1
|
Shi Y, Li J, Cui C, Wu G, Cheng T. Influence of ligand variation on the deactivation process of metal-to-ligand charge transfer excited states in quadruply bonded dimolybdenum complexes. Phys Chem Chem Phys 2023; 25:32364-32371. [PMID: 37990808 DOI: 10.1039/d3cp03679k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
To explore the dynamics of metal-to-ligand charge transfer (MLCT) excited states involving covalently bonded dimetal units, a series of quadruply bonded dimolybdenum (Mo2) complexes, namely, [Mo2]-ph, [Mo2]-naph, and [Mo2]-anth, were synthesized and characterized. Our investigations reveal a non-radiative process associated with the deactivation of the MLCT state into a low-lying dimetal-centered triplet state (3Mo2-δδ*), resulting in the populated MLCT states in these molecular systems exhibiting either extremely weak emission or being non-emissive. The influence of ligand variation on the dynamics of MLCT states was examined using femtosecond transient absorption spectroscopy, with deactivation time constants determined to be 1.9 ps for [Mo2]-ph, 6.5 ps for [Mo2]-naph, and 49 ps for [Mo2]-anth. This electron transfer behaviour follows an inverse energy-gap law, contrary to the general guideline that applies to the decay of the MLCT state back to the electronic ground state. This result offers valuable insights into understanding the photochemical and photophysical properties of covalently bonded dimetal complexes.
Collapse
Affiliation(s)
- Yuqing Shi
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.
| | - Juanjuan Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.
| | - Can Cui
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.
| | - Guanzhi Wu
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Tao Cheng
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.
| |
Collapse
|
2
|
Auty AJ, Scattergood PA, Keane T, Cheng T, Wu G, Carson H, Shipp J, Sadler A, Roseveare T, Sazanovich IV, Meijer AJHM, Chekulaev D, Elliot PIP, Towrie M, Weinstein JA. A stronger acceptor decreases the rates of charge transfer: ultrafast dynamics and on/off switching of charge separation in organometallic donor-bridge-acceptor systems. Chem Sci 2023; 14:11417-11428. [PMID: 37886100 PMCID: PMC10599469 DOI: 10.1039/d2sc06409j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
To unravel the role of driving force and structural changes in directing the photoinduced pathways in donor-bridge-acceptor (DBA) systems, we compared the ultrafast dynamics in novel DBAs which share a phenothiazine (PTZ) electron donor and a Pt(ii) trans-acetylide bridge (-C[triple bond, length as m-dash]C-Pt-C[triple bond, length as m-dash]C-), but bear different acceptors conjugated into the bridge (naphthalene-diimide, NDI; or naphthalene-monoimide, NAP). The excited state dynamics were elucidated by transient absorption, time-resolved infrared (TRIR, directly following electron density changes on the bridge/acceptor), and broadband fluorescence-upconversion (FLUP, directly following sub-picosecond intersystem crossing) spectroscopies, supported by TDDFT calculations. Direct conjugation of a strong acceptor into the bridge leads to switching of the lowest excited state from the intraligand 3IL state to the desired charge-separated 3CSS state. We observe two surprising effects of an increased strength of the acceptor in NDI vs. NAP: a ca. 70-fold slow-down of the 3CSS formation-(971 ps)-1vs. (14 ps)-1, and a longer lifetime of the 3CSS (5.9 vs. 1 ns); these are attributed to differences in the driving force ΔGet, and to distance dependence. The 100-fold increase in the rate of intersystem crossing-to sub-500 fs-by the stronger acceptor highlights the role of delocalisation across the heavy-atom containing bridge in this process. The close proximity of several excited states allows one to control the yield of 3CSS from ∼100% to 0% by solvent polarity. The new DBAs offer a versatile platform for investigating the role of bridge vibrations as a tool to control excited state dynamics.
Collapse
Affiliation(s)
- Alexander J Auty
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | | | - Theo Keane
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Tao Cheng
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Guanzhi Wu
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Heather Carson
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - James Shipp
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Andrew Sadler
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Thomas Roseveare
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Igor V Sazanovich
- Laser for Science Facility, Rutherford Appleton Laboratory, RCaH, STFC OX11 0QX UK
| | | | - Dimitri Chekulaev
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| | - Paul I P Elliot
- Department of Chemical Sciences, University of Huddersfield HD1 3DH UK
| | - Mike Towrie
- Laser for Science Facility, Rutherford Appleton Laboratory, RCaH, STFC OX11 0QX UK
| | - Julia A Weinstein
- Department of Chemistry, The University of Sheffield Sheffield S3 7HF UK ,
| |
Collapse
|
3
|
Kim CA, Hu S, Van Voorhis T. Mechanism of Enhanced Triplet-Triplet Upconversion in Organic Molecules. J Phys Chem A 2023; 127:7175-7185. [PMID: 37585686 DOI: 10.1021/acs.jpca.3c03214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
We use time-dependent density functional theory (TDDFT) to investigate the mechanism of efficient triplet-triplet upconversion (TTU) in certain organic materials. In particular, we focus on materials where some singlets are generated in a two-step spin-nonconserving process (T1 + T1 → T2 → S1). For this mechanism to contribute significantly, the intersystem crossing (ISC) from the high-lying triplet to the singlet (T2 → S1) must outcompete the internal conversion (IC) to the low-lying triplet (T2 → T1). By considering multiple families of materials, we show that the T2 → S1 ISC can be enhanced in a number of ways: the substitution of electron-donating (ED) and electron-withdrawing (EW) groups at appropriate positions; the substitution of bulky groups that distort the molecular geometry; and the substitution of heavy atoms that enhance the spin-orbit coupling (SOC). In the first two cases, the enhancements are consistent with El-Sayed's rule in that rapid T2 → S1 ISC requires significant differences in the characters of the S1 and the T2 wavefunctions. Together, these effects enable a wide tunability of T2 → S1 ISC rates over at least 5 orders of magnitude. Meanwhile, the T2 → T1 IC is inhibited in these systems due to the large T2 - T1 energy gap >0.5 eV, which entails a high energy barrier to the T2 → T1 IC and the prediction of a slow rate regardless of the substituents or the presence of heavy atoms. In this way, tuning the T2 → S1 ISC appears to provide an effective strategy to achieve systematic improvement of TTU materials.
Collapse
Affiliation(s)
- Changhae Andrew Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shicheng Hu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Li J, Li X, Wang G, Wang X, Wu M, Liu J, Zhang K. A direct observation of up-converted room-temperature phosphorescence in an anti-Kasha dopant-matrix system. Nat Commun 2023; 14:1987. [PMID: 37031245 PMCID: PMC10082826 DOI: 10.1038/s41467-023-37662-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
It is common sense that emission maxima of phosphorescence spectra (λP) are longer than those of fluorescence spectra (λF). Here we report a serendipitous finding of up-converted room-temperature phosphorescence (RTP) with λP < λF and phosphorescence lifetime > 0.1 s upon doping benzophenone-containing difluoroboron β-diketonate (BPBF2) into phenyl benzoate matrices. The up-converted RTP is originated from BPBF2's Tn (n ≥ 2) states which show typical 3n-π* characters from benzophenone moieties. Detailed studies reveal that, upon intersystem crossing from BPBF2's S1 states of charge transfer characters, the resultant T1 and Tn states build T1-to-Tn equilibrium. Because of their 3n-π* characters, the Tn states possess large phosphorescence rates that can strongly compete RTP(T1) to directly emit RTP(Tn) which violates Kasha's rule. The direct observation of up-converted RTP provides deep understanding of triplet excited state dynamics and opens an intriguing pathway to devise visible-light-excitable deep-blue afterglow emitters, as well as stimuli-responsive afterglow materials.
Collapse
Affiliation(s)
- Jiuyang Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Xun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Guangming Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Xuepu Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Minjian Wu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Jiahui Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Kaka Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
5
|
Zhang X, Zhao X, Ye K, Zhao J. Detection of the Dark States in Thermally Activated Delayed Fluorescence (TADF) Process of Electron Donor-Acceptor Dyads: Insights from Optical Transient Absorption Spectroscopy. Chemistry 2023; 29:e202203737. [PMID: 36468907 DOI: 10.1002/chem.202203737] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2022]
Abstract
The photophysical processes involved in the electron donor-acceptor thermally activated delayed fluorescence (TADF) emitters are complicated and controversial. The recent consensus is that at least three states are involved, i. e. the singlet charge transfer state (1 CT), the triplet localized excited state (3 LE) and the triplet CT state (3 CT). It is clear the very often used steady state and time-resolved luminescence spectroscopic methods are unable to present direct evidence for the dark states, i. e. the 3 LE and 3 CT states, as well as the interconversion of these states. Concerning this aspect, the femtosecond-nanosecond transient absorption spectroscopic methods are in particular interests. Both the emissive state and the dark state can be detected in these spectra, and interconversion of the states involved in TADF process can be also revealed. This review article focuses on the recent development of using the transient absorption spectra to study the photophysics of the TADF emitters.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Xiaoyu Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. China
| | - Kaiyue Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. China
| |
Collapse
|
6
|
Heavy Atom-Free Triplet Photosensitizers: Molecular Structure Design, Photophysical Properties and Application in Photodynamic Therapy. Molecules 2023; 28:molecules28052170. [PMID: 36903415 PMCID: PMC10004235 DOI: 10.3390/molecules28052170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising method for the treatment of cancer, because of its advantages including a low toxicity, non-drug-resistant character, and targeting capability. From a photochemical aspect, a critical property of triplet photosensitizers (PSs) used for PDT reagents is the intersystem crossing (ISC) efficiency. Conventional PDT reagents are limited to porphyrin compounds. However, these compounds are difficult to prepare, purify, and derivatize. Thus, new molecular structure paradigms are desired to develop novel, efficient, and versatile PDT reagents, especially those contain no heavy atoms, such as Pt or I, etc. Unfortunately, the ISC ability of heavy atom-free organic compounds is usually elusive, and it is difficult to predict the ISC capability of these compounds and design novel heavy atom-free PDT reagents. Herein, from a photophysical perspective, we summarize the recent developments of heavy atom-free triplet PSs, including methods based on radical-enhanced ISC (REISC, facilitated by electron spin-spin interaction), twisted π-conjugation system-induced ISC, the use of fullerene C60 as an electron spin converter in antenna-C60 dyads, energetically matched S1/Tn states-enhanced ISC, etc. The application of these compounds in PDT is also briefly introduced. Most of the presented examples are the works of our research group.
Collapse
|
7
|
Maroń AM, Palion-Gazda J, Szłapa-Kula A, Schab-Balcerzak E, Siwy M, Sulowska K, Maćkowski S, Machura B. Controlling of Photophysical Behavior of Rhenium(I) Complexes with 2,6-Di(thiazol-2-yl)pyridine-Based Ligands by Pendant π-Conjugated Aryl Groups. Int J Mol Sci 2022; 23:11019. [PMID: 36232327 PMCID: PMC9569785 DOI: 10.3390/ijms231911019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
The structure-property correlations and control of electronic excited states in transition metal complexes (TMCs) are of high significance for TMC-based functional material development. Within these studies, a series of Re(I) carbonyl complexes with aryl-substituted 2,6-di(thiazol-2-yl)pyridines (Arn-dtpy) was synthesized, and their ground- and excited-state properties were investigated. A number of condensed aromatic rings, which function as the linking mode of the aryl substituent, play a fundamental role in controlling photophysics of the resulting [ReCl(CO)3(Arn-dtpy-κ2N)]. Photoexcitation of [ReCl(CO)3(Arn-dtpy-κ2N)] with 1-naphthyl-, 2-naphthyl-, 9-phenanthrenyl leads to the population of 3MLCT. The lowest triplet state of Re(I) chromophores bearing 9-anthryl, 2-anthryl, 1-pyrenyl groups is ligand localized. The rhenium(I) complex with appended 1-pyrenyl group features long-lived room temperature emission attributed to the equilibrium between 3MLCT and 3IL/3ILCT. The excited-state dynamics in complexes [ReCl(CO)3(9-anthryl-dtpy-κ2N)] and [ReCl(CO)3(2-anthryl-dtpy-κ2N)] is strongly dependent on the electronic coupling between anthracene and {ReCl(CO)3(dtpy-κ2N)}. Less steric hindrance between the chromophores in [ReCl(CO)3(2-anthryl-dtpy-κ2N)] is responsible for the faster formation of 3IL/3ILCT and larger contribution of 3ILCTanthracene→dtpy in relation to the isomeric complex [ReCl(CO)3(9-anthryl-dtpy-κ2N)]. In agreement with stronger electronic communication between the aryl and Re(I) coordination centre, [ReCl(CO)3(2-anthryl-dtpy-κ2N)] displays room-temperature emission contributed to by 3MLCT and 3ILanthracene/3ILCTanthracene→dtpy phosphorescence. The latter presents rarely observed phenomena in luminescent metal complexes.
Collapse
Affiliation(s)
- Anna M. Maroń
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Agata Szłapa-Kula
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland
| | - Karolina Sulowska
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
8
|
Małecka M, Szlapa-Kula A, Maroń AM, Ledwon P, Siwy M, Schab-Balcerzak E, Sulowska K, Maćkowski S, Erfurt K, Machura B. Impact of the Anthryl Linking Mode on the Photophysics and Excited-State Dynamics of Re(I) Complexes [ReCl(CO) 3(4′-An-terpy-κ 2N)]. Inorg Chem 2022; 61:15070-15084. [PMID: 36101987 PMCID: PMC9516691 DOI: 10.1021/acs.inorgchem.2c02160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Rhenium(I) complexes with 2,2′:6′,2″-terpyridines
(terpy) substituted with 9-anthryl (1) and 2-anthryl
(2) were synthesized, and the impact of the anthryl linking
mode on the ground- and excited-state properties of resulting complexes
[ReCl(CO)3(4′-An-terpy-κ2N)] (An—anthryl)
was investigated using a combination of steady-state and time-resolved
optical techniques accompanied by theoretical calculations. Different
attachment positions of anthracene modify the overlap between the
molecular orbitals and thus the electronic coupling of the anthracene
and {ReCl(CO)3(terpy-κ2N)} chromophores.
Following the femtosecond transient absorption, the lowest triplet
excited state of both complexes was found to be localized on the anthracene
chromophore. The striking difference between 1 and 2 concerns the triplet-state formation dynamics. A more planar
geometry of 2-anthryl-terpy (2), and thus better electronic
communication between the anthracene and {ReCl(CO)3(terpy-κ2N)} chromophores, facilitates the formation of the 3An triplet state. In steady-state photoluminescence spectra, the
population ratio of 3MLCT and 3An was found
to be dependent not only on the anthryl linking mode but also on solvent
polarity and excitation wavelengths. In dimethyl sulfoxide (DMSO),
compounds 1 and 2 excited with λexc > 410 nm show both 3MLCT and 3An
emissions, which are rarely observed. Additionally, the abilities
of the designed complexes for 1O2 generation
and light emission under the external voltage were preliminary examined. The impact of the anthryl linking mode
on the ground- and
excited-state properties of [ReCl(CO)3(4′-An-terpy-κ2N)] with 2,2′:6′,2″-terpyridines (terpy)
substituted with 9-anthryl (1) and 2-anthryl (2) was thoroughly investigated. Different attachment positions of
anthracene were evidenced to modify the overlap between the molecular
orbitals and electronic coupling of the anthracene and {ReCl(CO)3(terpy-κ2N)} chromophores and thus the optical
properties of the resulting complexes. The striking difference between 1 and 2 was demonstrated in the triplet-state
formation dynamics.
Collapse
Affiliation(s)
- Magdalena Małecka
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| | - Agata Szlapa-Kula
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| | - Anna M. Maroń
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| | - Przemyslaw Ledwon
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| | - Karolina Sulowska
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Street, 87-100 Torun, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Street, 87-100 Torun, Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, 9th Szkolna Street, 40-006 Katowice, Poland
| |
Collapse
|
9
|
Frogley BJ, Hill AF, Welsh SS. Symmetric and non-symmetric anthracen-diyl bis(alkylidynes). Dalton Trans 2021; 50:15502-15523. [PMID: 34676857 DOI: 10.1039/d1dt02537f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three examples of 9-bromo-10-(alkylidynyl)anthracenes, [W{CC(C6H4)2CBr}(CO)2(L)] (L = hydrotris(dimethylpyrazol-1-yl)borate Tp*, hydrotris(pyrazol-1-yl)borate Tp, hydrotris(2-mercapto-N-methylimidazol-1-yl)borate Tm) were prepared via modified Fischer-Mayr acyl oxide-abstraction protocols. With a sufficiently bulky ancillary ligand (L = Tp*) the aryl bromide is ammenable to cross-coupling reactions that enable more elaborate derivatives to be prepared. These including symmetric bis(alkylidynyl)anthracenes as well as non-palindromic examples bearing disparate metals and/or co-ligands. In contrast, these couplings fail for smaller ligands (L = Tp, Tm) where it was found that Pd0 or Pt0 were instead able to coordinate across two WC bonds to give trimetallic bow-tie complexes, [W2M{μ-CC(C6H4)2CBr}2(CO)4(L)2] (M = Pd, Pt; L = Tp, Tm).
Collapse
Affiliation(s)
- Benjamin J Frogley
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
| | - Anthony F Hill
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
| | - Steven S Welsh
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia.
| |
Collapse
|
10
|
Wang D, Xie Y, Wu X, Lei Y, Zhou Y, Cai Z, Liu M, Wu H, Huang X, Dong Y. Excitation-Dependent Triplet-Singlet Intensity from Organic Host-Guest Materials: Tunable Color, White-Light Emission, and Room-Temperature Phosphorescence. J Phys Chem Lett 2021; 12:1814-1821. [PMID: 33577329 DOI: 10.1021/acs.jpclett.1c00188] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A series of organic host-guest materials with multifunctional luminescence were constructed. Four isoquinoline derivatives were used as the guests, and benzophenone was used as the host. The doped system exhibited excellent dual emission with cyan fluorescence and orange-yellow room-temperature phosphorescence, and the dual emission could be combined into almost pure white-light emission. Importantly, the relative intensity of the fluorescence-phosphorescence could be adjusted by changing the excitation wavelength, with the phosphorescence intensity being significantly higher than the fluorescence intensity under shorter excitation wavelengths and vice versa under longer excitation wavelengths. Therefore, three-color emission switching among cyan, white, and orange could be achieved by simply adjusting the excitation wavelength. The results of experimental and theoretical calculations indicated that the excitation-dependent emission colors were caused by different transfer paths for excitons under different excitation wavelengths. These materials with multifunctional luminescence could be used as writable inks for advanced anticounterfeiting.
Collapse
Affiliation(s)
- Dan Wang
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yufeng Xie
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xinghui Wu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, P. R. China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yunbing Zhou
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zhengxu Cai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, P. R. China
| | - Miaochang Liu
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Huayue Wu
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xiaobo Huang
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yuping Dong
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, P. R. China
| |
Collapse
|
11
|
Wu T, Ni W, Gurzadyan GG, Sun L. Singlet fission from upper excited singlet states and polaron formation in rubrene film. RSC Adv 2021; 11:4639-4645. [PMID: 35424413 PMCID: PMC8694490 DOI: 10.1039/d0ra10780h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022] Open
Abstract
Femtosecond fluorescence up-conversion and transient absorption pump-probe setups are applied to study the relaxation dynamics of the lower and upper excited singlet electronic states in easy-to-make rubrene films. Upon 250 nm (4.96 eV) excitation, singlet fission was observed directly from S2 state bypassing S1 state within 30 fs i.e. breaking the classical Kasha rule. From the transient absorption measurements, polaron formation was also detected on the same time scale. Both singlet fission and polaron formation are accelerated from upper excited states compared with S1 state. Our work shows that rubrene films with low degree of crystallinity could display efficient singlet fission, notably in the case of excitation to upper lying electronic states. This can strongly expand the applications of rubrene in organic electronics. Moreover, our results will provide a new direction for synthesizing novel materials with optimized excited state properties for organic photovoltaic applications.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology 116024 Dalian China
| | - Wenjun Ni
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology 116024 Dalian China
| | - Gagik G Gurzadyan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology 116024 Dalian China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology 116024 Dalian China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology 10044 Stockholm Sweden
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University 310024 Hangzhou China
| |
Collapse
|