1
|
Wu Y, Ding Y, Chen M, Zhang H, Yu J, Jiang T, Wu M. A Photo-Assisted Zinc-Air Battery with MoS 2/Oxygen Vacancies Rich TiO 2 Heterojunction Photocathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408627. [PMID: 39434472 DOI: 10.1002/smll.202408627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/13/2024] [Indexed: 10/23/2024]
Abstract
Converting solar energy into electrochemical energy is a sustainable strategy, but the design of photo-assisted zinc-air battery (ZAB) with efficient utilization of sunlight faces huge challenges. Herein, a photo-assisted ZAB of a three-electrode system using MoS2/oxygen vacancies-rich TiO2 heterojunction as charge cathode and Fe, N-doped carbon matrix (FeNC) as discharge cathode is constructed, where MoS2 is chosen as solar light-responsive catalytic material and TiO2 acts as electron transport layer and hole blocking layer, arising from a train of thought for efficient charging under sunlight irradiation and light-independent discharging. The introduction of oxygen vacancies in TiO2 facilitates the temporary trapping of carriers and triggers rapid carrier transfer at the interface of the heterojunction, which hinders the recombination of photogenerated holes, thereby facilitating their further participation in the oxygen evolution reaction. Moreover, FeNC exhibits superior oxygen reduction reaction performance due to strong d-π interactions. As a result, the well-built ZABs deliver a low charge voltage (0.71 V) under illumination at 0.1 mA cm-2, and a high power density (167.6 mW cm-2) in dark. This work paves a special way for the development of ZABs by directly harvesting solar energy in charging and efficiently discharging regardless of lighting conditions.
Collapse
Affiliation(s)
- Yongjian Wu
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Yi Ding
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui, 230601, P. R. China
| | - Mengyu Chen
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hui Zhang
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, P. R. China
| | - Tongtong Jiang
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Mingzai Wu
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
2
|
Wang S, Yu X, Zhao J, Su Y. Polyacid-Modulated Carrier Dynamic Behavior at the Interface of 0D/2D Heterojunctions. J Phys Chem Lett 2024; 15:9945-9953. [PMID: 39312467 DOI: 10.1021/acs.jpclett.4c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Heterojunctions formed by polyoxometalates and 2D materials draw attention owing to their remarkable photoelectric and catalytic properties. However, the intrinsic mechanisms of polyoxometalates regulating the heterojunction photoelectric properties are unclear. Herein, we constructed two types of heterojunctions by integrating polyoxometalates (Keggin-type H3PW12O40 and Lindqvist-type H2W6O19) on g-C3N4 monolayers, exploring photoexcited carrier dynamics in these heterojunctions by ab initio calculations combined with nonadiabatic molecular dynamics (NAMD) simulations. Our results show that electrons and holes in H3PW12O40 on g-C3N4 monolayers relax within 583 and 760 fs, respectively. The electron-hole recombination occurs at 342 fs, faster than carrier separation, aligning with the behavior of Z-type heterojunctions. Contrarily, the H2W6O19/g-C3N4 heterojunction exhibits the typical characteristics of type II heterojunctions, with a long photogenerated carrier lifetime reaching 652 fs. These findings show tunable band alignment in polyoxometalate-supported systems by modulating polyoxometalate type, influencing hot electron dynamics, and guiding 0D/2D heterojunction design.
Collapse
Affiliation(s)
- Siying Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Xueke Yu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
3
|
Zhang Y, Long R. Nuclear Quantum Effects Accelerate Charge Separation and Recombination in g-C 3N 4/TiO 2 Heterojunctions. J Phys Chem Lett 2024; 15:6002-6009. [PMID: 38814291 DOI: 10.1021/acs.jpclett.4c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We combined ring-polymer molecular dynamics (MD) and ab initio MD with nonadiabatic MD to study the effects of nuclear quantum effects (NQEs) on interlayer electron transfer and electron-hole recombination at the g-C3N4/TiO2 interface. Our simulations indicate that NQEs significantly affect electron transfer and electron-hole recombination dynamics, accelerating both processes. NQEs deform the g-C3N4 layer and expedite the movement of carbon and nitrogen atoms, thus, enhancing charge delocalization and interlayer coupling. This improved overlap between electronic state wave functions enhances nonadiabatic couplings, facilitating electron transfer and recombination. In addition to the enhanced nonadiabatic couplings accelerating electron transfer, the presence of NQEs narrows the energy gap and delays decoherence by mitigating overall fluctuations, because of restricted TiO2 movements overwhelming enhanced g-C3N4 fluctuations, thereby making the recombination faster. This work provides valuable insights into NQEs in light-element systems and contributes to guiding the development of highly efficient photocatalysts.
Collapse
Affiliation(s)
- Yitong Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
4
|
Hap DC, Hung LPQ, Tung LT, Phuong LTT, Phong TC. Adjustment of optical absorption in phosphorene through electron-phonon coupling and an electric field. Phys Chem Chem Phys 2024; 26:11825-11832. [PMID: 38566602 DOI: 10.1039/d4cp00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This study investigates the optical absorption of monolayer phosphorene, focusing on its response to the electron-phonon coupling (EPC) and an electric field. Using a tight-binding Hamiltonian model based on the Barišic-Labbe-Friedel-Su-Schrieffer-Heeger model and the Kubo formula, we calculate the electronic band structure and optical absorption characteristics. The anisotropic dispersion of carriers along armchair and zigzag directions leads to distinct optical responses. Positive and negative EPC effects increase and decrease hopping parameters, respectively, enlarging and reducing/closing the band gap. Moreover, both EPCs cause an admixture of blue and red shift spectrum along the armchair direction, while a red (blue) shift spectrum is observed for positive (negative) EPC along the zigzag direction. Incorporating electric field effects in the EPC increases band gaps for both positive and negative EPC activities, resulting in shifted optical peaks along both directions.
Collapse
Affiliation(s)
- Do C Hap
- Faculty of Physics, University of Education, Hue University, Hue, 530000, Vietnam
| | - Le P Q Hung
- Faculty of Physics, University of Education, Hue University, Hue, 530000, Vietnam
| | - Luong T Tung
- Faculty of Physics, University of Education, Hue University, Hue, 530000, Vietnam
| | - Le T T Phuong
- Faculty of Physics, University of Education, Hue University, Hue, 530000, Vietnam
| | - Tran Cong Phong
- Atomic Molecular and Optical Physics Research Group, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Yang D, Pu H, Dai P, Jiang W, Yi Y, Zhang T, Zhang S, Guo X, Li Y. Mechanism of p-Type Heteroatom Doping of Lithium Stannate for the Photodegradation of 2,4-Dichlorophenol: Enhanced Hole Oxidative Capability and Concentrations. Inorg Chem 2024; 63:1236-1246. [PMID: 38174906 DOI: 10.1021/acs.inorgchem.3c03636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A systematic evaluation of enhancing photocatalysis via aliovalent cation doping is conducted. Cation In3+, being p-type-doped, was chosen to substitute the Sn site (Sn4+) in Li2SnO3, and the photodegradation of 2,4-dichlorophenol was applied as a model reaction. Specifically, Li2Sn0.90In0.10O3 exhibited superior catalytic performance; the photodegradation efficiency reached about 100% within only 12 min. This efficiency is far greater than that of pure Li2SnO3 under identical conditions. Density functional theory calculations reveal that introducing In3+ increased the electron mobility, yet decreased the hole mobility, leading to photogenerated carrier separation. However, photoluminescence and time-resolved photoluminescence suggest that In3+ induced nonradiative coupling in the matrix, reducing the photogenerated carrier separation ratio compared with that of Li2SnO3. The optical band gap of Li2Sn0.90In0.10O3 was almost unchanged compared with that of Li2SnO3 via ultraviolet-visible absorption. The increased photocatalytic efficiency was ascribed to the lower valence band position and enhanced hole concentrations by valence band X-ray photoelectron spectroscopy and electrochemical measurements. Finally, a 2,4-dichlorophenol degradation pathway, an intermediate toxicity assessment, and a photocatalytic mechanism were proposed. This work offers insights into designing and optimizing semiconductor photocatalysts with high performance.
Collapse
Affiliation(s)
- Dingfeng Yang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd., Lijiatuo, Banan District, Chongqing 400054, People's Republic of China
- Chongqing Precision Medicine Industrial Technology Research Institute, Chongqing 400799, People's Republic of China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Hongzheng Pu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd., Lijiatuo, Banan District, Chongqing 400054, People's Republic of China
| | - Peng Dai
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Wen Jiang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Yuanxue Yi
- Chongqing Precision Medicine Industrial Technology Research Institute, Chongqing 400799, People's Republic of China
| | - Tao Zhang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Shuming Zhang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Xichuan Guo
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Yuanyuan Li
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
- Chongqing Precision Medicine Industrial Technology Research Institute, Chongqing 400799, People's Republic of China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
6
|
Zheng F, Wang LW. Multiple k-Point Nonadiabatic Molecular Dynamics for Ultrafast Excitations in Periodic Systems: The Example of Photoexcited Silicon. PHYSICAL REVIEW LETTERS 2023; 131:156302. [PMID: 37897744 DOI: 10.1103/physrevlett.131.156302] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/22/2023] [Accepted: 08/18/2023] [Indexed: 10/30/2023]
Abstract
With the rapid development of ultrafast experimental techniques for the research of carrier dynamics in solid-state systems, a microscopic understanding of the related phenomena, particularly a first-principle calculation, is highly desirable. Nonadiabatic molecular dynamics (NAMD) offers a real-time direct simulation of the carrier transfer or carrier thermalization. However, when applied to a periodic supercell, there is no cross-k-point transitions during the NAMD simulation. This often leads to a significant underestimation of the transition rate with the single-k-point band structure in a supercell. In this work, based on the surface hopping scheme used for NAMD, we propose a practical method to enable the cross-k transitions for a periodic system. We demonstrate our formalism by showing that the hot electron thermalization process by the multi-k-point NAMD in a small silicon supercell is equivalent to such simulation in a large supercell with a single Γ point. The simulated hot carrier thermalization process of the bulk silicon is compared with the recent ultrafast experiments, which shows excellent agreements. We have also demonstrated our method for the hot carrier coolings in the amorphous silicons and the GaAlAs_{2} solid solutions with the various cation distributions.
Collapse
Affiliation(s)
- Fan Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lin-Wang Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China
| |
Collapse
|
7
|
Zhang Y, Cheng C, Zhou Z, Long R, Fang WH. Surface Hydroxylation during Water Splitting Promotes the Photoactivity of BiVO 4(010) Surface by Suppressing Polaron-Mediated Charge Recombination. J Phys Chem Lett 2023; 14:9096-9102. [PMID: 37791802 DOI: 10.1021/acs.jpclett.3c02465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Polaron-based electron transport restricts the photoelectrochemical (PEC) water splitting efficiency of BiVO4. However, the location and dynamics of polarons are significantly dependent on the surface hydroxylation. By performing ab initio nonadiabatic molecular dynamics simulations, we demonstrated that hydroxylation of BiVO4(010) surface greatly alleviates the detrimental effect of oxygen-vacancy-induced electron polaron (EP). Surface hydroxylation stabilizes the EP at the surface to facilitate water splitting, makes the polaron a shallow localized state, and reduces the intensity of high-frequency V-O bond stretching vibrations. By decreasing the nonadiabatic coupling and decoherence time, the charge carrier lifetimes are extended by 1-3 orders of magnitude depending on the hydroxylation coverage. Our study not only reveals that the surface hydroxylation mitigated detrimental impacts of polarons in metal oxides but also provided valuable insights into the benign effect of intermediate species on the photocatalytic reactivity.
Collapse
Affiliation(s)
- Yitong Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Cheng Cheng
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai 519087, People's Republic of China
| | - Zhaohui Zhou
- Department of Chemical Engineering School of Water and Environment, Chang'an University, Xi'an 710064, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
8
|
Wang H, Fu H, You P, Zhang C, Jiang Y, Meng S. Anomalous Dependence of Photocarrier Recombination Time on the Polaron Density of TiO 2(110). J Phys Chem Lett 2023; 14:8312-8319. [PMID: 37683279 DOI: 10.1021/acs.jpclett.3c01685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Polarons play a crucial role in energy conversion, but the microscopic mechanism remains unclear since they are susceptible to local atomic structures. Here, by employing ab initio nonadiabatic dynamic simulations, we investigate electron-hole (e-h) nonradiative recombination at the rutile TiO2(110) surface with varied amounts of oxygen vacancies (Vo). The isolated Vo facilitates e-h recombination through forming polarons compared to that in the defect-free surface. However, aggregated Vo forming clusters induce an order-of-magnitude acceleration of polaron diffusion by enhancing phonon excitations, which blocks the defect-mediated recombination and thus prolongs the photocarrier lifetime. We find that photoelectrons are driven to migrate toward the top surface due to polaron formation. Our results show the many-body effects of defects and polaron effects on determining the overall recombination rate, which has been ignored in the Shockley-Read-Hall model. The findings explain the controversial experimental observations and suggest that engineering Vo aggregation would instead improve photocatalysis efficiencies in polaronic materials.
Collapse
Affiliation(s)
- Huimin Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixia Fu
- Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing 401331, China
| | - Peiwei You
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
9
|
Yang Y, Shi Z, Zhang S, Ma X, Bai J, Fan D, Zang H, Sun X, Li D. Nonradiative Dynamics Induced by Vacancies in Wide-Gap III-Nitrides: Ab Initio Time-Domain Analysis. J Phys Chem Lett 2023:6719-6725. [PMID: 37470335 DOI: 10.1021/acs.jpclett.3c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Insightful understanding of defect properties and prevention of defect damage are among the biggest issues in the development of photoelectronic devices based on wide-gap III-nitride semiconductors. Here, we have investigated the vacancy-induced carrier nonradiative dynamics in wide-gap III-nitrides (GaN, AlN, and AlxGa1-xN) by ab initio molecular dynamics and nonadiabatic (NA) quantum dynamics simulations since the considerable defect density in epitaxy samples. E-h recombination is hardly affected by Vcation, which created shallow states near the VBM. Our findings demonstrate that VN in AlN creates defect-assisted nonradiative recombination centers and shortens the recombination time (τ) as in the Shockley-Read-Hall (SRH) model. In GaN, VN improves the NA coupling between the CBM and the VBM. Additionally, increasing x in the AlxGa1-xN alloys accelerates nonradiative recombination, which may be an important issue in further improving the IQE of high Al-content AlxGa1-xN alloys. These findings have significant implications for the improvement of wide-gap III-nitrides-based photoelectronic devices.
Collapse
Affiliation(s)
- Yuxin Yang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiming Shi
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Shoufeng Zhang
- Department of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Xiaobao Ma
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangxiao Bai
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dashuo Fan
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Zang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Xiaojuan Sun
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Dabing Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Xu L, Zheng H, Xu B, Liu G, Zhang S, Zeng H. Suppressing Nonradiative Recombination by Electron-Donating Substituents in 2D Conjugated Triphenylamine Polymers toward Efficient Perovskite Optoelectronics. NANO LETTERS 2023; 23:1954-1960. [PMID: 36790322 DOI: 10.1021/acs.nanolett.2c05106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Highly efficient perovskite optoelectronics (POEs) have been limited by nonradiative recombination. We report a strategy to inhibit the nonradiative recombination of 2D triphenylamine polymers in the hole transport layer (HTL) via introducing electron-donating groups to enhance the conjugation effect and electron cloud density. The conjugated systems with electron-donating groups present smaller energy level oscillation compared to the ones with electron-absorbing groups, as confirmed by nonadiabatic molecular dynamics (NAMD) calculation. Further study reveals that the introduction of low-frequency phonons in the electron-donating group systems shortens the nonadiabatic coupling and inhibits the nonradiative recombination. Such electron-donating groups can decrease the valence band maximum of 2D polymers and promote hole transport. Our report provides a new design strategy to suppress nonradiative recombination in HTL for application in efficient POEs.
Collapse
Affiliation(s)
- Lili Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Haifeng Zheng
- Department of Physics, Lyuliang University, Luliang 033000, Shanxi, China
| | - Bo Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Gaoyu Liu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| |
Collapse
|
11
|
Hao J, Wu J, Wang C, Zhu F, Yan X, Gu Y. Mo 2CF 2/WS 2: Two-Dimensional Van Der Waals Heterostructure for Overall Water Splitting Photocatalyst from Five-Step Screening. J Phys Chem Lett 2023; 14:1363-1370. [PMID: 36728806 DOI: 10.1021/acs.jpclett.2c03464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the increasing demand for renewable energy and clean energy, photocatalysis is considered an economical and feasible source of energy. In this work, we select two-dimensional (2D) materials of X2CT2 (X = Cr, Hf, Mo, Sc, Ti, Zr; T = Cl, F, O, OH), Mxene, and MS2 (M = Mo, W) to form 20 systems of 2D van der Waals (vdW) heterostructures. We establish five screening steps, and the 2D Mo2CF2/WS2 vdW heterostructures meet all the screening conditions. Mo2CF2/WS2 is a type II semiconductor with a band gap of 1.58 eV, proper band edge position and high solar-to-hydrogen efficiency (17.15%) and power conversion efficiency (23.4%). An excellent electron-hole recombination time of 21.2 ps and electron (hole) migration time of 149 (265) fs are obtained in the 2D Mo2CF2/WS2 vdW heterostructure. In addition, the calculation results of Gibbs free energy show that a hydrogen reduction reaction and water oxidation reaction can proceed smoothly under the driving of photogenerated holes.
Collapse
Affiliation(s)
- Jiamao Hao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| | - Jun Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| | - Chengdeng Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| | - Fang Zhu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| | - Xiaoqin Yan
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| | - Yousong Gu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, People's Republic of China
| |
Collapse
|
12
|
Shen N. Interlayer Doping of Cu on Bilayer Black Phosphorus for Enhanced Charge Transfer and Transport Properties. J Phys Chem Lett 2022; 13:11489-11495. [PMID: 36469492 DOI: 10.1021/acs.jpclett.2c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal doping between black phosphorus (BP) layers has great advantages in modulating electronic properties. Here, the effects of Cu intercalation on charge transfer and carrier dynamics are investigated by theoretical calculations. Relative to the pristine bilayer BP, Cu suppresses the nonradiative electron-hole recombination, reducing the major pathways of energy and current loss. Furthermore, we investigate a novel pn homogeneous junction based on the Cu-doped bilayer BP, which shows enhanced transport properties and Ohmic contact characteristics. This is because doping leads to the transformation of BP from p-type to n-type, charge accumulation on conduction bands allows electrons to be easily transferred to the p-type bilayer BP, and associated electrical properties can be modulated by the doping concentration. This study has fundamental importance for understanding structure-property relationships in metal intercalation, which is an important guidance for integration and interlayer engineering for two-dimensional materials.
Collapse
Affiliation(s)
- Na Shen
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, China 518055
- Shenzhen Key Laboratory of New Energy Materials by Design, Peking University, Shenzhen, China 518055
| |
Collapse
|
13
|
Huang H, Peng J, Li Z, Dong H, Huang L, Wen M, Wu F. Defect-Induced Ultrafast Nonadiabatic Electron-Hole Recombination Process in PtSe 2 Monolayer. J Phys Chem Lett 2022; 13:10988-10993. [PMID: 36404591 DOI: 10.1021/acs.jpclett.2c03306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Defects are inevitable in two-dimensional materials due to the growth condition, which results in many unexpected changes in materials' properties. Here, we have mainly discussed the nonradiative recombination dynamics of PtSe2 monolayer without/with native point defects. Based on first-principles calculations, a shallow p-type defect state is introduced by a Se antisite, and three n-type defect states with a double-degenerate shallow defect state and a deep defect state are introduced by a Se vacancy. Significantly, these defect states couple strongly to the pristine valence band maximum and lead to the enhancement of the in-plane vibrational Eg mode. Both factors appreciably increase the nonadiabatic coupling, accelerating the electron-hole recombination process. An explanation of PtSe2-based photodetectors with the slow response, compared to conventional devices, is provided by studying this nonradiative transitions process.
Collapse
Affiliation(s)
- Hongfu Huang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Junhao Peng
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Zixuan Li
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou510006, China
| | - Le Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou510006, China
| | - Minru Wen
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Fugen Wu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou510006, China
- School of Materials and Energy, Guangdong University of Technology, Guangzhou510006, China
| |
Collapse
|
14
|
Dou W, Zhang L, Song B, Hua C, Wu M, Niu T, Zhou M. Vacancy-Regulated Charge Carrier Dynamics and Suppressed Nonradiative Recombination in Two-Dimensional ReX 2 (X = S, Se). J Phys Chem Lett 2022; 13:10656-10665. [PMID: 36354193 DOI: 10.1021/acs.jpclett.2c02796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Point defects in semiconductors usually act as nonradiative charge carrier recombination centers, which severely limit the performance of optoelectronic devices. In this work, by combining time-domain density functional theory with nonadiabatic molecular dynamics simulations, we demonstrate suppressed nonradiative charge carrier recombination and prolonged carrier lifetime in two-dimensional (2D) ReX2 (X = S, Se) with S/Se vacancies. In particular, a S vacancy introduces a shallow hole trap state in ReS2, while a Se vacancy introduces both hole and electron trap states in ReSe2. Photoexcited electrons and holes can be rapidly captured by these defect states, while the release process is slow, which contributes to an elongated photocarrier lifetime. The suppressed charge carrier recombination lies in the vacancy-induced low-frequency phonon modes that weaken electron-phonon coupling, as well as the reduced overlap between electron and hole wave functions that decreases nonadiabatic coupling. This work provides physical insights into the charge carrier dynamics of 2D ReX2, which may stimulate considerable interest in using defect engineering for future optoelectronic nanodevices.
Collapse
Affiliation(s)
- Wenzhen Dou
- School of Physics, Beihang University, Beijing100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou310023, China
| | - Ling Zhang
- School of Physics, Beihang University, Beijing100191, China
| | - Biyu Song
- School of Physics, Beihang University, Beijing100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou310023, China
| | - Chenqiang Hua
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou310023, China
| | - Meimei Wu
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou310023, China
| | - Tianchao Niu
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou310023, China
| | - Miao Zhou
- School of Physics, Beihang University, Beijing100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Hangzhou310023, China
| |
Collapse
|
15
|
Fan Y, Song X, Ma X, Li W, Zhao M. Rational Design of Black Phosphorus-Based Direct Z-Scheme Photocatalysts for Overall Water Splitting: The Role of Defects. J Phys Chem Lett 2022; 13:9363-9371. [PMID: 36190244 DOI: 10.1021/acs.jpclett.2c02406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Black phosphorus (BP) has received increasing interest as a promising photocatalyst for water splitting. Nevertheless, exploring the underlying hydrogen evolution reaction (HER) mechanism and improving the water oxidizing ability remains an urgent task. Here, using first-principles calculations, we uncover the role of point defects in improving the HER activity of BP photocatalysts. We demonstrate that the defective phosphorene can be effectively activated by the photoinduced electrons under solar light, exhibiting high HER catalytic activity in a broad pH range (0-10). Besides, we propose that the direct Z-scheme in the defective BP/SnSe2 heterobilayer is quite feasible for photocatalytic overall water splitting. This mechanism could be further verified based on the excited state dynamics method. The role of point defects in the photocatalytic mechanism provides useful insights for the development of BP photocatalysts.
Collapse
Affiliation(s)
- Yingcai Fan
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai264005, China
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| | - Xiaohan Song
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
- Shandong Institute of Advanced Technology, Jinan250100, China
| | - Xikui Ma
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| | - Weifeng Li
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| | - Mingwen Zhao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
- School of Physics and Electrical Engineering, Kashgar University, Kashi844006, China
| |
Collapse
|
16
|
Yu X, Sun Y, Xu WW, Fan J, Gao J, Jiang X, Su Y, Zhao J. Tuning photoelectron dynamic behavior of thiolate-protected MAu 24 nanoclusters via heteroatom substitution. NANOSCALE HORIZONS 2022; 7:1192-1200. [PMID: 36039937 DOI: 10.1039/d2nh00281g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heteroatom substitution of gold nanoclusters enables precise tuning of their physicochemical properties at the single-atom level, which has a significant impact on the applications related to excited states including photovoltaics, photocatalysis and photo-luminescence. To this end, understanding the effect of metal exchange on the structures, electronic properties and photoexcited dynamic behavior of nanoclusters is imperative. Combining density functional theory with time-domain nonadiabatic molecular dynamics simulations, herein we explored the effect of metal replacement on the electronic and vibrational properties as well as excited-state dynamics of ligand-protected MAu24(SR)18 (M = Pd, Pt, Cd, and Hg) nanoclusters. At the atomistic level, we elucidate hot carrier relaxation and recombination dynamic behavior with various doping atoms. Such distinct excited-state behavior of MAu24(SR)18 nanoclusters is attributed to different energy gaps and electron-phonon coupling between the donor and acceptor energy levels, owing to the perturbation of nanoclusters by a single foreign atom. The specific phonon modes involved in excited-state dynamics have been identified, which are associated with the MAu12 core and ligand rings. This time-dependent excited-state dynamic study fills the gap between structure/composition and excited-state dynamic behavior of MAu24(SR)18 nanoclusters, which would stimulate the exploration of their applications in photoenergy storage and conversion.
Collapse
Affiliation(s)
- Xueke Yu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Yuanze Sun
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Wen-Wu Xu
- Department of Physics, School of Physical Science and Technology (Ningbo University), Ningbo 315211, China
| | - Junyu Fan
- Department of Physics, (Taiyuan Normal University), Jinzhong 030619, China.
| | - Junfeng Gao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Xue Jiang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
17
|
Xu L, Wang A, Li B, Zhao J, Zeng H, Zhang S. Atom Substitution Defects of Hexagonal Boron Phosphide Suppress Charge Recombination. J Phys Chem Lett 2022; 13:6455-6461. [PMID: 35816281 DOI: 10.1021/acs.jpclett.2c01882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Point defects, during e-h recombination, are a key factor in impacting optoelectronic device performance. Using nonadiabatic molecular dynamics (NAMD), here we investigate the nonradiative recombination of pristine, missing atom defects, including phosphorus vacancies (VP) and phosphorus and boron vacancies (VBP), and atom substitution defects, containing boron on the phosphorus site (BP) and phosphorus on the boron site (PB) of 2D monolayer hexagonal boron phosphide (h-BP). Carrier dynamics in the pristine h-BP and the defect engineered systems reveal that atom substitution defects BP and PB can suppress e-h nonradiative recombination. This is caused by the introduction of several low-frequency phonons in defect states. Electron-phonon coupling between the electronic state and these low-frequency phonons shortens the decoherence time and the nonadiabatic coupling. Also, the atom substitution systems with one defect state introduce fewer carrier recombination channels. Such a mechanism can be extended to other 2D materials with the same structure as h-BP.
Collapse
Affiliation(s)
- Lili Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Aolei Wang
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, and Department of Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Jin Zhao
- ICQD/Hefei National Laboratory for Physical Sciences at Microscale, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, and Department of Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| |
Collapse
|
18
|
Li QQ, Yan L, Chu W, He J, Luo H, Frauenheim T, Tretiak S, Zhou L. Control of Polaronic Behavior and Carrier Lifetimes via Metal and Anion Alloying in Chalcogenide Perovskites. J Phys Chem Lett 2022; 13:4955-4962. [PMID: 35639456 DOI: 10.1021/acs.jpclett.2c00880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition-metal perovskite chalcogenides (TMPCs) have emerged as lead-free alternatives to lead-halide perovskites and have been currently of increasing interest for optoelectronic applications because of their suitable band gaps, high carrier mobility, strong light absorption, and high stability. Here, we systematically report a study on the effects of Ti- and Se-alloying strategies on polaron behavior and carrier lifetimes in nonradiative recombination. Although such alloying can effectively tune the band gap of BaZrS3, we observe localized small polaron formation upon Ti alloying and large polarons generating in Se alloying. Ti-alloying strengthens the electron-phonon coupling, leading to a reduced carrier lifetime. Remarkably, Se-alloying weakens the electron-phonon coupling and prolongs the nonradiative electron-hole recombination lifetime by up to 60% compared to that in pristine BaZrS3 material. The simulations rationalize the difference in carrier lifetimes in TMPC alloys and provide guidelines for further improvements in TMPC-based photoelectronic devices.
Collapse
Affiliation(s)
- Qiao-Qiao Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Luo Yan
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, P. R. China
| | - Weibin Chu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, P. R. China
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Junjie He
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
- Department of Physical and Macromolecular Chemistry & Charles University Centre of Advanced Materials, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 12843, Czech Republic
| | - Huanbo Luo
- Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, P. R. China
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
- Beijing Computational Science Research Center (CSRC), Beijing 100193, P. R. China
- Shenzhen Computational Science and Applied Research (CSAR) Institute, Shenzhen 518110, P. R. China
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies, and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Liujiang Zhou
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, P. R. China
| |
Collapse
|
19
|
Wang X, Gao W, Zhao J. Strain modulation of the exciton anisotropy and carrier lifetime in black phosphorene. Phys Chem Chem Phys 2022; 24:10860-10868. [PMID: 35437538 DOI: 10.1039/d2cp00670g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Manipulating excitons is of great significance to explore the optical properties of 2D materials. In this work, we investigate the excitonic properties and carrier dynamics of bilayer black phosphorene by imposing in-plane biaxial strain. The results show that the strain can modulate not only the contribution of the excitons to optical absorption but also the anisotropic shape of the first exciton. This can be ascribed to the strain effect on the band realignment as well as to changes of the parity and the electron effective mass at the CBM. At the temperature of 300 K, a 3% strain reduces the non-adiabatic coupling between the VBM and CBM and then increases the carrier lifetime by a factor of 13, and the results can be used to estimate the strain effect on the excitonic lifetime. Our results demonstrate that manipulation of the biaxial strain is a promising strategy to modulate the exciton properties of black phosphorene.
Collapse
Affiliation(s)
- Xiaolong Wang
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| | - Weiwei Gao
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| | - Jijun Zhao
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| |
Collapse
|
20
|
Kistanov AA, Shcherbinin SA, Botella R, Davletshin A, Cao W. Family of Two-Dimensional Transition Metal Dichlorides: Fundamental Properties, Structural Defects, and Environmental Stability. J Phys Chem Lett 2022; 13:2165-2172. [PMID: 35227061 PMCID: PMC8919257 DOI: 10.1021/acs.jpclett.2c00367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A large number of novel two-dimensional (2D) materials are constantly being discovered and deposited in databases. Consolidated implementation of machine learning algorithms and density functional theory (DFT)-based predictions have allowed the creation of several databases containing an unimaginable number of 2D samples. As the next step in this chain, the investigation leads to a comprehensive study of the functionality of the invented materials. In this work, a family of transition metal dichlorides have been screened out for systematic investigation of their structural stability, fundamental properties, structural defects, and environmental stability via DFT-based calculations. The work highlights the importance of using the potential of the invented materials and proposes a comprehensive characterization of a new family of 2D materials.
Collapse
Affiliation(s)
- Andrey A. Kistanov
- Nano
and Molecular Systems Research Unit, University
of Oulu, Oulu 90014, Finland
| | - Stepan A. Shcherbinin
- Peter
the Great Saint Petersburg Polytechnical University, Saint Petersburg 195251, Russia
| | - Romain Botella
- Nano
and Molecular Systems Research Unit, University
of Oulu, Oulu 90014, Finland
| | - Artur Davletshin
- Center
for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wei Cao
- Nano
and Molecular Systems Research Unit, University
of Oulu, Oulu 90014, Finland
| |
Collapse
|
21
|
Zhang L, Chu W, Zheng Q, Zhao J. Effects of oxygen vacancies on the photoexcited carrier lifetime in rutile TiO 2. Phys Chem Chem Phys 2022; 24:4743-4750. [PMID: 35142307 DOI: 10.1039/d1cp04248c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoexcited carrier lifetime in semiconductors plays a crucial role in solar energy conversion processes. The defects or impurities in semiconductors are usually proposed to introduce electron-hole (e-h) recombination centers and consequently reduce the photoexcited carrier lifetime. In this report, we investigate the effects of oxygen vacancies (OV) on the carrier lifetime in rutile TiO2, which has important applications in photocatalysis and photovoltaics. It is found that an OV introduces two excess electrons which form two defect states in the band gap. The lower state is localized on one Ti atom and behaves as a small polaron, and the higher one is a hybrid state contributed by three Ti atoms around the OV. Both the polaron and hybrid states exhibit strong electron-phonon (e-ph) coupling and their charge distributions become more and more delocalized when the temperature increases from 100 to 700 K. Such strong e-ph coupling and charge delocalization enhance the nonadibatic coupling between the electronic states along the hole relaxation path, where the defect states behave as intermediate states, leading to a distinct acceleration of e-h recombination. Our study provides valuable insights to understand the role of defects on photoexcited carrier lifetime in semiconductors.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Weibin Chu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Qijing Zheng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jin Zhao
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
22
|
Chen C, Zhao J, Guo D, Duan K, Wang Y, Lun X, Zhang C. Microwave-assisted synthesis of defective Ca 1-xAg xTi 1-yCo yO 3 with high photoelectrocatalytic activity for organic pollutant removal from water. Dalton Trans 2022; 51:2219-2225. [PMID: 35040856 DOI: 10.1039/d1dt03894j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CaTiO3 is considered to be one of the most promising catalysts for the degradation of organic pollutants, but its application is limited by the wide band gap and low catalytic activity. Element doping is an effective strategy to solve these problems. Herein, a novel CaTiO3 co-doped with Ag and Co (Ca1-xAgxTi1-yCoyO3) was synthesized by combining co-precipitation and the microwave hydrothermal method for the first time. The crystal structure, microstructure and light absorption of the material were systematically investigated. The results showed that Ca1-xAgxTi1-yCoyO3 had higher light absorption than pure CaTiO3, and the band gap was reduced to 2.78 eV. First-principles calculations indicated that Ag-Ca and Co-Ti tended to form donor-acceptor defect pairs in the doping process. These defect states not only enhanced the adsorption properties, but also could be used as carrier traps to optimize the dielectric properties of CaTiO3. In the photoelectrocatalytic system, with 0.01 g of catalyst, 98% of methylene blue in 100 mL solution (10 mg L-1) was degraded in 150 min. In addition, Ca1-xAgxTi1-yCoyO3 showed strong stability and excellent recyclability. The double ion co-doping technology will provide an effective strategy for improving the catalytic activity of traditional wide-band gap semiconductors.
Collapse
Affiliation(s)
- Chen Chen
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China.
| | - Jiamei Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China.
| | - Dong Guo
- Beijing Normal University, Beijing 100875, PR China
| | - Keyu Duan
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China.
| | - Yongqiang Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China.
| | - Xiaowen Lun
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China.
| | - Conglu Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China.
| |
Collapse
|
23
|
Computational Characterization of Nanosystems. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
24
|
Akimov AV. Excited state dynamics in monolayer black phosphorus revisited: Accounting for many-body effects. J Chem Phys 2021; 155:134106. [PMID: 34624981 DOI: 10.1063/5.0065606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of electron-hole recombination in pristine and defect-containing monolayer black phosphorus (ML-BP) has been studied computationally by several groups relying on the one-particle description of electronic excited states. Our recent developments enabled a more sophisticated and accurate treatment of excited states dynamics in systems with pronounced excitonic effects, including 2D materials such as ML-BP. In this work, I present a comprehensive characterization of optoelectronic properties and nonadiabatic dynamics of the ground state recovery in pristine and divacancy-containing ML-BP, relying on the linear-response time-dependent density functional theory description of excited states combined with several trajectory surface hopping methodologies and decoherence correction schemes. This work presents a revision and new implementation of the decoherence-induced surface hopping methodology. Several popular algorithms for nonadiabatic dynamics algorithms are assessed. The kinetics of nonradiative relaxation of lower-lying excited states in ML-BP systems is revised considering the new methodological developments. A general mechanism that explains the sensitivity of the nonradiative dynamics to the presence of divacancy defect in ML-BP is proposed. According to this mechanism, the excited states' relaxation may be inhibited by the presence of energetically close higher-energy states if electronic decoherence is present in the system.
Collapse
Affiliation(s)
- Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| |
Collapse
|
25
|
Ping Y, Smart TJ. Computational design of quantum defects in two-dimensional materials. NATURE COMPUTATIONAL SCIENCE 2021; 1:646-654. [PMID: 38217204 DOI: 10.1038/s43588-021-00140-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/15/2021] [Indexed: 01/15/2024]
Abstract
Missing atoms or atom substitutions (point defects) in crystal lattices in two-dimensional (2D) materials are potential hosts for emerging quantum technologies, such as single-photon emitters and spin quantum bits (qubits). First-principles-guided design of quantum defects in 2D materials is paving the way for rational spin qubit discovery. Here we discuss the frontier of first-principles theory development and the challenges in predicting the critical physical properties of point defects in 2D materials for quantum information technology, in particular for optoelectronic and spin-optotronic properties. Strong many-body interactions at reduced dimensionality require advanced electronic structure methods beyond mean-field theory. The great challenges for developing theoretical methods that are appropriate for strongly correlated defect states, as well as general approaches for predicting spin relaxation and the decoherence time of spin defects, are yet to be addressed.
Collapse
Affiliation(s)
- Yuan Ping
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| | - Tyler J Smart
- Department of Physics, University of California, Santa Cruz, CA, USA
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| |
Collapse
|
26
|
Fan Y, Song X, Ai H, Li W, Zhao M. Highly Efficient Photocatalytic CO 2 Reduction in Two-Dimensional Ferroelectric CuInP 2S 6 Bilayers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34486-34494. [PMID: 34282882 DOI: 10.1021/acsami.1c10983] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photocatalytic CO2 conversion into reproducible chemical fuels (e.g., CO, CH3OH, or CH4) provides a promising scheme to solve the increasing environmental problems and energy demands simultaneously. However, the efficiency is severely restricted by the high overpotential of the CO2 reduction reaction (CO2RR) and rapid recombination of photoexcited carriers. Here, we propose that a novel type-II photocatalytic mechanism based on two-dimensional (2D) ferroelectric multilayers would be ideal for addressing these issues. Using density-functional theory and nonadiabatic molecular dynamics calculations, we find that the ferroelectric CuInP2S6 bilayers exhibit a staggered band structure induced by the vertical intrinsic electric fields. Different from the traditional type-II band alignment, the unique structure of the CuInP2S6 bilayer not only effectively suppresses the recombination of photogenerated electron-hole (e-h) pairs but also produces a sufficient photovoltage to drive the CO2RR. The predicted recombination time of photogenerated e-h pairs, 1.03 ns, is much longer than the transferring times of photoinduced electrons and holes, 5.45 and 0.27 ps, respectively. Moreover, the overpotential of the CO2RR will decrease by substituting an S atom with a Cu atom, making the redox reaction proceed spontaneously under solar radiation. The solar-to-fuel efficiency with an upper limit of 8.40% is achieved in the CuInP2S6 bilayer and can be further improved to 32.57% for the CuInP2S6 five-layer. Our results indicate that this novel type-II photocatalytic mechanism would be a promising way to achieve highly efficient photocatalytic CO2 conversion based on the 2D ferroelectric multilayers.
Collapse
Affiliation(s)
- Yingcai Fan
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiaohan Song
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Haoqiang Ai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Weifeng Li
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Mingwen Zhao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- School of Physics and Electrical Engineering, Kashgar University, Kashi 844006, China
| |
Collapse
|
27
|
Guo H, Chu W, Prezhdo OV, Zheng Q, Zhao J. Strong Modulation of Band Gap, Carrier Mobility and Lifetime in Two-Dimensional Black Phosphorene through Acoustic Phonon Excitation. J Phys Chem Lett 2021; 12:3960-3967. [PMID: 33872035 DOI: 10.1021/acs.jpclett.1c00747] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Black phosphorene (BP) has been attracting intense attention due to its high charge mobility and potential applications in electronic, optical and optoelectronic devices. We demonstrate by ab initio molecular dynamics and nonadiabatic quantum dynamics simulations that the excitation of out-of-plane acoustic phonon (ZA) provides strong modulation of the band gap, carrier lifetime and carrier mobility in BP. A 1% tensile strain can significantly enhance ZA mode excitation at room temperature, distinctly reducing the band gap, carrier mobility, and lifetime. These electronic properties can be tuned easily by influencing the excitation amplitude of the ZA mode. Unique to the family of two-dimensional materials, the ZA mode plays an essential role in controlling the electronic properties of BP. The results of our study provide valuable guidelines for design of functional nanodevices based on 2D BP.
Collapse
Affiliation(s)
- Hongli Guo
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Weibin Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Qijing Zheng
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin Zhao
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh Pennsylvania 15260, United States
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
28
|
Smith B, Shakiba M, Akimov AV. Crystal Symmetry and Static Electron Correlation Greatly Accelerate Nonradiative Dynamics in Lead Halide Perovskites. J Phys Chem Lett 2021; 12:2444-2453. [PMID: 33661640 DOI: 10.1021/acs.jpclett.0c03799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using a recently developed many-body nonadiabatic molecular dynamics (NA-MD) framework for large condensed matter systems, we study the phonon-driven nonradiative relaxation of excess electronic excitation energy in cubic and tetragonal phases of the lead halide perovskite CsPbI3. We find that the many-body treatment of the electronic excited states significantly changes the structure of the excited states' coupling, promotes a stronger nonadiabatic coupling of states, and ultimately accelerates the relaxation dynamics relative to the single-particle description of excited states. The acceleration of the nonadiabatic dynamics correlates with the degree of configurational mixing, which is controlled by the crystal symmetry. The higher-symmetry cubic phase of CsPbI3 exhibits stronger configuration mixing than does the tetragonal phase and subsequently yields faster nonradiative dynamics. Overall, using a many-body treatment of excited states and accounting for decoherence dynamics are important for closing the gap between the computationally derived and experimentally measured nonradiative excitation energy relaxation rates.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mohammad Shakiba
- Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
29
|
Kistanov AA, Nikitenko VR, Prezhdo OV. Point Defects in Two-Dimensional γ-Phosphorus Carbide. J Phys Chem Lett 2021; 12:620-626. [PMID: 33382627 DOI: 10.1021/acs.jpclett.0c03608] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Defects are inevitably present in two-dimensional (2D) materials and usually govern their various properties. Here, a comprehensive density functional theory-based investigation of seven kinds of point defects in a recently produced γ allotrope of 2D phosphorus carbide (γ-PC) is conducted. The defects, such as antisites, single C or P, and double C and P and C and C vacancies, are found to be stable in γ-PC, while the Stone-Wales defect is not presented in γ-PC due to its transition-metal dichalcogenides-like structure. The formation energies, stability, and surface density of the considered defect species as well as their influence on the electronic structure of γ-PC is systematically identified. The formation of point defects in γ-PC is found to be less energetically favorable than in graphene, phosphorene, and MoS2. Meanwhile, defects can significantly modulate the electronic structure of γ-PC by inducing hole/electron doping. The predicted scanning tunneling microscopy images suggest that most of the point defects are easy to distinguish from each other and that they can be easily recognized in experiments.
Collapse
Affiliation(s)
- Andrey A Kistanov
- Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland
| | | | - Oleg V Prezhdo
- National Research Nuclear University MEPhI, 115409 Moscow, Russia
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
30
|
Chu W, Zheng Q, Akimov AV, Zhao J, Saidi WA, Prezhdo OV. Accurate Computation of Nonadiabatic Coupling with Projector Augmented-Wave Pseudopotentials. J Phys Chem Lett 2020; 11:10073-10080. [PMID: 33179939 DOI: 10.1021/acs.jpclett.0c03080] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synergy of nonadiabatic molecular dynamics with real-time time-dependent density functional theory has led to significant progress in modeling excited-state dynamics in nanoscale and condensed matter systems over the past decade. Nonadiabatic coupling (NAC) is the central quantity in such simulations, and its accurate and efficient evaluation is an enduring challenge in time-dependent Kohn-Sham theory, particularly in conjunction with planewave basis sets and projector augmented-wave (PAW) pseudopotentials because of the complexity of the PAW "all-electron" wave function. We report a method for rigorous evaluation of the NAC with PAW wave functions and demonstrate an efficient approximation to the rigorous NAC that gives comparable accuracy. As a validation, we intensely examine the NAC matrix elements calculated using both pseudo- and all-electron wave functions under the PAW formalism in six representative systems. The approximate NAC obtained with pseudowave functions is close to the exact all-electron NAC, with the largest deviations observed when subshell d-electrons are involved in the transitions. The developed approach provides a rigorous and convenient methodology for the numerical computation of NAC in the Kohn-Sham theory framework.
Collapse
Affiliation(s)
- Weibin Chu
- Department of Chemistry and Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Qijing Zheng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jin Zhao
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh Pennsylvania 15260, United States
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Oleg V Prezhdo
- Department of Chemistry and Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
31
|
Bhim A, Sasmal S, Gopalakrishnan J, Natarajan S. Visible-Light-Activated C-C Bond Cleavage and Aerobic Oxidation of Benzyl Alcohols Employing BiMXO 5 (M=Mg, Cd, Ni, Co, Pb, Ca and X=V, P). Chem Asian J 2020; 15:3104-3115. [PMID: 32790062 DOI: 10.1002/asia.202000814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/07/2020] [Indexed: 11/10/2022]
Abstract
The synthesis, structure, optical and photocatalytic studies of a family of compounds with the general formula, BiMXO5 ; M=Mg, Cd, Ni, Co, Pb, Ca and X=V, P is presented. The compounds were prepared by regular solid-state reaction of constituents in the temperature range of 720-810 °C for 24 h. The compounds were characterized by powder X-ray diffraction (PXRD) methods. The Rietveld refinement of the PXRD patterns have been carried out to establish the structure. The optical absorption spectra along with the colors in daylight have been explained employing the allowed d-d transition. In addition, the observed colors of some of the V5+ containing compounds were explained using metal-to-metal charge transfer (MMCT) from the partially filled transition-metal 3d orbitals to the empty 3d orbitals of V5+ ions. The near IR (NIR) reflectivity studies indicate that many compounds exhibit good NIR reflectivity, suggesting that these compounds can be employed as 'cool pigments'. The experimentally determined band gaps of the prepared compounds were found to be suitable to exploit them for visible light activated photocatalysis. Photocatalytic C-C bond cleavage of alkenes and aerobic oxidation of alcohols were investigated employing visible light, which gave good yields and selectivity. The present study clearly demonstrated the versatility of the Paganoite family of compounds (BiMXO5 ) towards new colored inorganic materials, visible-light photocatalysts and 'cool pigments'.
Collapse
Affiliation(s)
- Anupam Bhim
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Shreya Sasmal
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Jagannatha Gopalakrishnan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Srinivasan Natarajan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
32
|
Guo H, Chu W, Zheng Q, Zhao J. Tuning the Carrier Lifetime in Black Phosphorene through Family Atom Doping. J Phys Chem Lett 2020; 11:4662-4667. [PMID: 32464063 DOI: 10.1021/acs.jpclett.0c01300] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is highly desirable to control the carrier lifetime in two-dimensional (2D) materials to suit the needs of various device functionalities. In this work, by ab initio nonadiabatic molecular dynamics simulation, we find the single atom doping from phosphorus family elements can sufficiently tune the carrier lifetime in black phosphorene (BP). Instead of forming electron-hole (e-h) recombination centers, the e-h recombination is suppressed by doping compared with the pristine BP. Moreover, it is found the carrier lifetime has a strong correlation with the mass of the doping atoms. A doping atom with larger mass leads to a longer lifetime. With the heaviest family element Bi doping, the carrier lifetime increases from 0.29 to 5.34 ns. This trend can be understood from the reduction of the nuclear velocity due to the heavy doping atom. We propose this conclusion can be extended to other monoelemental 2D semiconductors, which provides important guidance for the future design of functional nanodevices.
Collapse
Affiliation(s)
- Hongli Guo
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Weibin Chu
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Qijing Zheng
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin Zhao
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
33
|
|
34
|
Smith B, Akimov AV. Hot Electron Cooling in Silicon Nanoclusters via Landau-Zener Nonadiabatic Molecular Dynamics: Size Dependence and Role of Surface Termination. J Phys Chem Lett 2020; 11:1456-1465. [PMID: 31958367 DOI: 10.1021/acs.jpclett.9b03687] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We develop a new express methodology for modeling excited-state dynamics occurring in dense manifolds of electronic states in atomistic systems. The approach leverages a modified Landau-Zener formula, the neglect of a back-reaction approximation, and the highly efficient density functional tight-binding method. We study the hot electron dynamics in a series of H- and F-terminated silicon nanocrystals (NCs) containing up to several hundred atoms. We explain the slower electron cooling dynamics in F-terminated NCs by the larger energy gaps between the adjacent electronic states in these systems as well as their slower fluctuations. We conclude that both the mass and chemical identity of the surface termination groups equally influence the electron dynamics, on average. However, the mass effect becomes dominant for higher-energy excitations. We find that the electron decay dynamics in F-terminated NCs has a greater sensitivity to the mass of the surface ligands than do the H-terminated NCs and explain this observation by the details of the electron-phonon coupling in the systems. We find that in the H-terminated NCs, electronic transitions in the cooling process occur predominantly between the surface states, whereas in F-terminated Si NCs, both surface and NC core states are coupled to the nuclear vibrations. We find that electron energy relaxation is accelerated in larger NCs and attribute this effect to the higher densities of states and smaller energy gaps in these systems.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| | - Alexey V Akimov
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| |
Collapse
|
35
|
Lu TF, Wang YS, Tomko JA, Hopkins PE, Zhang HX, Prezhdo OV. Control of Charge Carrier Dynamics in Plasmonic Au Films by TiO x Substrate Stoichiometry. J Phys Chem Lett 2020; 11:1419-1427. [PMID: 32011143 DOI: 10.1021/acs.jpclett.9b03884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic excitations in noble metals have many fascinating properties and give rise to a broad range of applications. We demonstrate, using nonadiabatic molecular dynamics combined with time-domain density functional theory, that the chemical composition and stoichiometry of substrates can have a strong influence on charge dynamics. By changing oxygen content in TiO2, including stoichiometric, oxygen rich, and oxygen poor phases, and Ti metal, one can alter lifetimes of charge carriers in Au by a factor of 5 and control the ratio of electron-to-hole relaxation rates by a factor of 10. Remarkably, a thin TiOx substrate greatly alters charge carrier properties in much thicker Au films. Such large variations stem from the fact that the Ti and O atoms are much lighter than Au, and their vibrations are much faster at dissipating the energy. The control over a particular charge carrier and an energy range depends on the Au and TiOx level alignment, and the interfacial interaction strength. These factors are easily influenced by the TiOx stoichiometry. In particular, oxygen rich and poor TiO2 can be used to control holes and electrons, respectively, while metallic Ti affects both charge carriers. The detailed atomistic analysis of the interfacial and electron-vibrational interactions generates the fundamental understanding of the properties of plasmonic materials needed to design photovoltaic, photocatalytic, optoelectronic, sensing, nanomedical, and other devices.
Collapse
Affiliation(s)
- Teng-Fei Lu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Yi-Siang Wang
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - John A Tomko
- Department of Materials Science and Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Patrick E Hopkins
- Department of Materials Science and Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
- Department of Mechanical and Aerospace Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
- Department of Physics , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
36
|
Wei Y, Fang WH, Long R. Covalent Functionalized Black Phosphorus Greatly Inhibits Nonradiative Charge Recombination: A Time Domain Ab Initio Study. J Phys Chem Lett 2020; 11:478-484. [PMID: 31875400 DOI: 10.1021/acs.jpclett.9b03465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mono- or few-layer black phosphorus (BP) has emerged as a promising photovoltaic and optoelectronic material with realistic applications subjected to instability and short charge carrier lifetime. Experiments show that covalent functionalization can improve the stability, but the underlying mechanism for the prolonged lifetime remains elusive. By performing spin-polarized time domain density functional theory combined with nonadiabatic (NA) molecular dynamics simulations, we demonstrate that BP passivated with both phenyl and nitrophenyl can suppress the nonradiative electron-hole recombination by a factor of 2 and 3, respectively, relative to the pristine system. The slow recombination is due to the interplay between energy gap, NA coupling, and decoherence time, which happens either through a hole-trap-assisted process or in a direct way between a free electron and hole in the spin-up channel. The observations hold in the spin-down channel. The study suggests that the passivating strategy should work for BP and other two-dimensional materials.
Collapse
Affiliation(s)
- Yaqing Wei
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing 100875 , People's Republic of China
| |
Collapse
|