1
|
Kumar A, Jha KK, Olech B, Goral T, Malinska M, Woźniak K, Dominiak PM. TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic molecules. Acta Crystallogr C Struct Chem 2024; 80:264-277. [PMID: 38934273 PMCID: PMC11225613 DOI: 10.1107/s2053229624005357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered L-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X-H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for L-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering.
Collapse
Affiliation(s)
- Anil Kumar
- Biological and Chemical Research Centre Faculty of Chemistry University of Warsaw, ul Żwirki i Wigury 101 02-089 Warszawa Poland
| | - Kunal Kumar Jha
- Biological and Chemical Research Centre Faculty of Chemistry University of Warsaw, ul Żwirki i Wigury 101 02-089 Warszawa Poland
- Centre of New Technologies University of Warsaw, ul S Banacha 2c 02-097 Warszawa Poland
| | - Barbara Olech
- Biological and Chemical Research Centre Faculty of Chemistry University of Warsaw, ul Żwirki i Wigury 101 02-089 Warszawa Poland
- Centre of New Technologies University of Warsaw, ul S Banacha 2c 02-097 Warszawa Poland
| | - Tomasz Goral
- Biological and Chemical Research Centre Faculty of Chemistry University of Warsaw, ul Żwirki i Wigury 101 02-089 Warszawa Poland
- Centre of New Technologies University of Warsaw, ul S Banacha 2c 02-097 Warszawa Poland
| | - Maura Malinska
- Faculty of Chemistry University of Warsaw, Pasteura 1 02-093 Warszawa Poland
| | - Krzysztof Woźniak
- Centre of New Technologies University of Warsaw, ul S Banacha 2c 02-097 Warszawa Poland
- Faculty of Chemistry University of Warsaw, Pasteura 1 02-093 Warszawa Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Centre Faculty of Chemistry University of Warsaw, ul Żwirki i Wigury 101 02-089 Warszawa Poland
| |
Collapse
|
2
|
Chodkiewicz M, Patrikeev L, Pawlędzio S, Woźniak K. Transferable Hirshfeld atom model for rapid evaluation of aspherical atomic form factors. IUCRJ 2024; 11:249-259. [PMID: 38446457 PMCID: PMC10916294 DOI: 10.1107/s2052252524001507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
Form factors based on aspherical models of atomic electron density have brought great improvement in the accuracies of hydrogen atom parameters derived from X-ray crystal structure refinement. Today, two main groups of such models are available, the banks of transferable atomic densities parametrized using the Hansen-Coppens multipole model which allows for rapid evaluation of atomic form factors and Hirshfeld atom refinement (HAR)-related methods which are usually more accurate but also slower. In this work, a model that combines the ideas utilized in the two approaches is tested. It uses atomic electron densities based on Hirshfeld partitions of electron densities, which are precalculated and stored in a databank. This model was also applied during the refinement of the structures of five small molecules. A comparison of the resulting hydrogen atom parameters with those derived from neutron diffraction data indicates that they are more accurate than those obtained with the Hansen-Coppens based databank, and only slightly less accurate than those obtained with a version of HAR that neglects the crystal environment. The advantage of using HAR becomes more noticeable when the effects of the environment are included. To speed up calculations, atomic densities were represented by multipole expansion with spherical harmonics up to l = 7, which used numerical radial functions (a different approach to that applied in the Hansen-Coppens model). Calculations of atomic form factors for the small protein crambin (at 0.73 Å resolution) took only 68 s using 12 CPU cores.
Collapse
Affiliation(s)
- Michał Chodkiewicz
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Leonid Patrikeev
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Sylwia Pawlędzio
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| |
Collapse
|
3
|
Kleemiss F, Peyerimhoff N, Bodensteiner M. Refinement of X-ray and electron diffraction crystal structures using analytical Fourier transforms of Slater-type atomic wavefunctions in Olex2. J Appl Crystallogr 2024; 57:161-174. [PMID: 38322726 PMCID: PMC10840308 DOI: 10.1107/s1600576723010981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024] Open
Abstract
An implementation of Slater-type spherical scattering factors for X-ray and electron diffraction for elements in the range Z = 1-103 is presented within the software Olex2. Both high- and low-angle Fourier behaviour of atomic electron density and electrostatic potential can thus be addressed, in contrast to the limited flexibility of the four Gaussian plus constant descriptions which are currently the most widely used method for calculating atomic scattering factors during refinement. The implementation presented here accommodates the increasing complexity of the electronic structure of heavier elements by using complete atomic wavefunctions without any interpolation between precalculated tables or intermediate fitting functions. Atomic wavefunctions for singly charged ions are implemented and made accessible, and these show drastic changes in electron diffraction scattering factors compared with the neutral atom. A comparison between the two different spherical models of neutral atoms is presented as an example for four different kinds of X-ray and two electron diffraction structures, and comparisons of refinement results using the existing diffraction data are discussed. A systematic but slight improvement in R values and residual densities can be observed when using the new scattering factors, and this is discussed relative to effects on the atomic displacement parameters and atomic positions, which are prominent near the heavier elements in a structure.
Collapse
Affiliation(s)
- Florian Kleemiss
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
- Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | | | | |
Collapse
|
4
|
Bick T, Dominiak PM, Wendler P. Exploiting the full potential of cryo-EM maps. BBA ADVANCES 2024; 5:100113. [PMID: 38292063 PMCID: PMC10825613 DOI: 10.1016/j.bbadva.2024.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
The Coulomb potential maps generated by electron microscopy (EM) experiments contain not only information about the position but also about the charge state of the atom. This feature of EM maps allows the identification of specific ions and the protonation state of amino acid side chains in the sample. Here, we summarize qualitative observations of charges in EM maps, discuss the difficulties in interpreting the charge in Coulomb potential maps with respect to distinguishing it from radiation damage, and outline considerations to implement the correct charge in fitting algorithms.
Collapse
Affiliation(s)
- Thomas Bick
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476 Potsdam Golm, Germany
| | - Paulina M. Dominiak
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476 Potsdam Golm, Germany
| |
Collapse
|
5
|
Woińska M, Hoser AA, Chodkiewicz ML, Woźniak K. Enhancing hydrogen positions in X-ray structures of transition metal hydride complexes with dynamic quantum crystallography. IUCRJ 2024; 11:45-56. [PMID: 37990870 PMCID: PMC10833390 DOI: 10.1107/s205225252300951x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Hirshfeld atom refinement (HAR) is a method which enables the user to obtain more accurate positions of hydrogen atoms bonded to light chemical elements using X-ray data. When data quality permits, this method can be extended to hydrogen-bonded transition metals (TMs), as in hydride complexes. However, addressing hydrogen thermal motions with HAR, particularly in TM hydrides, presents a challenge. At the same time, proper description of thermal vibrations can be vital for determining hydrogen positions correctly. In this study, we employ tools such as SHADE3 and Normal Mode Refinement (NoMoRe) to estimate anisotropic displacement parameters (ADPs) for hydrogen atoms during HAR and IAM refinements performed for seven structures of TM (Fe, Ni, Cr, Nb, Rh and Os) and metalloid (Sb) hydride complexes for which both the neutron and the X-ray structures have been determined. A direct comparison between neutron and HAR/SHADE3/NoMoRe ADPs reveals that the similarity between neutron hydrogen ADPs and those estimated with NoMoRe or SHADE3 is significantly higher than when hydrogen ADPs are refined with HAR. Regarding TM-H bond lengths, traditional HAR exhibits a slight advantage over the other methods. However, combining NoMoRe/SHADE3 with HAR results in a minor decrease in agreement with neutron TM-H bond lengths. For the Cr complex, for which high-resolution X-ray data were collected, an investigation of resolution-related effects was possible.
Collapse
Affiliation(s)
- Magdalena Woińska
- Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Anna A. Hoser
- Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Michał L. Chodkiewicz
- Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| |
Collapse
|
6
|
Woińska M, Pawlędzio S, Chodkiewicz ML, Woźniak K. Hirshfeld Atom Refinement of Metal-Organic Complexes: Treatment of Hydrogen Atoms Bonded to Transition Metals. J Phys Chem A 2023; 127:3020-3035. [PMID: 36947670 PMCID: PMC10084459 DOI: 10.1021/acs.jpca.2c06998] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/04/2023] [Indexed: 03/24/2023]
Abstract
Hydrogen positions in hydrides play a key role in hydrogen storage materials and high-temperature superconductors. Our recently published study of five crystal structures of transition-metal-bound hydride complexes showed that using aspherical atomic scattering factors for Hirshfeld atom refinement (HAR) resulted in a systematic elongation of metal-hydrogen bonds compared to using spherical scattering factors with the Independent Atom Model (IAM). Even though only standard-resolution X-ray data was used, for the highest-quality data, we obtained excellent agreement between the X-ray and the neutron-derived bond lengths. We present an extended version of this study including 10 crystal structures of metal-organic complexes containing hydrogen atoms bonded to transition-metal atoms for which both X-ray and neutron data are available. The neutron structures were used as a benchmark, and the X-ray structures were refined by applying Hirshfeld atom refinement using various basis sets and DFT functionals in order to investigate the influence of the technical aspects on the length of metal-hydrogen bonds. The result of including relativistic effects in the Hamiltonian and using a cluster of multipoles simulating interactions with a crystal environment during wave function calculations was examined. The effect of the data quality on the final result was also evaluated. The study confirms that a high quality of experimental data is the key factor allowing us to obtain significant improvement in transition metal (TM)-hydrogen bond lengths from HAR in comparison with the IAM. Individual adjustments and better choices of the basis set can improve hydrogen positions. Average differences between TM-H bond lengths obtained with various DFT functionals upon including relativistic effects or between double-ζ and triple-ζ basis sets were not statistically significant. However, if all bonds formed by H atoms were considered, significant differences caused by different refinement strategies were observed. Finally, we examined the refinement of atomic thermal motions. Anisotropic refinement of hydrogen thermal motions with HAR was feasible only in some cases, and isotropically refined hydrogen thermal motions were in similar agreement with neutron values whether obtained with HAR or with the IAM.
Collapse
Affiliation(s)
- Magdalena Woińska
- Biological and Chemical Research
Centre, Chemistry Department, University
of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Sylwia Pawlędzio
- Biological and Chemical Research
Centre, Chemistry Department, University
of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Michał L. Chodkiewicz
- Biological and Chemical Research
Centre, Chemistry Department, University
of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research
Centre, Chemistry Department, University
of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| |
Collapse
|
7
|
Wieduwilt EK, Boto RA, Macetti G, Laplaza R, Contreras-García J, Genoni A. Extracting Quantitative Information at Quantum Mechanical Level from Noncovalent Interaction Index Analyses. J Chem Theory Comput 2023; 19:1063-1079. [PMID: 36656682 DOI: 10.1021/acs.jctc.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The noncovalent interaction (NCI) index is nowadays a well-known strategy to detect NCIs in molecular systems. Even though it initially provided only qualitative descriptions, the technique has been recently extended to also extract quantitative information. To accomplish this task, integrals of powers of the electron distribution were considered, with the requirement that the overall electron density can be clearly decomposed as sum of distinct fragment contributions to enable the definition of the (noncovalent) integration region. So far, this was done by only exploiting approximate promolecular electron densities, which are given by the sum of spherically averaged atomic electron distributions and thus represent too crude approximations. Therefore, to obtain more quantum mechanically (QM) rigorous results from NCI index analyses, in this work, we propose to use electron densities obtained through the transfer of extremely localized molecular orbitals (ELMOs) or through the recently developed QM/ELMO embedding technique. Although still approximate, the electron distributions resulting from the abovementioned methods are fully QM and, above all, are again partitionable into subunit contributions, which makes them completely suitable for the NCI integral approach. Therefore, we benchmarked the integrals resulting from NCI index analyses (both those based on the promolecular densities and those based on ELMO electron distributions) against interaction energies computed at a high quantum chemical level (in particular, at the coupled cluster level). The performed test calculations have indicated that the NCI integrals based on ELMO electron densities outperform the promolecular ones. Furthermore, it was observed that the novel quantitative NCI-(QM/)ELMO approach can be also profitably exploited both to characterize and evaluate the strength of specific interactions between ligand subunits and protein residues in protein-ligand complexes and to follow the evolution of NCIs along trajectories of molecular dynamics simulations. Although further methodological improvements are still possible, the new quantitative ELMO-based technique could be already exploited in situations in which fast and reliable assessments of NCIs are crucial, such as in computational high-throughput screenings for drug discovery.
Collapse
Affiliation(s)
- Erna K Wieduwilt
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, Metz F-57078, France
| | - Roberto A Boto
- Laboratoire de Chimie Théorique (LCT), UMR 7616, Sorbonne Université & CNRS, 4 Place Jussieu, Paris F-75005, France
| | - Giovanni Macetti
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, Metz F-57078, France
| | - Rubén Laplaza
- Laboratoire de Chimie Théorique (LCT), UMR 7616, Sorbonne Université & CNRS, 4 Place Jussieu, Paris F-75005, France
| | - Julia Contreras-García
- Laboratoire de Chimie Théorique (LCT), UMR 7616, Sorbonne Université & CNRS, 4 Place Jussieu, Paris F-75005, France
| | - Alessandro Genoni
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, Metz F-57078, France
| |
Collapse
|
8
|
Jha KK, Kleemiss F, Chodkiewicz ML, Dominiak PM. Aspherical atom refinements on X-ray data of diverse structures including disordered and covalent organic framework systems: a time-accuracy trade-off. J Appl Crystallogr 2023; 56:116-127. [PMID: 36777135 PMCID: PMC9901929 DOI: 10.1107/s1600576722010883] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/13/2022] [Indexed: 12/24/2022] Open
Abstract
Aspherical atom refinement is the key to achieving accurate structure models, displacement parameters, hydrogen-bond lengths and analysis of weak interactions, amongst other examples. There are various quantum crystallographic methods to perform aspherical atom refinement, including Hirshfeld atom refinement (HAR) and transferable aspherical atom model (TAAM) refinement. Both HAR and TAAM have their limitations and advantages, the former being more accurate and the latter being faster. With the advent of non-spherical atoms in Olex2 (NoSpherA2), it is now possible to overcome some limitations, like treating disorder, twinning and network structures, in aspherical refinements using HAR, TAAM or both together. TAAM refinement in NoSpherA2 showed significant improvement in refinement statistics compared with independent atom model (IAM) refinements on a diverse set of X-ray diffraction data. The sensitivity of TAAM towards poor data quality and disorder was observed in terms of higher refinement statistics for such structures. A comparison of IAM with TAAM and HAR in NoSpherA2 indicated that the time taken by TAAM refinements was of the same order of magnitude as that taken by IAM, while in HAR the time taken using a minimal basis set was 50 times higher than for IAM and rapidly increased with increasing size of the basis sets used. The displacement parameters for hydrogen and non-hydrogen atoms were very similar in both HAR and TAAM refinements. The hydrogen-bond lengths were slightly closer to neutron reference values in the case of HAR with higher basis sets than in TAAM. To benefit from the advantages of each method, a new hybrid refinement approach has been introduced, allowing a combination of IAM, HAR and TAAM in one structure refinement. Refinement of coordination complexes involving metal-organic compounds and network structures such as covalent organic frameworks and metal-organic frameworks is now possible in a hybrid mode such as IAM-TAAM or HAR-TAAM, where the metal atoms are treated via either the IAM or HAR method and the organic part via TAAM, thus reducing the computational costs without compromising the accuracy. Formal charges on the metal and ligand can also be introduced in hybrid-mode refinement.
Collapse
Affiliation(s)
- Kunal Kumar Jha
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warsaw, 02-089, Poland
| | - Florian Kleemiss
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätstrasse 31, Regensburg, Bayern 93053, Germany
| | - Michał Leszek Chodkiewicz
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warsaw, 02-089, Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warsaw, 02-089, Poland
| |
Collapse
|
9
|
Chodkiewicz ML, Gajda R, Lavina B, Tkachev S, Prakapenka VB, Dera P, Wozniak K. Accurate crystal structure of ice VI from X-ray diffraction with Hirshfeld atom refinement. IUCRJ 2022; 9:573-579. [PMID: 36071798 PMCID: PMC9438488 DOI: 10.1107/s2052252522006662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Water is an essential chemical compound for living organisms, and twenty of its different crystal solid forms (ices) are known. Still, there are many fundamental problems with these structures such as establishing the correct positions and thermal motions of hydrogen atoms. The list of ice structures is not yet complete as DFT calculations have suggested the existence of additional and - to date - unknown phases. In many ice structures, neither neutron diffraction nor DFT calculations nor X-ray diffraction methods can easily solve the problem of hydrogen atom disorder or accurately determine their anisotropic displacement parameters (ADPs). Here, accurate crystal structures of H2O, D2O and mixed (50%H2O/50%D2O) ice VI obtained by Hirshfeld atom refinement (HAR) of high-pressure single-crystal synchrotron and laboratory X-ray diffraction data are presented. It was possible to obtain O-H/D bond lengths and ADPs for disordered hydrogen atoms which are in good agreement with the corresponding single-crystal neutron diffraction data. These results show that HAR combined with X-ray diffraction can compete with neutron diffraction in detailed studies of polymorphic forms of ice and crystals of other hydrogen-rich compounds. As neutron diffraction is relatively expensive, requires larger crystals which can be difficult to obtain and access to neutron facilities is restricted, cheaper and more accessible X-ray measurements combined with HAR can facilitate the verification of the existing ice polymorphs and the quest for new ones.
Collapse
Affiliation(s)
- Michal L. Chodkiewicz
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury, Warszawa 02-089, Poland
| | - Roman Gajda
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury, Warszawa 02-089, Poland
| | - Barbara Lavina
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Sergey Tkachev
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Vitali B. Prakapenka
- Hawai’i Institute of Geophysics and Planetology, Université d’hawaï à mānoa, 1680 East-West Road, Honolulu, HI 96822, USA
| | - Przemyslaw Dera
- Hawai’i Institute of Geophysics and Planetology, Université d’hawaï à mānoa, 1680 East-West Road, Honolulu, HI 96822, USA
| | - Krzysztof Wozniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury, Warszawa 02-089, Poland
| |
Collapse
|
10
|
Pawlędzio S, Malinska M, Kleemiss F, Grabowsky S, Woźniak K. Influence of modelling disorder on Hirshfeld atom refinement results of an organo-gold(I) compound. IUCRJ 2022; 9:497-507. [PMID: 35844484 PMCID: PMC9252150 DOI: 10.1107/s2052252522005309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Details of the validation of disorder modelling with Hirshfeld atom refinement (HAR) for a previously investigated organo-gold(I) compound are presented here. The impact of refining disorder on HAR results is discussed using an analysis of the differences of dynamic structure factors. These dynamic structure factor differences are calculated from thermally smeared quantum mechanical electron densities based on wavefunctions that include or exclude electron correlation and relativistic effects. When disorder is modelled, the electron densities stem from a weighted superposition of two (or more) different conformers. Here this is shown to impact the relative importance of electron correlation and relativistic effect estimates expressed by the structure factor magnitudes. The role of disorder modelling is also compared with the effect of the treatment of hydrogen anisotropic displacement parameter (ADP) values and atomic anharmonicity of the gold atom. The analysis of ADP values of gold and disordered carbon atoms showed that the effect of disorder significantly altered carbon ADP values and did not influence those of the gold atom.
Collapse
Affiliation(s)
- Sylwia Pawlędzio
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Maura Malinska
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| | - Florian Kleemiss
- Faculty for Chemistry und Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02-089, Poland
| |
Collapse
|
11
|
Davidson ML, Grabowsky S, Jayatilaka D. X-ray constrained wavefunctions based on Hirshfeld atoms. I. Method and review. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:312-332. [PMID: 35695105 DOI: 10.1107/s2052520622004097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
The X-ray constrained wavefunction (XCW) procedure for obtaining an experimentally reconstructed wavefunction from X-ray diffraction data is reviewed. The two-center probability distribution model used to perform nuclear-position averaging in the original paper [Grimwood & Jayatilaka (2001). Acta Cryst. A57, 87-100] is carefully distinguished from the newer one-center probability distribution model. In the one-center model, Hirshfeld atoms are used, and the Hirshfeld atom based X-ray constrained wavefunction (HA-XCW) procedure is described for the first time, as well as its efficient implementation. In this context, the definition of the related X-ray wavefunction refinement (XWR) method is refined. The key halting problem for the XCW method - the procedure by which one determines when overfitting has occurred - is named and work on it reviewed.
Collapse
Affiliation(s)
- Max L Davidson
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - Simon Grabowsky
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Dylan Jayatilaka
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| |
Collapse
|
12
|
Chodkiewicz M, Pawlędzio S, Woińska M, Woźniak K. Fragmentation and transferability in Hirshfeld atom refinement. IUCRJ 2022; 9:298-315. [PMID: 35371499 PMCID: PMC8895009 DOI: 10.1107/s2052252522000690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Hirshfeld atom refinement (HAR) is one of the most effective methods for obtaining accurate structural parameters for hydrogen atoms from X-ray diffraction data. Unfortunately, it is also relatively computationally expensive, especially for larger molecules due to wavefunction calculations. Here, a fragmentation approach has been tested as a remedy for this problem. It gives an order of magnitude improvement in computation time for larger organic systems and is a few times faster for metal-organic systems at the cost of only minor differences in the calculated structural parameters when compared with the original HAR calculations. Fragmentation was also applied to polymeric and disordered systems where it provides a natural solution to problems that arise when HAR is applied. The concept of fragmentation is closely related to the transferable aspherical atom model (TAAM) and allows insight into possible ways to improve TAAM. Hybrid approaches combining fragmentation with the transfer of atomic densities between chemically similar atoms have been tested. An efficient handling of intermolecular interactions was also introduced for calculations involving fragmentation. When applied in fragHAR (a fragmentation approach for polypeptides) as a replacement for the original approach, it allowed for more efficient calculations. All of the calculations were performed with a locally modified version of Olex2 combined with a development version of discamb2tsc and ORCA. Care was taken to efficiently use the power of multicore processors by simple implementation of load-balancing, which was found to be very important for lowering computational time.
Collapse
Affiliation(s)
- Michał Chodkiewicz
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Sylwia Pawlędzio
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Magdalena Woińska
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| |
Collapse
|
13
|
Ruth PN, Herbst-Irmer R, Stalke D. Hirshfeld atom refinement based on projector augmented wave densities with periodic boundary conditions. IUCRJ 2022; 9:286-297. [PMID: 35371508 PMCID: PMC8895013 DOI: 10.1107/s2052252522001385] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Hirshfeld atom refinement (HAR) is an X-ray diffraction refinement method that, in numerous publications, has been shown to give H-atom bond lengths in close agreement with neutron diffraction derived values. Presented here is a first evaluation of an approach using densities derived from projector augmented wave (PAW) densities with three-dimensional periodic boundary conditions for HAR. The results show an improvement over refinements that neglect the crystal environment or treat it classically, while being on a par with non-periodic approximations for treating the solid-state environment quantum mechanically. A suite of functionals were evaluated for this purpose, showing that the SCAN and revSCAN functionals are most suited to these types of calculation.
Collapse
Affiliation(s)
- Paul Niklas Ruth
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, Lower Saxony 37077, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, Lower Saxony 37077, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, Göttingen, Lower Saxony 37077, Germany
| |
Collapse
|
14
|
Korber N, Tiefenthaler S, Kleemiss F. [A([18]crown‐6)]2[Pt(CO)3] ∙ 10 NH3 (A = K, Rb) – A crystal structure containing the long postulated [Pt(CO)3]2−. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nikolaus Korber
- Universitaet Regensburg Institut fuer Anorganische Chemie Universitaetsstrasse 31 93053 Regensburg GERMANY
| | | | - Florian Kleemiss
- University of Regensburg: Universitat Regensburg Central Analytics GERMANY
| |
Collapse
|
15
|
Midgley L, Bourhis LJ, Dolomanov OV, Grabowsky S, Kleemiss F, Puschmann H, Peyerimhoff N. Vanishing of the atomic form factor derivatives in non-spherical structural refinement - a key approximation scrutinized in the case of Hirshfeld atom refinement. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES 2021; 77:519-533. [PMID: 34726630 DOI: 10.1107/s2053273321009086] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/02/2021] [Indexed: 11/10/2022]
Abstract
When calculating derivatives of structure factors, there is one particular term (the derivatives of the atomic form factors) that will always be zero in the case of tabulated spherical atomic form factors. What happens if the form factors are non-spherical? The assumption that this particular term is very close to zero is generally made in non-spherical refinements (for example, implementations of Hirshfeld atom refinement or transferable aspherical atom models), unless the form factors are refinable parameters (for example multipole modelling). To evaluate this general approximation for one specific method, a numerical differentiation was implemented within the NoSpherA2 framework to calculate the derivatives of the structure factors in a Hirshfeld atom refinement directly as accurately as possible, thus bypassing the approximation altogether. Comparing wR2 factors and atomic parameters, along with their uncertainties from the approximate and numerically differentiating refinements, it turns out that the impact of this approximation on the final crystallographic model is indeed negligible.
Collapse
Affiliation(s)
- Laura Midgley
- Department of Mathematical Sciences, Durham University, Upper Mountjoy Campus, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Luc J Bourhis
- Bruker, 4 Allée Lorentz, Champs-sur-Marne, 77447 Marne-la-Vallée cedex 2, France
| | - Oleg V Dolomanov
- OlexSys Ltd, Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Simon Grabowsky
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Florian Kleemiss
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Horst Puschmann
- OlexSys Ltd, Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Norbert Peyerimhoff
- Department of Mathematical Sciences, Durham University, Upper Mountjoy Campus, Stockton Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
16
|
Macetti G, Genoni A. Initial Maximum Overlap Method for Large Systems by the Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Technique. J Chem Theory Comput 2021; 17:4169-4182. [PMID: 34196174 DOI: 10.1021/acs.jctc.1c00388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantum chemistry offers a large variety of methods to treat excited states. Many of them are based on a multireference wave function ansatz and are therefore characterized by an intrinsic complexity and high computational costs. To overcome these drawbacks and also some limitations of simpler single-reference approaches (e.g., configuration interaction singles and time-dependent density functional theory), the single-determinant Δself-consistent field-initial maximum overlap method (ΔSCF-IMOM) has been proposed. This strategy substitutes the aufbau principle with a criterion that occupies molecular orbitals at successive SCF iterations on the basis of their maximum overlap with a proper set of guess orbitals for the target excited state. In this way, it prevents the SCF process to collapse to the ground state wave function and provides excited state single Slater determinant solutions to the SCF equations. Here, we propose to extend the applicability of the IMOM to the treatment of localized excited states of large systems. To accomplish this task, we coupled it with the QM/ELMO (quantum mechanics/extremely localized molecular orbitals) strategy, a quantum mechanical embedding method in which the most chemically relevant part of the system is treated with traditional quantum chemical approaches, while the rest is described by extremely localized molecular orbitals transferred from recently constructed libraries or proper model molecules. After presenting the theoretical foundations of the new IMOM/ELMO technique, in this paper, we will show and discuss the results of preliminary test calculations carried out on both model systems (i.e., decanoic acid, decene, decapentaene, and solvated acrolein) and a system of biological interest (flavin mononucleotide in the flavodoxin protein). We observed that, for localized excited states, the new IMOM/ELMO method provides reliable results, and it reproduces the outcomes of fully IMOM calculations within the chemical accuracy threshold (i.e., 0.043 eV) by including only a limited number of atoms in the QM region. Furthermore, the first application of our embedding technique to a larger biological system gave completely plausible results in line with those obtained through more traditional quantum mechanical methods, thus opening the possibility of using the new approach in future investigations of photobiology problems.
Collapse
Affiliation(s)
- Giovanni Macetti
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| | - Alessandro Genoni
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| |
Collapse
|
17
|
Pawlędzio S, Malinska M, Woińska M, Wojciechowski J, Andrade Malaspina L, Kleemiss F, Grabowsky S, Woźniak K. Relativistic Hirshfeld atom refinement of an organo-gold(I) compound. IUCRJ 2021; 8:608-620. [PMID: 34258009 PMCID: PMC8256711 DOI: 10.1107/s2052252521004541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/28/2021] [Indexed: 06/13/2023]
Abstract
The main goal of this study is the validation of relativistic Hirshfeld atom refinement (HAR) as implemented in Tonto for high-resolution X-ray diffraction datasets of an organo-gold(I) compound. The influence of the relativistic effects on statistical parameters, geometries and electron density properties was analyzed and compared with the influence of electron correlation and anharmonic atomic motions. Recent work in this field has indicated the importance of relativistic effects in the static electron density distribution of organo-mercury compounds. This study confirms that differences in electron density due to relativistic effects are also of significant magnitude for organo-gold compounds. Relativistic effects dominate not only the core region of the gold atom, but also influence the electron density in the valence and bonding region, which has measurable consequences for the HAR refinement model parameters. To study the effects of anharmonic motion on the electron density distribution, dynamic electron density difference maps were constructed. Unlike relativistic and electron correlation effects, the effects of anharmonic nuclear motion are mostly observed in the core area of the gold atom.
Collapse
Affiliation(s)
- Sylwia Pawlędzio
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Maura Malinska
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Magdalena Woińska
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | | | - Lorraine Andrade Malaspina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Florian Kleemiss
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| |
Collapse
|
18
|
Macetti G, Genoni A. Three-Layer Multiscale Approach Based on Extremely Localized Molecular Orbitals to Investigate Enzyme Reactions. J Phys Chem A 2021; 125:6013-6027. [PMID: 34190569 DOI: 10.1021/acs.jpca.1c05040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) calculations are widely used embedding techniques to computationally investigate enzyme reactions. In most QM/MM computations, the quantum mechanical region is treated through density functional theory (DFT), which offers the best compromise between chemical accuracy and computational cost. Nevertheless, to obtain more accurate results, one should resort to wave function-based methods, which however lead to a much larger computational cost already for relatively small QM subsystems. To overcome this drawback, we propose the coupling of our QM/ELMO (quantum mechanics/extremely localized molecular orbital) approach with molecular mechanics, thus introducing the three-layer QM/ELMO/MM technique. The QM/ELMO strategy is an embedding method in which the chemically relevant part of the system is treated at the quantum mechanical level, while the rest is described through frozen ELMOs. Since the QM/ELMO method reproduces results of fully QM computations within chemical accuracy and with a much lower computational effort, it can be considered a suitable strategy to extend the range of applicability and accuracy of the QM/MM scheme. In this paper, other than briefly presenting the theoretical bases of the QM/ELMO/MM technique, we will also discuss its validation on the well-tested deprotonation of acetyl coenzyme A by aspartate in citrate synthase.
Collapse
Affiliation(s)
- Giovanni Macetti
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| | - Alessandro Genoni
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| |
Collapse
|
19
|
Holsten S, Malaspina LA, Kleemiss F, Mebs S, Hupf E, Grabowsky S, Beckmann J. Different Reactivities of (5-Ph2P-Ace-6-)2MeSiH toward the Rhodium(I) Chlorides [(C2H4)2RhCl]2 and [(CO)2RhCl]2. Hirshfeld Atom Refinement of a Rh–H···Si Interaction. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sebastian Holsten
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Lorraine A. Malaspina
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Florian Kleemiss
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Stefan Mebs
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Emanuel Hupf
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Simon Grabowsky
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
20
|
Malaspina LA, Genoni A, Grabowsky S. lamaGOET: an interface for quantum crystallography. J Appl Crystallogr 2021; 54:987-995. [PMID: 34188618 PMCID: PMC8202027 DOI: 10.1107/s1600576721002545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
In quantum crystallography, theoretical calculations and crystallographic refinements are closely intertwined. This means that the employed software must be able to perform both quantum-mechanical calculations and crystallographic least-squares refinements. So far, the program Tonto is the only one able to do that. The lamaGOET interface described herein deals with this issue since it interfaces dedicated quantum-chemical software (the widely used Gaussian package and the specialized ELMOdb program) with the refinement capabilities of Tonto. Three different flavours of quantum-crystallographic refinements of the dipetide glycyl-l-threonine dihydrate are presented to showcase the capabilities of lamaGOET: Hirshfeld atom refinement (HAR), HAR-ELMO, namely HAR coupled with extremely localized molecular orbitals, and X-ray constrained wavefunction fitting.
Collapse
Affiliation(s)
- Lorraine A. Malaspina
- Universität Bern, Departement für Chemie, Biochemie und Pharmazie, Freiestrasse 3, 3012 Bern, Switzerland
- Universität Bremen, Fachbereich 2 – Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Leobener Strasse 3, 28359 Bremen, Germany
| | - Alessandro Genoni
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, 57078 Metz, France
| | - Simon Grabowsky
- Universität Bern, Departement für Chemie, Biochemie und Pharmazie, Freiestrasse 3, 3012 Bern, Switzerland
- Universität Bremen, Fachbereich 2 – Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Leobener Strasse 3, 28359 Bremen, Germany
| |
Collapse
|
21
|
Malaspina LA, Genoni A, Jayatilaka D, Turner MJ, Sugimoto K, Nishibori E, Grabowsky S. The advanced treatment of hydrogen bonding in quantum crystallography. J Appl Crystallogr 2021; 54:718-729. [PMID: 34188611 PMCID: PMC8202034 DOI: 10.1107/s1600576721001126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 01/31/2021] [Indexed: 11/16/2022] Open
Abstract
Although hydrogen bonding is one of the most important motifs in chemistry and biology, H-atom parameters are especially problematic to refine against X-ray diffraction data. New developments in quantum crystallography offer a remedy. This article reports how hydrogen bonds are treated in three different quantum-crystallographic methods: Hirshfeld atom refinement (HAR), HAR coupled to extremely localized molecular orbitals and X-ray wavefunction refinement. Three different compound classes that form strong intra- or intermolecular hydrogen bonds are used as test cases: hydrogen maleates, the tripeptide l-alanyl-glycyl-l-alanine co-crystallized with water, and xylitol. The differences in the quantum-mechanical electron densities underlying all the used methods are analysed, as well as how these differences impact on the refinement results.
Collapse
Affiliation(s)
- Lorraine A. Malaspina
- Universität Bern, Departement für Chemie, Biochemie und Pharmazie, Freiestrasse 3, 3012 Bern, Switzerland
- Universität Bremen, Fachbereich 2 – Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Leobener Strasse 3, 28359 Bremen, Germany
| | - Alessandro Genoni
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, 57078 Metz, France
| | - Dylan Jayatilaka
- The University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Michael J. Turner
- The University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Kunihisa Sugimoto
- Japan Synchrotron Radiation Research Institute/Diffraction and Scattering Division, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eiji Nishibori
- Department of Physics, Faculty of Pure and Applied Sciences, Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, Japan
| | - Simon Grabowsky
- Universität Bern, Departement für Chemie, Biochemie und Pharmazie, Freiestrasse 3, 3012 Bern, Switzerland
- Universität Bremen, Fachbereich 2 – Biologie/Chemie, Institut für Anorganische Chemie und Kristallographie, Leobener Strasse 3, 28359 Bremen, Germany
| |
Collapse
|
22
|
Woińska M, Chodkiewicz ML, Woźniak K. Towards accurate and precise positions of hydrogen atoms bonded to heavy metal atoms. Chem Commun (Camb) 2021; 57:3652-3655. [PMID: 33870351 DOI: 10.1039/d0cc07661a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comparison of five X-ray structures of transition-metal-bound hydride complexes, successfully refined using Hirshfeld Atom Refinement (HAR) against low resolution X-ray diffraction data (including the positions and ADPs of all hydrogen atoms), with neutron structures shows that using aspherical atomic scattering factors instead of spherical ones results in systematic elongation of metal-hydrogen bonds, which in the case of the highest-quality data leads to excellent agreement of the X-ray and the neutron-derived bond lengths.
Collapse
Affiliation(s)
- Magdalena Woińska
- Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| | | | | |
Collapse
|
23
|
Macetti G, Wieduwilt EK, Genoni A. QM/ELMO: A Multi-Purpose Fully Quantum Mechanical Embedding Scheme Based on Extremely Localized Molecular Orbitals. J Phys Chem A 2021; 125:2709-2726. [DOI: 10.1021/acs.jpca.0c11450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Giovanni Macetti
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| | - Erna K. Wieduwilt
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| | - Alessandro Genoni
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| |
Collapse
|
24
|
Wieduwilt EK, Macetti G, Genoni A. Climbing Jacob's Ladder of Structural Refinement: Introduction of a Localized Molecular Orbital-Based Embedding for Accurate X-ray Determinations of Hydrogen Atom Positions. J Phys Chem Lett 2021; 12:463-471. [PMID: 33369421 DOI: 10.1021/acs.jpclett.0c03421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The positions of hydrogen atoms in molecules are fundamental in many aspects of chemistry. Nevertheless, most molecular structures are obtained from refinements of X-ray data exploiting the independent atom model (IAM), which uses spherical atomic densities and provides bond lengths involving hydrogen atoms that are too short compared to the neutron reference values. To overcome the IAM shortcomings, the wave function-based Hirshfeld atom refinement (HAR) method has been recently proposed, emerging as a promising strategy able to give element-hydrogen bond distances in excellent agreement with the neutron ones in terms of accuracy and precision. In this Letter, we propose a significant improvement of HAR based on the idea of describing the crystal environment explicitly in the underlying wave function calculation through a quantum mechanical embedding strategy that exploits extremely localized molecular orbitals. Test-bed refinements on a crystal structure characterized by strong intermolecular interactions are also discussed.
Collapse
Affiliation(s)
- Erna K Wieduwilt
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| | - Giovanni Macetti
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| | - Alessandro Genoni
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| |
Collapse
|
25
|
Wieduwilt EK, Boisson JC, Terraneo G, Hénon E, Genoni A. A Step toward the Quantification of Noncovalent Interactions in Large Biological Systems: The Independent Gradient Model-Extremely Localized Molecular Orbital Approach. J Chem Inf Model 2021; 61:795-809. [PMID: 33444021 DOI: 10.1021/acs.jcim.0c01188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The independent gradient model (IGM) is a recent electron density-based computational method that enables to detect and quantify covalent and noncovalent interactions. When applied to large systems, the original version of the technique still relies on promolecular electron densities given by the sum of spherically averaged atomic electron distributions, which leads to approximate evaluations of the inter- and intramolecular interactions occurring in systems of biological interest. To overcome this drawback and perform IGM analyses based on quantum mechanically rigorous electron densities also for macromolecular systems, we coupled the IGM approach with the recently constructed libraries of extremely localized molecular orbitals (ELMOs) that allow fast and reliable reconstructions of polypeptide and protein electron densities. The validation tests performed on small polypeptides and peptide dimers have shown that the novel IGM-ELMO strategy provides results that are systematically closer to the fully quantum mechanical ones and outperforms the IGM method based on the crude promolecular approximation, but still keeping a quite low computational cost. The results of the test calculations carried out on proteins have also confirmed the trends observed for the IGM analyses conducted on small systems. This makes us envisage the future application of the novel IGM-ELMO approach to unravel complicated noncovalent interaction networks (e.g., in protein-protein contacts) or to rationally design new drugs through molecular docking calculations and virtual high-throughput screenings.
Collapse
Affiliation(s)
- Erna K Wieduwilt
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, 1 Boulevard Arago, Metz F-57078, France
| | - Jean-Charles Boisson
- CReSTIC EA 3804, Université de Reims Champagne-Ardenne, Moulin de la Housse, Reims Cedex 02 BP39, F-51687, France
| | - Giancarlo Terraneo
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, Milan I-20131, Italy
| | - Eric Hénon
- Institut de Chimie Moléculaire de Reims UMR CNRS 7312, Université de Reims Champagne-Ardenne, Moulin de la Housse, Reims Cedex 02 BP39, F-51687, France
| | - Alessandro Genoni
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, 1 Boulevard Arago, Metz F-57078, France
| |
Collapse
|
26
|
Podhorský M, Bučinský L, Jayatilaka D, Grabowsky S. HgH 2 meets relativistic quantum crystallography. How to teach relativity to a non-relativistic wavefunction. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES 2021; 77:54-66. [PMID: 33399131 DOI: 10.1107/s2053273320014837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022]
Abstract
The capability of X-ray constrained wavefunction (XCW) fitting to introduce relativistic effects into a non-relativistic wavefunction is tested. It is quantified how much of the reference relativistic effects can be absorbed in the non-relativistic XCW calculation when fitted against relativistic structure factors of a model HgH2 molecule. Scaling of the structure-factor sets to improve the agreement statistics is found to introduce a significant systematic error into the XCW fitting of relativistic effects.
Collapse
Affiliation(s)
- Michal Podhorský
- Institute of Physical Chemistry and Chemical Physics FCHPT, Slovak University of Technology, Radlinskeho 9, Bratislava SK-812 37, Slovakia
| | - Lukáš Bučinský
- Institute of Physical Chemistry and Chemical Physics FCHPT, Slovak University of Technology, Radlinskeho 9, Bratislava SK-812 37, Slovakia
| | - Dylan Jayatilaka
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Perth WA 6009, Australia
| | - Simon Grabowsky
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
27
|
Affiliation(s)
- Piero Macchi
- Department, Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano, Italy
- Center for Nano Science and Technology CNST@polimi, Italian Institute of Technology, Milano, Italy
| |
Collapse
|
28
|
Macetti G, Genoni A. Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Strategy for Excited States: Coupling to Time-Dependent Density Functional Theory and Equation-of-Motion Coupled Cluster. J Chem Theory Comput 2020; 16:7490-7506. [PMID: 33241930 DOI: 10.1021/acs.jctc.0c00956] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The QM/ELMO (quantum mechanics/extremely localized molecular orbital) method is a recently developed embedding technique in which the most important region of the system under examination is treated at fully quantum mechanical level, while the rest is described by means of transferred and frozen extremely localized molecular orbitals. In this paper, we propose the first application of the QM/ELMO approach to the investigation of excited states, and, in particular, we present the coupling of the QM/ELMO philosophy with Time-Dependent Density Functional Theory (TDDFT) and Equation-of-Motion Coupled Cluster with single and double substitutions (EOM-CCSD). The proposed TDDFT/ELMO and EOM-CCSD/ELMO strategies underwent a series of preliminary tests that were already considered for the validation of other embedding methods for excited states. The obtained results showed that the novel techniques allow the accurate description of localized excitations in large systems by only including a relatively small number of atoms in the region treated at fully quantum chemical level. Furthermore, for TDDFT/ELMO, it was also observed that (i) the method enables to avoid the presence of artificial low-lying charge-transfer states that may affect traditional TDDFT calculations, even using functionals that do not take into account long-range corrections, and (ii) the novel approach can be also successfully exploited to investigate local electronic transitions in quite large systems (e.g., reduced model of the Green Fluorescent Protein), and the accuracy of the results can be improved by including a sufficient number of chemically crucial fragments/residues in the quantum mechanical region. Finally, concerning EOM-CCSD/ELMO, it was also seen that, despite the quite crude approximation of an embedding potential given by frozen extremely localized molecular orbitals, the new strategy is able to satisfactorily account for the effects of the environment. This work paves the way to further extensions of the QM/ELMO philosophy for the study of local excitations in extended systems, suggesting the coupling of the QM/ELMO approach with other quantum chemical strategies for excited states, from the simplest ΔSCF techniques to the most advanced and computationally expensive multireferences methods.
Collapse
Affiliation(s)
- Giovanni Macetti
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| | - Alessandro Genoni
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| |
Collapse
|
29
|
Kleemiss F, Dolomanov OV, Bodensteiner M, Peyerimhoff N, Midgley L, Bourhis LJ, Genoni A, Malaspina LA, Jayatilaka D, Spencer JL, White F, Grundkötter-Stock B, Steinhauer S, Lentz D, Puschmann H, Grabowsky S. Accurate crystal structures and chemical properties from NoSpherA2. Chem Sci 2020; 12:1675-1692. [PMID: 34163928 PMCID: PMC8179328 DOI: 10.1039/d0sc05526c] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
The relationship between the structure and the properties of a drug or material is a key concept of chemistry. Knowledge of the three-dimensional structure is considered to be of such importance that almost every report of a new chemical compound is accompanied by an X-ray crystal structure - at least since the 1970s when diffraction equipment became widely available. Crystallographic software of that time was restricted to very limited computing power, and therefore drastic simplifications had to be made. It is these simplifications that make the determination of the correct structure, especially when it comes to hydrogen atoms, virtually impossible. We have devised a robust and fast system where modern chemical structure models replace the old assumptions, leading to correct structures from the model refinement against standard in-house diffraction data using no more than widely available software and desktop computing power. We call this system NoSpherA2 (Non-Spherical Atoms in Olex2). We explain the theoretical background of this technique and demonstrate the far-reaching effects that the improved structure quality that is now routinely available can have on the interpretation of chemical problems exemplified by five selected examples.
Collapse
Affiliation(s)
- Florian Kleemiss
- Universität Bern, Departement für Chemie und Biochemie Freiestrasse 3 3012 Bern Switzerland
| | | | - Michael Bodensteiner
- Universität Regensburg, Fakultät für Chemie und Pharmazie, Universitätsstr. 31 93053 Regensburg Germany
| | - Norbert Peyerimhoff
- Durham University, Department of Mathematical Sciences South Road Durham DH1 3LE UK
| | - Laura Midgley
- Durham University, Department of Mathematical Sciences South Road Durham DH1 3LE UK
| | - Luc J Bourhis
- Bruker France 4 Allée Lorentz, Champs-sur-Marne 77447 Marne-la-Vallée cedex 2 France
| | - Alessandro Genoni
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019 1 Boulevard Arago 57078 Metz France
| | - Lorraine A Malaspina
- Universität Bern, Departement für Chemie und Biochemie Freiestrasse 3 3012 Bern Switzerland
| | - Dylan Jayatilaka
- University of Western Australia, School of Molecular Sciences 35 Stirling Highway WA 6009 Perth Australia
| | - John L Spencer
- Victoria University of Wellington, School of Chemical and Physical Sciences Wellington 6012 New Zealand
| | - Fraser White
- Rigaku Europe SE Hugenottenallee 167 63263 Neu-Isenburg Germany
| | - Bernhard Grundkötter-Stock
- Freie Universität Berlin, Institut für Chemie und Biochemie Anorganische Chemie, Fabeckstr. 34/36 14195 Berlin Germany
| | - Simon Steinhauer
- Freie Universität Berlin, Institut für Chemie und Biochemie Anorganische Chemie, Fabeckstr. 34/36 14195 Berlin Germany
| | - Dieter Lentz
- Freie Universität Berlin, Institut für Chemie und Biochemie Anorganische Chemie, Fabeckstr. 34/36 14195 Berlin Germany
| | | | - Simon Grabowsky
- Universität Bern, Departement für Chemie und Biochemie Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
30
|
Chodkiewicz ML, Woińska M, Woźniak K. Hirshfeld atom like refinement with alternative electron density partitions. IUCRJ 2020; 7:1199-1215. [PMID: 33209330 PMCID: PMC7642787 DOI: 10.1107/s2052252520013603] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/12/2020] [Indexed: 05/03/2023]
Abstract
Hirshfeld atom refinement is one of the most successful methods for the accurate determination of structural parameters for hydrogen atoms from X-ray diffraction data. This work introduces a generalization of the method [generalized atom refinement (GAR)], consisting of the application of various methods of partitioning electron density into atomic contributions. These were tested on three organic structures using the following partitions: Hirshfeld, iterative Hirshfeld, iterative stockholder, minimal basis iterative stockholder and Becke. The effects of partition choice were also compared with those caused by other factors such as quantum chemical methodology, basis set, representation of the crystal field and a combination of these factors. The differences between the partitions were small in terms of R factor (e.g. much smaller than for refinements with different quantum chemistry methods, i.e. Hartree-Fock and coupled cluster) and therefore no single partition was clearly the best in terms of experimental data reconstruction. In the case of structural parameters the differences between the partitions are comparable to those related to the choice of other factors. We have observed the systematic effects of the partition choice on bond lengths and ADP values of polar hydrogen atoms. The bond lengths were also systematically influenced by the choice of electron density calculation methodology. This suggests that GAR-derived structural parameters could be systematically improved by selecting an optimal combination of the partition and quantum chemistry method. The results of the refinements were compared with those of neutron diffraction experiments. This allowed a selection of the most promising partition methods for further optimization of GAR settings, namely the Hirshfeld, iterative stockholder and minimal basis iterative stockholder.
Collapse
Affiliation(s)
- Michał Leszek Chodkiewicz
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa, 02-089 Warszawa, Poland
| | - Magdalena Woińska
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa, 02-089 Warszawa, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa, 02-089 Warszawa, Poland
| |
Collapse
|
31
|
The role of water in ligand binding. Curr Opin Struct Biol 2020; 67:1-8. [PMID: 32942197 DOI: 10.1016/j.sbi.2020.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
|
32
|
Abstract
In this review article, we report on the recent progresses in the field of quantum crystallography that has witnessed a massive increase of production coupled with a broadening of the scope in the last decade. It is shown that the early thoughts about extracting quantum mechanical information from crystallographic experiments are becoming reality, although a century after prediction. While in the past the focus was mainly on electron density and related quantities, the attention is now shifting toward determination of wavefunction from experiments, which enables an exhaustive determination of the quantum mechanical functions and properties of a system. Nonetheless, methods based on electron density modelling have evolved and are nowadays able to reconstruct tiny polarizations of core electrons, coupling charge and spin models, or determining the quantum behaviour at extreme conditions. Far from being routine, these experimental and computational results should be regarded with special attention by scientists for the wealth of information on a system that they actually contain.
Collapse
|
33
|
Jha KK, Gruza B, Kumar P, Chodkiewicz ML, Dominiak PM. TAAM: a reliable and user friendly tool for hydrogen-atom location using routine X-ray diffraction data. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2020; 76:296-306. [PMID: 32831250 DOI: 10.1107/s2052520620002917] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen is present in almost all of the molecules in living things. It is very reactive and forms bonds with most of the elements, terminating their valences and enhancing their chemistry. X-ray diffraction is the most common method for structure determination. It depends on scattering of X-rays from electron density, which means the single electron of hydrogen is difficult to detect. Generally, neutron diffraction data are used to determine the accurate position of hydrogen atoms. However, the requirement for good quality single crystals, costly maintenance and the limited number of neutron diffraction facilities means that these kind of results are rarely available. Here it is shown that the use of Transferable Aspherical Atom Model (TAAM) instead of Independent Atom Model (IAM) in routine structure refinement with X-ray data is another possible solution which largely improves the precision and accuracy of X-H bond lengths and makes them comparable to averaged neutron bond lengths. TAAM, built from a pseudoatom databank, was used to determine the X-H bond lengths on 75 data sets for organic molecule crystals. TAAM parametrizations available in the modified University of Buffalo Databank (UBDB) of pseudoatoms applied through the DiSCaMB software library were used. The averaged bond lengths determined by TAAM refinements with X-ray diffraction data of atomic resolution (dmin ≤ 0.83 Å) showed very good agreement with neutron data, mostly within one single sample standard deviation, much like Hirshfeld atom refinement (HAR). Atomic displacements for both hydrogen and non-hydrogen atoms obtained from the refinements systematically differed from IAM results. Overall TAAM gave better fits to experimental data of standard resolution compared to IAM. The research was accompanied with development of software aimed at providing user-friendly tools to use aspherical atom models in refinement of organic molecules at speeds comparable to routine refinements based on spherical atom model.
Collapse
Affiliation(s)
- Kunal Kumar Jha
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa, 02-089, Poland
| | - Barbara Gruza
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa, 02-089, Poland
| | - Prashant Kumar
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa, 02-089, Poland
| | - Michal Leszek Chodkiewicz
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa, 02-089, Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa, 02-089, Poland
| |
Collapse
|
34
|
Post-Hartree-Fock methods for Hirshfeld atom refinement: are they necessary? Investigation of a strongly hydrogen-bonded molecular crystal. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Ernst M, Genoni A, Macchi P. Analysis of crystal field effects and interactions using X-ray restrained ELMOs. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Macetti G, Wieduwilt EK, Assfeld X, Genoni A. Localized Molecular Orbital-Based Embedding Scheme for Correlated Methods. J Chem Theory Comput 2020; 16:3578-3596. [PMID: 32369363 DOI: 10.1021/acs.jctc.0c00084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Embedding strategies currently provide the best compromise between accuracy and computational cost in modeling chemical properties and processes of large and complex systems. In this framework, different methods have been proposed all over the years, from the very popular QM/MM approaches to the more recent and very promising density matrix and density functional embedding techniques. Here, we present a further development of the quantum mechanics/extremely localized molecular orbital technique (QM/ELMO) method, a recently proposed multiscale embedding strategy in which the chemically active region of the investigated system is treated at a fully quantum mechanical level, while the rest is described by frozen extremely localized molecular orbitals previously transferred from proper libraries or tailor-made model molecules. In particular, in this work we discuss and assess in detail the extension of the QM/ELMO approach to density functional theory and post-Hartree-Fock techniques by evaluating its performances when it is used to describe chemical reactions, bond dissociations, and intermolecular interactions. The preliminary test calculations have shown that, in the investigated cases, the new embedding strategy enables the results of the corresponding fully quantum mechanical computations to be reproduced within chemical accuracy in almost all the cases but with a significantly reduced computational cost, especially when correlated post-Hartree-Fock strategies are used to describe the quantum mechanical subsystem. In light of the obtained results, we already envisage the future application of the new correlated QM/ELMO techniques to the investigation of more challenging problems, such as the modeling of enzyme catalysis, the study of excited states of biomolecules, and the refinement of macromolecular X-ray crystal structures.
Collapse
Affiliation(s)
- Giovanni Macetti
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| | - Erna K Wieduwilt
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| | - Xavier Assfeld
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, Boulevard des Aiguilletes, BP 70239, F-54506 Vandoeuvre-lès-Nancy, France
| | - Alessandro Genoni
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France
| |
Collapse
|
37
|
Bergmann J, Davidson M, Oksanen E, Ryde U, Jayatilaka D. fragHAR: towards ab initio quantum-crystallographic X-ray structure refinement for polypeptides and proteins. IUCRJ 2020; 7:158-165. [PMID: 32148844 PMCID: PMC7055371 DOI: 10.1107/s2052252519015975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/27/2019] [Indexed: 05/20/2023]
Abstract
The first ab initio aspherical structure refinement against experimental X-ray structure factors for polypeptides and proteins using a fragmentation approach to break up the protein into residues and solvent, thereby speeding up quantum-crystallographic Hirshfeld atom refinement (HAR) calculations, is described. It it found that the geometric and atomic displacement parameters from the new fragHAR method are essentially unchanged from a HAR on the complete unfragmented system when tested on dipeptides, tripeptides and hexapeptides. The largest changes are for the parameters describing H atoms involved in hydrogen-bond interactions, but it is shown that these discrepancies can be removed by including the interacting fragments as a single larger fragment in the fragmentation scheme. Significant speed-ups are observed for the larger systems. Using this approach, it is possible to perform a highly parallelized HAR in reasonable times for large systems. The method has been implemented in the TONTO software.
Collapse
Affiliation(s)
- Justin Bergmann
- Department of Theoretical Chemistry, Chemical Center, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Max Davidson
- School of Molecular Sciences M310, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - Esko Oksanen
- Instruments Division, European Spallation Source ESS ERIC, PO Box 176, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Chemical Center, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Dylan Jayatilaka
- School of Molecular Sciences M310, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| |
Collapse
|
38
|
Genoni A. On the use of the Obara–Saika recurrence relations for the calculation of structure factors in quantum crystallography. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES 2020; 76:172-179. [DOI: 10.1107/s205327332000042x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/14/2020] [Indexed: 11/10/2022]
Abstract
Modern methods of quantum crystallography are techniques firmly rooted in quantum chemistry and, as in many quantum chemical strategies, electron densities are expressed as two-centre expansions that involve basis functions centred on atomic nuclei. Therefore, the computation of the necessary structure factors requires the evaluation of Fourier transform integrals of basis function products. Since these functions are usually Cartesian Gaussians, in this communication it is shown that the Fourier integrals can be efficiently calculated by exploiting an extension of the Obara–Saika recurrence formulas, which are successfully used by quantum chemists in the computation of molecular integrals. Implementation and future perspectives of the technique are also discussed.
Collapse
|
39
|
Grabowsky S, Genoni A, Thomas SP, Jayatilaka D. The Advent of Quantum Crystallography: Form and Structure Factors from Quantum Mechanics for Advanced Structure Refinement and Wavefunction Fitting. 21ST CENTURY CHALLENGES IN CHEMICAL CRYSTALLOGRAPHY II 2020. [DOI: 10.1007/430_2020_62] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Unraveling the Nature of Weak Hydrogen Bonds and Intermolecular Interactions Involving Elements of Group 14–17 via Experimental Charge Density Analysis. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00148-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|