1
|
Xu P, Wang D, Li D, Long J, Zhang S, Zhang B. UV wavelength-dependent photoionization quantum yields for the dark 1nπ* state of aqueous thymidine. Phys Chem Chem Phys 2024; 26:26251-26257. [PMID: 39229763 DOI: 10.1039/d4cp02594f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Despite the important role of the dark 1nπ* state in the photostability of thymidine in aqueous solution, no detailed ultraviolet (UV) wavelength-dependent investigation of the 1nπ* quantum yield (QY) in aqueous thymidine has been experimentally performed. Here, we investigate the wavelength-dependent photoemission spectra of aqueous thymidine from 266.7 to 240 nm using liquid-microjet photoelectron spectroscopy. Two observed ionization channels are assigned to resonant ionizations from 1ππ* to the cationic ground state D0 (π-1) and 1nπ* to the cationic excited state D1 (n-1). The weak 1nπ* → D1 ionization channel appears due to ultrafast 1ππ* → 1nπ* internal conversion within the pulse duration of ∼180 fs. The obtained 1nπ* quantum yields exhibit a strong wavelength dependence, ranging from 0 to 0.27 ± 0.01, suggesting a hitherto uncharacterized 1nπ* feature. The corresponding vertical ionization energies (VIEs) of D0 and D1 of aqueous thymidine are experimentally determined to be 8.47 ± 0.12 eV and 9.22 ± 0.29 eV, respectively. Our UV wavelength-dependent QYs might indicate that different structural critical points to connect the multidimensional 1ππ*/1nπ* conical intersection seam onto the multidimensional potential energy surface of the 1ππ* state might exist and determine the relaxation processes of aqueous thymidine upon UV excitation.
Collapse
Affiliation(s)
- Piao Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duoduo Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyou Long
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
2
|
Wei M, Zuo J, Tian G, Hua W. Simulating temperature and tautomeric effects for vibrationally resolved XPS of biomolecules: Combining time-dependent and time-independent approaches to fingerprint carbonyl groups. J Chem Phys 2024; 161:104303. [PMID: 39248239 DOI: 10.1063/5.0224090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Carbonyl groups (C=O) play crucial roles in the photophysics and photochemistry of biological systems. O1s x-ray photoelectron spectroscopy allows for targeted investigation of the C=O group, and the coupling between C=O vibration and O1s ionization is reflected in the fine structures. To elucidate its characteristic vibronic features, systematic Franck-Condon simulations were conducted for six common biomolecules, including three purines (xanthine, caffeine, and hypoxanthine) and three pyrimidines (thymine, 5F-uracil, and uracil). The complexity of simulation for these biomolecules lies in accounting for temperature effects and potential tautomeric variations. We combined the time-dependent and time-independent methods to efficiently account for the temperature effects and to provide explicit assignments, respectively. For hypoxanthine, the tautomeric effect was considered by incorporating the Boltzmann population ratios of two tautomers. The simulations demonstrated good agreement with experimental spectra, enabling differentiation of two types of carbonyl oxygens with subtle local structural differences, positioned between two nitrogens (O1) or between one carbon and one nitrogen (O2). The analysis provided insights into the coupling between C=O vibration and O1s ionization, consistently showing an elongation of the C=O bond length (by 0.08-0.09 Å) upon O1s ionization.
Collapse
Affiliation(s)
- Minrui Wei
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Junxiang Zuo
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Guangjun Tian
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| |
Collapse
|
3
|
Zhang JR, Wang SY, Hua W. Core Hole Effect to Valence Excitations: Tracking and Visualizing the Same Excitation in XPS Shake-Up Satellites and UV Absorption Spectra. J Chem Theory Comput 2024; 20:6125-6133. [PMID: 38994655 DOI: 10.1021/acs.jctc.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Introducing a core hole significantly alters the electronic structure of a molecule, and various X-ray spectroscopy techniques are available for probing the valence electronic structure in the presence of a core hole. In this study, we visually demonstrate the influence of a core hole on valence excitations by computing the ultraviolet absorption spectra and the shake-up satellites in X-ray photoelectron spectra for pyrrole, furan, and thiophene, as complemented by the natural transition orbital (NTO) analysis over transitions with and without a core hole. Employing equivalent core hole time-dependent density functional theory (ECH-TDDFT) and TDDFT methods, we achieved balanced accuracy in both spectra for reliable comparative analysis. We tracked the same involved valence transition in both spectra, offering a vivid illustration of the core hole effect via the change in corresponding particle NTOs introduced by a 1s core hole on a Cα, Cβ, or O atom. Our analysis deepens the understanding of the core hole effect on valence transitions, a phenomenon ubiquitously observed in general X-ray spectroscopic analyses.
Collapse
Affiliation(s)
- Jun-Rong Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Sheng-Yu Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| |
Collapse
|
4
|
Ge G, Zhang JR, Wang SY, Wei M, Ji Y, Duan S, Ueda K, Hua W. Mapping Hydrogen Positions along the Proton Transfer Pathway in an Organic Crystal by Computational X-ray Spectra. J Phys Chem Lett 2024; 15:6051-6061. [PMID: 38819966 DOI: 10.1021/acs.jpclett.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Understanding proton transfer (PT) dynamics in condensed phases is crucial in chemistry. We computed a 2D map of N 1s X-ray photoelectron/absorption spectroscopy (XPS/XAS) for an organic donor-acceptor salt crystal against two varying N-H distances to track proton motions. Our results provide a continuous spectroscopic mapping of O-H···N↔O-··· H+-N processes via hydrogen bonds at both nitrogens, demonstrating the sensitivity of N 1s transient XPS/XAS to hydrogen positions and PT. By reducing the O-H length at N1 by only 0.2 Å, we achieved excellent theory-experiment agreement in both XPS and XAS. Our study highlights the challenge in refining proton positions in experimental crystal structures by periodic geometry optimizations and proposes an alternative scaled snapshot protocol as a more effective approach. This work provides valuable insights into X-ray spectra for correlated PT dynamics in complex crystals, benefiting future experimental studies.
Collapse
Affiliation(s)
- Guoyan Ge
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Jun-Rong Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Sheng-Yu Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Minrui Wei
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Kiyoshi Ueda
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Chemistry, Tohoku University, Sendai 980-8578, Japan
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| |
Collapse
|
5
|
Wang SY, Zhang JR, Guo M, Hua W. Interpreting the Cu-O 2 Antibonding Nature in Two Cu-O 2 Complexes from Cu L-Edge X-ray Absorption Spectra. Inorg Chem 2023; 62:17115-17125. [PMID: 37828769 DOI: 10.1021/acs.inorgchem.3c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cu-O2 structures play important roles in bioinorganic chemistry and enzyme catalysis, where the bonding between the Cu and O2 parts serves as a fundamental research concern. Here, we performed a multiconfigurational study on the copper L2,3-edge X-ray absorption spectra (XAS) of two copper enzyme model complexes to gain a better understanding of the antibonding nature from the clearly interpreted structure-spectroscopy relation. We obtained spectra in good agreement with the experiments by using the restricted active space second-order perturbation theory (RASPT2) method, which facilitated reliable chemical analysis. Spectral feature interpretations were supported by computing the spin-orbit natural transition orbitals. All major features were assigned to be mainly from Cu 2p to antibonding orbitals between Cu 3d and O2 π*, Cu 3d-πO-O* (type A), and a few also to mixed antibonding/bonding orbitals between Cu 3d and O2 π, Cu 3d ± πO-O (type M). Our calculations provided a clear illustration of the interactions between Cu 3d and O2 π*/π orbitals that are carried in the metal L-edge XAS.
Collapse
Affiliation(s)
- Sheng-Yu Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Jun-Rong Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Meiyuan Guo
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 75105, Sweden
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| |
Collapse
|
6
|
Kaczun T, Dempwolff AL, Huang X, Gelin MF, Domcke W, Dreuw A. Tuning UV Pump X-ray Probe Spectroscopy on the Nitrogen K Edge Reveals the Radiationless Relaxation of Pyrazine: Ab Initio Simulations Using the Quasiclassical Doorway-Window Approximation. J Phys Chem Lett 2023:5648-5656. [PMID: 37310800 DOI: 10.1021/acs.jpclett.3c01018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transient absorption UV pump X-ray probe spectroscopy has been established as a versatile technique for the exploration of ultrafast photoinduced dynamics in valence-excited states. In this work, an ab initio theoretical framework for the simulation of time-resolved UV pump X-ray probe spectra is presented. The method is based on the description of the radiation-matter interaction in the classical doorway-window approximation and a surface-hopping algorithm for the nonadiabatic nuclear excited-state dynamics. Using the second-order algebraic-diagrammatic construction scheme for excited states, UV pump X-ray probe signals were simulated for the carbon and nitrogen K edges of pyrazine, assuming a duration of 5 fs of the UV pump and X-ray probe pulses. It is predicted that spectra measured at the nitrogen K edge carry much richer information about the ultrafast nonadiabatic dynamics in the valence-excited states of pyrazine than those measured at the carbon K edge.
Collapse
Affiliation(s)
- Tobias Kaczun
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg D-69120, Germany
| | - Adrian L Dempwolff
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg D-69120, Germany
| | - Xiang Huang
- Department of Chemistry, Technical University of Munich, Garching D-85747, Germany
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, Garching D-85747, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg D-69120, Germany
| |
Collapse
|
7
|
Orimo N, Yamamoto YI, Karashima S, Boyer A, Suzuki T. Ultrafast Electronic Relaxation in 6-Methyluracil and 5-Fluorouracil in Isolated and Aqueous Conditions: Substituent and Solvent Effects. J Phys Chem Lett 2023; 14:2758-2763. [PMID: 36897645 DOI: 10.1021/acs.jpclett.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report ultrafast extreme ultraviolet photoelectron spectroscopy of 6-methyluracil (6mUra) and 5-fluorouracil (5FUra) in the gas phase and 6mUra and 5-fluorouridine in an aqueous environment. In the gas phase, internal conversion (IC) occurs from 1ππ* to 1nπ* states in tens of femtoseconds, followed by intersystem crossing to the 3ππ* state in several picoseconds. In an aqueous solution, 6mUra undergoes IC almost exclusively to the ground state (S0) in about 100 fs, which is essentially the same process as that for unsubstituted uracil, but much faster than that for thymine (5-methyluracil). The different dynamics for C5 and C6 methylation suggest that IC from 1ππ* to S0 is facilitated by out-of-plane (OOP) motion of the C5 substituent. The slow IC for C5-substituted molecules in an aqueous environment is ascribed to the solvent reorganization that is required for this OOP motion to occur. The slow rate for 5FUrd may arise in part from an increased barrier height due to C5 fluorination.
Collapse
Affiliation(s)
- Natsumi Orimo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Alexie Boyer
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Nam Y, Montorsi F, Keefer D, Cavaletto SM, Lee JY, Nenov A, Garavelli M, Mukamel S. Time-Resolved Optical Pump-Resonant X-ray Probe Spectroscopy of 4-Thiouracil: A Simulation Study. J Chem Theory Comput 2022; 18:3075-3088. [PMID: 35476905 DOI: 10.1021/acs.jctc.2c00064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We theoretically monitor the photoinduced ππ* → nπ* internal conversion process in 4-thiouracil (4TU), triggered by an optical pump. The element-sensitive spectroscopic signatures are recorded by a resonant X-ray probe tuned to the sulfur, oxygen, or nitrogen K-edge. We employ high-level electronic structure methods optimized for core-excited electronic structure calculation combined with quantum nuclear wavepacket dynamics computed on two relevant nuclear modes, fully accounting for their quantum nature of nuclear motions. We critically discuss the capabilities and limitations of the resonant technique. For sulfur and nitrogen, we document a pre-edge spectral window free from ground-state background and rich with ππ* and nπ* absorption features. The lowest sulfur K-edge shows strong absorption for both ππ* and nπ*. In the lowest nitrogen K-edge window, we resolve a state-specific fingerprint of the ππ* and an approximate timing of the conical intersection via its depletion. A spectral signature of the nπ* transition, not accessible by UV-vis spectroscopy, is identified. The oxygen K-edge is not sensitive to molecular deformations and gives steady transient absorption features without spectral dynamics. The ππ*/nπ* coherence information is masked by more intense contributions from populations. Altogether, element-specific time-resolved resonant X-ray spectroscopy provides a detailed picture of the electronic excited-state dynamics and therefore a sensitive window into the photophysics of thiobases.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Francesco Montorsi
- Dipartimento di Chimica Industriale "Toso Montanari", Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Stefano M Cavaletto
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Jin Yong Lee
- Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University, Suwon 16419, Korea.,Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
9
|
Montorsi F, Segatta F, Nenov A, Mukamel S, Garavelli M. Soft X-ray Spectroscopy Simulations with Multiconfigurational Wave Function Theory: Spectrum Completeness, Sub-eV Accuracy, and Quantitative Reproduction of Line Shapes. J Chem Theory Comput 2022; 18:1003-1016. [PMID: 35073066 PMCID: PMC8830047 DOI: 10.1021/acs.jctc.1c00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 01/04/2023]
Abstract
Multireference methods are known for their ability to accurately treat states of very different nature in many molecular systems, facilitating high-quality simulations of a large variety of spectroscopic techniques. Here, we couple the multiconfigurational restricted active space self-consistent field RASSCF/RASPT2 method (of the CASSCF/CASPT2 methods family) to the displaced harmonic oscillator (DHO) model, to simulate soft X-ray spectroscopy. We applied such an RASSCF/RASPT2+DHO approach at the K-edges of various second-row elements for a set of small organic molecules that have been recently investigated at other levels of theory. X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) are simulated with a sub-eV accuracy and a correct description of the spectral line shapes. The method is extremely sensitive to the observed spectral shifts on a series of differently fluorinated ethylene systems, provides spectral fingerprints to distinguish between stable conformers of the glycine molecule, and accurately captures the vibrationally resolved carbon K-edge spectrum of formaldehyde. Differences with other theoretical methods are demonstrated, which show the advantages of employing a multireference/multiconfigurational approach. A protocol to systematically increase the number of core-excited states considered while maintaining a contained computational cost is presented. Insight is eventually provided for the effects caused by removing core-electrons from a given atom in terms of bond rearrangement and influence on the resulting spectral shapes within a unitary orbital-based framework for both XPS and XANES spectra.
Collapse
Affiliation(s)
- Francesco Montorsi
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Francesco Segatta
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Artur Nenov
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics & Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Marco Garavelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| |
Collapse
|
10
|
Stiel H, Braenzel J, Jonas A, Gnewkow R, Glöggler LT, Sommer D, Krist T, Erko A, Tümmler J, Mantouvalou I. Towards Understanding Excited-State Properties of Organic Molecules Using Time-Resolved Soft X-ray Absorption Spectroscopy. Int J Mol Sci 2021; 22:13463. [PMID: 34948258 PMCID: PMC8706469 DOI: 10.3390/ijms222413463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
The extension of the pump-probe approach known from UV/VIS spectroscopy to very short wavelengths together with advanced simulation techniques allows a detailed analysis of excited-state dynamics in organic molecules or biomolecular structures on a nanosecond to femtosecond time level. Optical pump soft X-ray probe spectroscopy is a relatively new approach to detect and characterize optically dark states in organic molecules, exciton dynamics or transient ligand-to-metal charge transfer states. In this paper, we describe two experimental setups for transient soft X-ray absorption spectroscopy based on an LPP emitting picosecond and sub-nanosecond soft X-ray pulses in the photon energy range between 50 and 1500 eV. We apply these setups for near-edge X-ray absorption fine structure (NEXAFS) investigations of thin films of a metal-free porphyrin, an aggregate forming carbocyanine and a nickel oxide molecule. NEXAFS investigations have been carried out at the carbon, nitrogen and oxygen K-edge as well as on the Ni L-edge. From time-resolved NEXAFS carbon, K-edge measurements of the metal-free porphyrin first insights into a long-lived trap state are gained. Our findings are discussed and compared with density functional theory calculations.
Collapse
Affiliation(s)
- Holger Stiel
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany; (J.B.); (A.J.); (R.G.); (L.T.G.); (J.T.); (I.M.)
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany;
| | - Julia Braenzel
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany; (J.B.); (A.J.); (R.G.); (L.T.G.); (J.T.); (I.M.)
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany;
| | - Adrian Jonas
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany; (J.B.); (A.J.); (R.G.); (L.T.G.); (J.T.); (I.M.)
- Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| | - Richard Gnewkow
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany; (J.B.); (A.J.); (R.G.); (L.T.G.); (J.T.); (I.M.)
- Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
- Helmholtz Zentrum Berlin, D-12489 Berlin, Germany
| | - Lisa Theresa Glöggler
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany; (J.B.); (A.J.); (R.G.); (L.T.G.); (J.T.); (I.M.)
- Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| | - Denny Sommer
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany;
| | - Thomas Krist
- NOB Nano Optics Berlin GmbH, D-10627 Berlin, Germany;
| | | | - Johannes Tümmler
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany; (J.B.); (A.J.); (R.G.); (L.T.G.); (J.T.); (I.M.)
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany;
| | - Ioanna Mantouvalou
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany; (J.B.); (A.J.); (R.G.); (L.T.G.); (J.T.); (I.M.)
- Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
- Helmholtz Zentrum Berlin, D-12489 Berlin, Germany
| |
Collapse
|
11
|
Moitra T, Coriani S, Cabral Tenorio BN. Inner-shell photoabsorption and photoionisation cross-sections of valence excited states from asymmetric-Lanczos equation-of-motion coupled cluster singles and doubles theory. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1980235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Torsha Moitra
- DTU Chemistry–Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sonia Coriani
- DTU Chemistry–Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
12
|
Scutelnic V, Tsuru S, Pápai M, Yang Z, Epshtein M, Xue T, Haugen E, Kobayashi Y, Krylov AI, Møller KB, Coriani S, Leone SR. X-ray transient absorption reveals the 1A u (nπ*) state of pyrazine in electronic relaxation. Nat Commun 2021; 12:5003. [PMID: 34408141 PMCID: PMC8373973 DOI: 10.1038/s41467-021-25045-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/21/2021] [Indexed: 11/09/2022] Open
Abstract
Electronic relaxation in organic chromophores often proceeds via states not directly accessible by photoexcitation. We report on the photoinduced dynamics of pyrazine that involves such states, excited by a 267 nm laser and probed with X-ray transient absorption spectroscopy in a table-top setup. In addition to the previously characterized 1B2u (ππ*) (S2) and 1B3u (nπ*) (S1) states, the participation of the optically dark 1Au (nπ*) state is assigned by a combination of experimental X-ray core-to-valence spectroscopy, electronic structure calculations, nonadiabatic dynamics simulations, and X-ray spectral computations. Despite 1Au (nπ*) and 1B3u (nπ*) states having similar energies at relaxed geometry, their X-ray absorption spectra differ largely in transition energy and oscillator strength. The 1Au (nπ*) state is populated in 200 ± 50 femtoseconds after electronic excitation and plays a key role in the relaxation of pyrazine to the ground state.
Collapse
Affiliation(s)
- Valeriu Scutelnic
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Shota Tsuru
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark.,Ruhr-Universität, Bochum, Germany
| | - Mátyás Pápai
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark.,Wigner Research Centre for Physics, Budapest, Hungary
| | - Zheyue Yang
- Department of Chemistry, University of California, Berkeley, CA, USA.,, Shanghai, China
| | - Michael Epshtein
- Department of Chemistry, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,, Beer-Sheva, Israel
| | - Tian Xue
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Eric Haugen
- Department of Chemistry, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuki Kobayashi
- Department of Chemistry, University of California, Berkeley, CA, USA.,Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Klaus B Møller
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, CA, USA. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Department of Physics, University of California, Berkeley, CA, USA.
| |
Collapse
|
13
|
Chakraborty P, Liu Y, McClung S, Weinacht T, Matsika S. Time Resolved Photoelectron Spectroscopy as a Test of Electronic Structure and Nonadiabatic Dynamics. J Phys Chem Lett 2021; 12:5099-5104. [PMID: 34028278 DOI: 10.1021/acs.jpclett.1c00926] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We compare different levels of theory for simulating excited state molecular dynamics and use time-resolved photoelectron spectroscopy measurements to benchmark the theory. We perform trajectory surface hopping simulations for uracil excited to the first bright state (ππ*) using three different levels of theory (CASSCF, MRCIS, and XMS-CASPT2) in order to understand the role of dynamical correlation in determining the excited state dynamics, with a focus on the coupling between different electronic states and internal conversion back to the ground state. These dynamics calculations are used to simulate the time-resolved photoelectron spectra. The comparison of the calculated and measured spectra allows us to draw conclusions regarding the relative insights and quantitative accuracy of the calculations at the three different levels of theory, demonstrating that detailed quantitative comparisons of time-resolved photoelectron spectra can be used to benchmark methodology.
Collapse
Affiliation(s)
- Pratip Chakraborty
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Yusong Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Samuel McClung
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
14
|
Shakya Y, Inhester L, Arnold C, Welsch R, Santra R. Ultrafast time-resolved x-ray absorption spectroscopy of ionized urea and its dimer through ab initio nonadiabatic dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:034102. [PMID: 34026923 PMCID: PMC8118673 DOI: 10.1063/4.0000076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022]
Abstract
Investigating the early dynamics of chemical systems following ionization is essential for our understanding of radiation damage. However, experimental as well as theoretical investigations are very challenging due to the complex nature of these processes. Time-resolved x-ray absorption spectroscopy on a femtosecond timescale, in combination with appropriate simulations, is able to provide crucial insights into the ultrafast processes that occur upon ionization due to its element-specific probing nature. In this theoretical study, we investigate the ultrafast dynamics of valence-ionized states of urea and its dimer employing Tully's fewest switches surface hopping approach using Koopmans' theorem to describe the ionized system. We demonstrate that following valence ionization through a pump pulse, the time-resolved x-ray absorption spectra at the carbon, nitrogen, and oxygen K-edges reveal rich insights into the dynamics. Excited states of the ionized system give rise to time-delayed blueshifts in the x-ray absorption spectra as a result of electronic relaxation dynamics through nonadiabatic transitions. Moreover, our statistical analysis reveals specific structural dynamics in the molecule that induce time-dependent changes in the spectra. For the urea monomer, we elucidate the possibility to trace effects of specific molecular vibrations in the time-resolved x-ray absorption spectra. For the urea dimer, where ionization triggers a proton transfer reaction, we show how the x-ray absorption spectra can reveal specific details on the progress of proton transfer.
Collapse
|
15
|
Tsuru S, Vidal ML, Pápai M, Krylov AI, Møller KB, Coriani S. An assessment of different electronic structure approaches for modeling time-resolved x-ray absorption spectroscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:024101. [PMID: 33786337 PMCID: PMC7986275 DOI: 10.1063/4.0000070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
We assess the performance of different protocols for simulating excited-state x-ray absorption spectra. We consider three different protocols based on equation-of-motion coupled-cluster singles and doubles, two of them combined with the maximum overlap method. The three protocols differ in the choice of a reference configuration used to compute target states. Maximum-overlap-method time-dependent density functional theory is also considered. The performance of the different approaches is illustrated using uracil, thymine, and acetylacetone as benchmark systems. The results provide guidance for selecting an electronic structure method for modeling time-resolved x-ray absorption spectroscopy.
Collapse
Affiliation(s)
- Shota Tsuru
- DTU Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Marta L. Vidal
- DTU Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Mátyás Pápai
- DTU Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Klaus B. Møller
- DTU Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Chakraborty P, Liu Y, Weinacht T, Matsika S. Effect of dynamic correlation on the ultrafast relaxation of uracil in the gas phase. Faraday Discuss 2021; 228:266-285. [DOI: 10.1039/d0fd00110d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High level multi-reference non-adiabatic dynamics simulations reveal that uracil’s photoexcited S2 state decays very quickly without any significant trapping.
Collapse
Affiliation(s)
| | - Yusong Liu
- Department of Physics and Astronomy
- Stony Brook University
- New York 11794
- USA
| | - Thomas Weinacht
- Department of Physics and Astronomy
- Stony Brook University
- New York 11794
- USA
| | | |
Collapse
|
17
|
Jonas A, Dammer K, Stiel H, Kanngiesser B, Sánchez-de-Armas R, Mantouvalou I. Transient Sub-nanosecond Soft X-ray NEXAFS Spectroscopy on Organic Thin Films. Anal Chem 2020; 92:15611-15615. [PMID: 33206514 DOI: 10.1021/acs.analchem.0c03845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate visible pump soft X-ray probe near-edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements at the carbon K edge on thin molecular films in the laboratory. This opens new opportunities through the use of laboratory equipment for chemical speciation. We investigate the metal-free porphyrin derivative tetra(tert-butyl)porphyrazine as an ideal model system to elucidate electronic properties of tetrapyrroles like chlorophyll or heme. In contrast to measurements in gas or liquid state, the investigation of thin films is of high interest in the field of optoelectronic and photovoltaic devices though challenging due to the low damage thresholds of the samples upon excitation. With a careful pre-characterization using optical techniques, successful measurements were performed using a NEXAFS spectrometer based on a laser-produced plasma source and reflection zone plates with a resolving power of 1000 and a time resolution of 0.5 ns. In combination with density functional theory calculations, first insights into a long-lived excitonic state are gained and discussed.
Collapse
Affiliation(s)
- Adrian Jonas
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| | - Katharina Dammer
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| | - Holger Stiel
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Birgit Kanngiesser
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| | | | - Ioanna Mantouvalou
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| |
Collapse
|
18
|
Visualizing conical intersection passages via vibronic coherence maps generated by stimulated ultrafast X-ray Raman signals. Proc Natl Acad Sci U S A 2020; 117:24069-24075. [PMID: 32929028 DOI: 10.1073/pnas.2015988117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rates and outcomes of virtually all photophysical and photochemical processes are determined by conical intersections. These are regions of degeneracy between electronic states on the nuclear landscape of molecules where electrons and nuclei evolve on comparable timescales and thus become strongly coupled, enabling radiationless relaxation channels upon optical excitation. Due to their ultrafast nature and vast complexity, monitoring conical intersections experimentally is an open challenge. We present a simulation study on the ultrafast photorelaxation of uracil, based on a quantum description of the nuclei. We demonstrate an additional window into conical intersections obtained by recording the transient wavepacket coherence during this passage with an X-ray free-electron laser pulse. Two major findings are reported. First, we find that the vibronic coherence at the conical intersection lives for several hundred femtoseconds and can be measured during this entire time. Second, the time-dependent energy-splitting landscape of the participating vibrational and electronic states is directly extracted from Wigner spectrograms of the signal. These offer a physical picture of the quantum conical intersection pathways through visualizing their transient vibronic coherence distributions. The path of a nuclear wavepacket in the vicinity of the conical intersection is directly mapped by the proposed experiment.
Collapse
|
19
|
Barreau L, Ross AD, Garg S, Kraus PM, Neumark DM, Leone SR. Efficient table-top dual-wavelength beamline for ultrafast transient absorption spectroscopy in the soft X-ray region. Sci Rep 2020; 10:5773. [PMID: 32238820 PMCID: PMC7113301 DOI: 10.1038/s41598-020-62461-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/09/2020] [Indexed: 11/08/2022] Open
Abstract
We present a table-top beamline providing a soft X-ray supercontinuum extending up to 370 eV from high-order harmonic generation with sub-13 fs 1300 nm driving pulses and simultaneous production of sub-5 fs pulses centered at 800 nm. Optimization of high harmonic generation in a long and dense gas medium yields a photon flux of ~ 1.4 × 106 photons/s/1% bandwidth at 300 eV. The temporal resolution of X-ray transient absorption experiments with this beamline is measured to be 11 fs for 800 nm excitation. This dual-wavelength approach, combined with high flux and high spectral and temporal resolution soft X-ray absorption spectroscopy, is a new route to the study of ultrafast electronic dynamics in carbon-containing molecules and materials at the carbon K-edge.
Collapse
Affiliation(s)
- Lou Barreau
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrew D Ross
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Samay Garg
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Peter M Kraus
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG, Amsterdam, The Netherlands
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stephen R Leone
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Physics, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
20
|
List NH, Dempwolff AL, Dreuw A, Norman P, Martínez TJ. Probing competing relaxation pathways in malonaldehyde with transient X-ray absorption spectroscopy. Chem Sci 2020; 11:4180-4193. [PMID: 34122881 PMCID: PMC8152795 DOI: 10.1039/d0sc00840k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Excited-state intramolecular hydrogen transfer (ESIHT) is a fundamental reaction relevant to chemistry and biology. Malonaldehyde is the simplest example of ESIHT, yet only little is known experimentally about its excited-state dynamics. Several competing relaxation pathways have been proposed, including internal conversion mediated by ESIHT and C[double bond, length as m-dash]C torsional motion as well as intersystem crossing. We perform an in silico transient X-ray absorption spectroscopy (TRXAS) experiment at the oxygen K-edge to investigate its potential to monitor the proposed ultrafast decay pathways in malonaldehyde upon photoexcitation to its bright S2(ππ*) state. We employ both restricted active space perturbation theory and algebraic-diagrammatic construction for the polarization propagator along interpolated reaction coordinates as well as representative trajectories from ab initio multiple spawning simulations to compute the TRXAS signals from the lowest valence states. Our study suggests that oxygen K-edge TRXAS can distinctly fingerprint the passage through the H-transfer intersection and the concomitant population transfer to the S1(nπ*) state. Potential intersystem crossing to T1(ππ*) is detectable from reappearance of the double pre-edge signature and reversed intensities. Moreover, the torsional deactivation pathway induces transient charge redistribution from the enol side towards the central C-atom and manifests itself as substantial shifts of the pre-edge features. Given the continuous advances in X-ray light sources, our study proposes an experimental route to disentangle ultrafast excited-state decay channels in this prototypical ESIHT system and provides a pathway-specific mapping of the TRXAS signal to facilitate the interpretation of future experiments.
Collapse
Affiliation(s)
- Nanna H List
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Adrian L Dempwolff
- Interdisciplinary Center for Scientific Computing, Heidelberg University Im Neuenheimer Feld 205 D-69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University Im Neuenheimer Feld 205 D-69120 Heidelberg Germany
| | - Patrick Norman
- School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology Sweden
| | - Todd J Martínez
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| |
Collapse
|