest for photovoltaic and optoelectronic applications is demonstrated here, indicating the advantageous use of sputtering for these complex materials.
Collapse
Affiliation(s)
- Sara Bonomi
- Department of Chemistry, University of Pavia, INSTM Viale Taramelli 16 Pavia 27100 Italy +39 382 987921
| | - Maddalena Patrini
- Department of Physics, University of Pavia, CNISM Via Bassi 6 Pavia 27100 Italy
| | - Giovanni Bongiovanni
- Department of Physics, University of Cagliari S.P. Monserrato-Sestu km 0.7 Cagliari 09042 Italy
| | - Lorenzo Malavasi
- Department of Chemistry, University of Pavia, INSTM Viale Taramelli 16 Pavia 27100 Italy +39 382 987921
| |
Collapse
|