1
|
Liu L, Qi J, Wang D, Yuan J, Shi D, Xiong Z, Ye T, Cai Y, Zhang L. Deriving High-Energy-Density Polymeric Nitrogen N 10 from the Host-Guest ArN 10 Compound. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:249. [PMID: 39940225 PMCID: PMC11820297 DOI: 10.3390/nano15030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Discovering stable polymeric nitrogen phases and exploring their properties are crucial for energy storage and conversion, garnering significant attention. In this study, we investigate the formation possibility of a stable compound between Ar and N2 through ab initio calculations under low-pressure conditions (0-100 GPa). The novel super nitride, Imm2 ArN10, is designed to demonstrate robust thermodynamic stability under high pressures (91 GPa) and showcase the unique host-guest structure, in which guest atoms (Ar) are trapped inside the host polymeric N10. Significantly, given the weak interaction between Ar and N atoms and a channel parallel to the c-crystallographic axis in ArN10, we propose a novel method to stabilize the previously unknown polymeric nitrogen structure, Imm2-N10, by removing the guest argon atoms from the natural channels of ArN10. Imm2 ArN10 and N10 are thermodynamically and dynamically stable, with energy densities of 9.1 kJ g-1 and 12.3 kJ g-1, respectively-more than twice that of TNT. Additionally, ArN10 and N10 stand out as leading green energetic materials, boasting a superior explosion velocity of 17.56 km s-1 and a detonation pressure of 1712 kbar, surpassing that of TNT. These findings significantly impact on the creation of pure nitrogen frameworks through chemical reactions involving inert elements under high pressure.
Collapse
Affiliation(s)
- Lulu Liu
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
- National Laboratory of Solid State Microstructures & Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Jiacheng Qi
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Dinghui Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jie Yuan
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Difen Shi
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhigang Xiong
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Ting Ye
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Yubei Cai
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Lei Zhang
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
| |
Collapse
|
2
|
Zhao F, Chen L, Chen X, Song B, Gao P, Gao C, Du Y, Sun C, Liu X, Liu Z, Ju X, Hu B, Zhang C. Manganese(II) Porphyrin and Cumyl Hydroperoxide: An Efficient Catalyst for Aryl-Pentazole C-N Bond Cleavage. Chemistry 2025; 31:e202402575. [PMID: 39450572 DOI: 10.1002/chem.202402575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
The selective cleavage of C-N bonds in N-containing compounds holds significant research value in organic synthesis, particularly for the synthesis of promising polynitrogen species. For instance, the discovery of the cyclo-pentazolate (cyclo-N5 -) anion in 2017 as a result of cleavage of the C-N bond has sparked interest within the field of high energy density materials. However, previous methods using ferrous glycinate and m-chloroperoxybenzoic acid generated the cyclo-N5 - anion in a low yield of 19.5 % after 24 hours, and the mechanism remained unclear. In this study, we developed an efficient catalytic system comprising Mn (II) tetraphenylporphyrin and cumyl hydroperoxide. This system enables the cyclo-N5 - anion to be produced from 3,5-dimethyl-4-hydroxyphenylpentazole in 35.4 % yield in 4 hours. Characterization of Mn(IV)-oxo porphyrins, ⋅CH3, and ⋅C8H8ON5 radicals provides evidence for the mechanism whereby the cyclo-N5 - anion forms. Our study underscores the competitive potential of radical-initiated selective C-N bonds cleavage in N-arylazoles and opens avenues for further exploration in this field.
Collapse
Affiliation(s)
- Feng Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China
| | - Lei Chen
- School of Mechanical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China
| | - Xiang Chen
- School of Chemistry and Chemical Engineering, Nanjing University, of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China
| | - Bin Song
- School of Chemistry and Chemical Engineering, Nanjing University, of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China
| | - Pengxiang Gao
- School of Chemistry and Chemical Engineering, Nanjing University, of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China
| | - Chao Gao
- School of Chemistry and Chemical Engineering, Nanjing University, of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China
| | - Yang Du
- School of Chemistry and Chemical Engineering, Nanjing University, of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China
| | - Chengguo Sun
- School of Chemistry and Chemical Engineering, Nanjing University, of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China
| | - Xuemin Liu
- School of Chemistry and Chemical Engineering, Nanjing University, of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China
| | - Zhongquan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Xianlin 200, Nanjing, Jiangsu, China
| | - Xuehai Ju
- School of Chemistry and Chemical Engineering, Nanjing University, of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China
| | - Bingcheng Hu
- School of Chemistry and Chemical Engineering, Nanjing University, of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China
| | - Chong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Liu R, Liu J, Zhou P. Theoretical advances in understanding and enhancing the thermostability of energetic materials. Phys Chem Chem Phys 2024; 26:26209-26221. [PMID: 39380550 DOI: 10.1039/d4cp02499k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The quest for thermally stable energetic materials is pivotal in advancing the safety of applications ranging from munitions to aerospace. This perspective delves into the role of theoretical methodologies in interpreting and advancing the thermal stability of energetic materials. Quantum chemical calculations offer an in-depth understanding of the molecular and electronic structure properties of energetic compounds related to thermal stability. It is also essential to incorporate the surrounding interactions and their impact on molecular stability. Ab initio molecular dynamics (AIMD) simulations provide detailed theoretical insights into the reaction pathways and the key intermediates during thermal decomposition in the condensed phase. Analyzing the kinetic barrier of rate-determining steps under various temperature and pressure conditions allows for a comprehensive assessment of thermal stability. Recent advances in machine learning have demonstrated their utility in constructing potential energy surfaces and predicting thermal stability for newly designed energetic materials. The machine learning-assisted high-throughput virtual screening (HTVS) methodology can accelerate the discovery of novel energetic materials with improved properties. As a result, the newly identified and synthesized energetic molecule ICM-104 revealed excellence in performance and thermostability. Theoretical approaches are pivotal in elucidating the mechanisms underlying thermal stability, enabling the prediction and design of enhanced thermal stability for emerging EMs. These insights are instrumental in accelerating the development of novel energetic materials that optimally balance performance and thermal stability.
Collapse
Affiliation(s)
- Runze Liu
- School of Science, Dalian Jiaotong University, Dalian 116028, P. R. China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266235, P. R. China.
| | - Jianyong Liu
- Research Center of Advanced Biological Manufacture, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| | - Panwang Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266235, P. R. China.
| |
Collapse
|
4
|
Zhang F, Yuan B, Guo X, Huang H. Sodium catalytic phenylpentazole cracking: a theoretical study. Phys Chem Chem Phys 2024; 26:18076-18088. [PMID: 38895812 DOI: 10.1039/d3cp04105k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
This work presents an in-depth investigation into the cracking reaction mechanism of phenylpentazole (C6H5N5) under the catalytic influence of sodium metal, utilizing density functional theory. The geometries of the reactants, transition states, intermediates, and products are meticulously optimized employing the GGA/PW91/DNP level of theory. Also, a rigorous analysis is undertaken, encompassing various key factors including configuration parameters, Mulliken charges, densities of states, and reaction energies. Three distinct reaction pathways are comprehensively examined, shedding light on the intricate details and intricacies of each pathway. The results show that a remarkable outcome in which the activation energy of the C6H5N5 cracking reaction releases N2, facilitated by catalytic metal Na, reveals a strikingly reduced value of a mere 5.2 kcal mol-1 compared to the previously reported activation energies ranging from 20 to 30 kcal mol-1. Evidently, this significantly lowered barrier can be readily surpassed at typical room temperatures, exhibiting practical applicability. Notably, the alkali metal Na effectively serves as a catalyst, successfully diminishing the activation energy required for N2 production through the pyrolysis of pentazole compounds. This breakthrough discovery provides a theoretical basis for experimental research on the low-temperature cracking of pentazole compounds. It also offers valuable insights for the development and application of new high energy density materials, contributing to the creation of a green and low-carbon circular economic system.
Collapse
Affiliation(s)
- Fulan Zhang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, China.
| | - Binfang Yuan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, China.
| | - Xiaogang Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, China.
| | - Huisheng Huang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, China.
| |
Collapse
|
5
|
Jiang T, Xia H, Zhang W, Liu T. Insight into the Stability of Pentazolyl Derivatives based on Covalent Bond. Chemphyschem 2024; 25:e202400105. [PMID: 38721760 DOI: 10.1002/cphc.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Indexed: 06/21/2024]
Abstract
Pentazole is regarded as a unique inorganic molecule that possess organic heterocyclic structure. Therefore, the research on pentazolyl derivatives represents a cutting-edge direction in both contemporary inorganic chemistry and heterocyclic chemistry. Moreover, their synthesis is regarded as the most significant research topic in the field of energetic materials due to the great potential of pentazolyl derivatives to breakthrough the energy bottleneck of CHNO-based energetic materials. However, synthesizing pentazolyl derivatives is challenging. To provide a theoretical support for the synthesis, we conducted theoretical studies on six single-ring pentazolyl derivatives with different functional groups. The results suggest that derivatization reduces the bond strength and weakens the aromaticity of the pentazolate ring. Further analysis showed that derivatization mainly affects the π aromaticity of the pentazolate ring, and ultimately causing poor stability of the pentazolyl derivatives. Among the six derivatives investigated in this study, fluoro pentazole (cyclo-N5-F) and hydroxyl pentazole (cyclo-N5-OH) possess good aromaticity, which is similar to the reported cyclo-N5-NCHN(CH3)2. Further calculations show that the kinetic stability of cyclo-N5-OH is higher than that of cyclo-N5-F. These results collectively indicate that cyclo-N5-OH is a promising candidate for synthesizing single-ring pentazolyl derivatives.
Collapse
Affiliation(s)
- Tianyu Jiang
- Institute of Chemical Materials, China Academy of Engineering Physics, 621900, Mianyang, China
| | - Honglei Xia
- Institute of Chemical Materials, China Academy of Engineering Physics, 621900, Mianyang, China
| | - Wenquan Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, 621900, Mianyang, China
| | - Tianlin Liu
- Institute of Chemical Materials, China Academy of Engineering Physics, 621900, Mianyang, China
| |
Collapse
|
6
|
Cao Y, Liu Y, Zhang W. Pentazolate Anion: A Rare and Preferred Five-Membered Ligand for Constructing Pentasil-Zeolite Topology Architectures. Angew Chem Int Ed Engl 2024; 63:e202317355. [PMID: 38165698 DOI: 10.1002/anie.202317355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/04/2024]
Abstract
As the fourth full-nitrogen structure, the pentazolate anion (cyclo-N5 - ) was highly coveted for decades. In 2017, the first air-stable non-metal pentazolate salt, (N5 )6 (H3 O)3 (NH4 )4 Cl, was obtained, representing a milestone in this field. As the latest member of the azole family, cyclo-N5 - is comprised of five nitrogen atoms. Although significant attention has been paid to the potential of cyclo-N5 - as an energetic material, its poor thermostability hinders any practical application. However, the unique ring structure and multiple coordination capability of cyclo-N5 - provide a platform for the fabrication of various structures, among which pentasil-zeolite topologies are the most intriguing. In addition, the introduction of structure-directing auxiliaries enables the self-assembly of diverse topological architectures, potentially imparting cyclo-N5 - with the potential to impact wide-ranging areas of coordination chemistry and topology. In this minireview, different pentasil-zeolite topologies based on metal-pentazolate frameworks are evaluated. To date, three zeolitic and zeolite-like topologies have been reported, namely the melanophlogite (MEP), chibaite (MTN), and unj topologies. The MEP topology consists of two nanocages, Na20 N60 and Na24 N60 , whereas the MTN topology contains Na20 N60 and Na28 N80 nanocages. Furthermore, the unj topology features multiple homochiral channels consisting of two helical chains. Various possible strategies for obtaining additional pentasil-zeolite topologies are also discussed.
Collapse
Affiliation(s)
- Yuteng Cao
- Institute of Chemical Materials (ICM), China Academy of Engineering Physics (CAEP), Mianyang, 621900, China
| | - Yu Liu
- Institute of Chemical Materials (ICM), China Academy of Engineering Physics (CAEP), Mianyang, 621900, China
| | - Wenquan Zhang
- Institute of Chemical Materials (ICM), China Academy of Engineering Physics (CAEP), Mianyang, 621900, China
| |
Collapse
|
7
|
Vasanthan RJ, Pradhan S, Thangamuthu MD. Emerging Aspects of Triazole in Organic Synthesis: Exploring its Potential as a Gelator. Curr Org Synth 2024; 21:456-512. [PMID: 36221871 DOI: 10.2174/1570179420666221010094531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) - commonly known as the "click reaction" - serves as the most effective and highly reliable tool for facile construction of simple to complex designs at the molecular level. It relates to the formation of carbon heteroatomic systems by joining or clicking small molecular pieces together with the help of various organic reactions such as cycloaddition, conjugate addition, ring-opening, etc. Such dynamic strategy results in the generation of triazole and its derivatives from azides and alkynes with three nitrogen atoms in the five-membered aromatic azole ring that often forms gel-assembled structures having gelating properties. These scaffolds have led to prominent applications in designing advanced soft materials, 3D printing, ion sensing, drug delivery, photonics, separation, and purification. In this review, we mainly emphasize the different mechanistic aspects of triazole formation, which includes the synthesis of sugar-based and non-sugar-based triazoles, and their gel applications reported in the literature for the past ten years, as well as the upcoming scope in different branches of applied sciences.
Collapse
Affiliation(s)
- Rabecca Jenifer Vasanthan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Sheersha Pradhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Mohan Das Thangamuthu
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| |
Collapse
|
8
|
Li X, Long Y, Zhang C, Sun C, Hu B, Qin L, Chen J. Synthesis mechanism of four metallic Cyclo-N5- energetic materials: A theoretical Perspective. J Chem Phys 2023; 159:124305. [PMID: 38127389 DOI: 10.1063/5.0167200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/07/2023] [Indexed: 12/23/2023] Open
Abstract
In the past five years, over 20 types of cyclo-N5- energetic materials (EMs) have been successfully synthesized. Metallic cyclo-N5- EMs exhibit higher density and performance compared to non-metallic cyclo-N5- EMs. However, the mechanisms for such metallic cyclo-N5- EMs remain unexplored. Herein, we performed a thorough quantum chemistry study on the mechanistic pathway for the cyclo-N5- trapped by metal cations in four cyclo-N5- EMs: [Na(H2O) (N5)] · 2H2O, [M(H2O)4(N5)2] · 4H2O (M = Mn, Fe, and Co), by density functional theory methods and transition state theory. During the synthesis process, the cyclo-N5- in the precursor hybrid aromatic compound is susceptible to electrophilic attack by metal cations. This attack disrupts the hydrogen bond interaction surrounding the cyclo-N5-, ultimately leading to the formation of either an ionic bond or a coordination bond between the metal cation and the cyclo-N5-, resulting in an electrophilic substitution reaction. In addition, solvent effects reduce the energy of the ionic bond, thereby promoting the reaction. Our findings will provide valuable insights for future route design and contribute to enhancing the synthesis yield of cyclo-N5- EMs in both theoretical and experimental aspects.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Sensors, Beijing Information Science and Technology University, Beijing 100192, China
- Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China
- Key Laboratory of Photoelectric Testing Technology, Beijing Information Science and Technology University, Beijing 100192, China
| | - Yao Long
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Chong Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Chengguo Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Bingcheng Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Lei Qin
- Key Laboratory of Sensors, Beijing Information Science and Technology University, Beijing 100192, China
- Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China
- Key Laboratory of Photoelectric Testing Technology, Beijing Information Science and Technology University, Beijing 100192, China
| | - Jun Chen
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
9
|
|
10
|
Lv M, Han C, Li Z, Zhou P, Li W, Liu J. Impact of regiochemistry on thermal stability of trifuroxan based energetic materials: A theoretical perspective. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Lv M, Wang T, Zhou P, He Y, Li W, Liu J. Theoretical insights into the role of regiochemistry in thermal stability regulation of energetic materials. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Lang Q, Jiang S, Xu Y, Lu M. Theoretical study on N‐oxide pentazolate high‐energy‐density materials: Toward excellent energetic performance and good stability. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing Lang
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing China
| | - Shuaijie Jiang
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing China
| | - Yuangang Xu
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing China
| | - Ming Lu
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing China
| |
Collapse
|
13
|
Zhao X, Zhu W. Recent advances in studying the nonnegligible role of noncovalent interactions in various types of energetic molecular crystals. CrystEngComm 2022. [DOI: 10.1039/d2ce00984f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This highlight summarizes the research progress on the considerable effects of noncovalent interactions on diverse types of energetic materials and enlighten us to explore new factors that affect the key performance of explosives.
Collapse
Affiliation(s)
- Xiao Zhao
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weihua Zhu
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
14
|
Manzoor S, He P, Yang JQ, Tariq QUN, Jing-Ru L, Hu Y, Cao W, Zhang JG. Synthesis and characterization of energetic compounds based on N-oxidation of 5-Nitroso-2,4,6-triaminopyrimidine. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Theoretical insights into the enhancement of 1-Methyl-2,4,5-trinitroimidazole yield by exchanging of group introduction order. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Bondarchuk SV. Structure enhancement of energetic materials: A theoretical study of the arylamines to arylpentazoles transformation. FIREPHYSCHEM 2021. [DOI: 10.1016/j.fpc.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Yao Y, Lin Q, Zhou X, Lu M. Recent research on the synthesis pentazolate anion cyclo-N5−. FIREPHYSCHEM 2021. [DOI: 10.1016/j.fpc.2021.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Theoretical insights into the synthesis reaction mechanism of 1,2,3-triazole based on sakai reaction. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|