1
|
Coelho LP, Santos-Júnior CD, de la Fuente-Nunez C. Challenges in computational discovery of bioactive peptides in 'omics data. Proteomics 2024; 24:e2300105. [PMID: 38458994 DOI: 10.1002/pmic.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Peptides have a plethora of activities in biological systems that can potentially be exploited biotechnologically. Several peptides are used clinically, as well as in industry and agriculture. The increase in available 'omics data has recently provided a large opportunity for mining novel enzymes, biosynthetic gene clusters, and molecules. While these data primarily consist of DNA sequences, other types of data provide important complementary information. Due to their size, the approaches proven successful at discovering novel proteins of canonical size cannot be naïvely applied to the discovery of peptides. Peptides can be encoded directly in the genome as short open reading frames (smORFs), or they can be derived from larger proteins by proteolysis. Both of these peptide classes pose challenges as simple methods for their prediction result in large numbers of false positives. Similarly, functional annotation of larger proteins, traditionally based on sequence similarity to infer orthology and then transferring functions between characterized proteins and uncharacterized ones, cannot be applied for short sequences. The use of these techniques is much more limited and alternative approaches based on machine learning are used instead. Here, we review the limitations of traditional methods as well as the alternative methods that have recently been developed for discovering novel bioactive peptides with a focus on prokaryotic genomes and metagenomes.
Collapse
Affiliation(s)
- Luis Pedro Coelho
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Woolloongabba, Queensland, Australia
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
- Laboratory of Microbial Processes & Biodiversity - LMPB, Hydrobiology Department, Federal University of São Carlos - UFSCar, São Paulo, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Valdivia-Francia F, Sendoel A. No country for old methods: New tools for studying microproteins. iScience 2024; 27:108972. [PMID: 38333695 PMCID: PMC10850755 DOI: 10.1016/j.isci.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Microproteins encoded by small open reading frames (sORFs) have emerged as a fascinating frontier in genomics. Traditionally overlooked due to their small size, recent technological advancements such as ribosome profiling, mass spectrometry-based strategies and advanced computational approaches have led to the annotation of more than 7000 sORFs in the human genome. Despite the vast progress, only a tiny portion of these microproteins have been characterized and an important challenge in the field lies in identifying functionally relevant microproteins and understanding their role in different cellular contexts. In this review, we explore the recent advancements in sORF research, focusing on the new methodologies and computational approaches that have facilitated their identification and functional characterization. Leveraging these new tools hold great promise for dissecting the diverse cellular roles of microproteins and will ultimately pave the way for understanding their role in the pathogenesis of diseases and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Fabiola Valdivia-Francia
- University of Zurich, Institute for Regenerative Medicine (IREM), Wagistrasse 12, 8952 Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ ETH Zurich, Schlieren-Zurich, Switzerland
| | - Ataman Sendoel
- University of Zurich, Institute for Regenerative Medicine (IREM), Wagistrasse 12, 8952 Schlieren-Zurich, Switzerland
| |
Collapse
|
3
|
Genth J, Schäfer K, Cassidy L, Graspeuntner S, Rupp J, Tholey A. Identification of proteoforms of short open reading frame-encoded peptides in Blautia producta under different cultivation conditions. Microbiol Spectr 2023; 11:e0252823. [PMID: 37782090 PMCID: PMC10715070 DOI: 10.1128/spectrum.02528-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
IMPORTANCE The identification of short open reading frame-encoded peptides (SEP) and different proteoforms in single cultures of gut microbes offers new insights into a largely neglected part of the microbial proteome landscape. This is of particular importance as SEP provide various predicted functions, such as acting as antimicrobial peptides, maintaining cell homeostasis under stress conditions, or even contributing to the virulence pattern. They are, thus, taking a poorly understood role in structure and function of microbial networks in the human body. A better understanding of SEP in the context of human health requires a precise understanding of the abundance of SEP both in commensal microbes as well as pathogens. For the gut beneficial B. producta, we demonstrate the importance of specific environmental conditions for biosynthesis of SEP expanding previous findings about their role in microbial interactions.
Collapse
Affiliation(s)
- Jerome Genth
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Kathrin Schäfer
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
4
|
Fuchs S, Engelmann S. Small proteins in bacteria - Big challenges in prediction and identification. Proteomics 2023; 23:e2200421. [PMID: 37609810 DOI: 10.1002/pmic.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Proteins with up to 100 amino acids have been largely overlooked due to the challenges associated with predicting and identifying them using traditional methods. Recent advances in bioinformatics and machine learning, DNA sequencing, RNA and Ribo-seq technologies, and mass spectrometry (MS) have greatly facilitated the detection and characterisation of these elusive proteins in recent years. This has revealed their crucial role in various cellular processes including regulation, signalling and transport, as toxins and as folding helpers for protein complexes. Consequently, the systematic identification and characterisation of these proteins in bacteria have emerged as a prominent field of interest within the microbial research community. This review provides an overview of different strategies for predicting and identifying these proteins on a large scale, leveraging the power of these advanced technologies. Furthermore, the review offers insights into the future developments that may be expected in this field.
Collapse
Affiliation(s)
- Stephan Fuchs
- Genome Competence Center (MF1), Department MFI, Robert-Koch-Institut, Berlin, Germany
| | - Susanne Engelmann
- Institute for Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
- Microbial Proteomics, Helmholtzzentrum für Infektionsforschung GmbH, Braunschweig, Germany
| |
Collapse
|
5
|
Simoens L, Fijalkowski I, Van Damme P. Exposing the small protein load of bacterial life. FEMS Microbiol Rev 2023; 47:fuad063. [PMID: 38012116 PMCID: PMC10723866 DOI: 10.1093/femsre/fuad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
The ever-growing repertoire of genomic techniques continues to expand our understanding of the true diversity and richness of prokaryotic genomes. Riboproteogenomics laid the foundation for dynamic studies of previously overlooked genomic elements. Most strikingly, bacterial genomes were revealed to harbor robust repertoires of small open reading frames (sORFs) encoding a diverse and broadly expressed range of small proteins, or sORF-encoded polypeptides (SEPs). In recent years, continuous efforts led to great improvements in the annotation and characterization of such proteins, yet many challenges remain to fully comprehend the pervasive nature of small proteins and their impact on bacterial biology. In this work, we review the recent developments in the dynamic field of bacterial genome reannotation, catalog the important biological roles carried out by small proteins and identify challenges obstructing the way to full understanding of these elusive proteins.
Collapse
Affiliation(s)
- Laure Simoens
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Brantl S, Ul Haq I. Small proteins in Gram-positive bacteria. FEMS Microbiol Rev 2023; 47:fuad064. [PMID: 38052429 PMCID: PMC10730256 DOI: 10.1093/femsre/fuad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Small proteins comprising less than 100 amino acids have been often ignored in bacterial genome annotations. About 10 years ago, focused efforts started to investigate whole peptidomes, which resulted in the discovery of a multitude of small proteins, but only a number of them have been characterized in detail. Generally, small proteins can be either membrane or cytosolic proteins. The latter interact with larger proteins, RNA or even metal ions. Here, we summarize our current knowledge on small proteins from Gram-positive bacteria with a special emphasis on the model organism Bacillus subtilis. Our examples include membrane-bound toxins of type I toxin-antitoxin systems, proteins that block the assembly of higher order structures, regulate sporulation or modulate the RNA degradosome. We do not consider antimicrobial peptides. Furthermore, we present methods for the identification and investigation of small proteins.
Collapse
Affiliation(s)
- Sabine Brantl
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| | - Inam Ul Haq
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| |
Collapse
|
7
|
Dong X, Zhang K, Xun C, Chu T, Liang S, Zeng Y, Liu Z. Small Open Reading Frame-Encoded Micro-Peptides: An Emerging Protein World. Int J Mol Sci 2023; 24:10562. [PMID: 37445739 DOI: 10.3390/ijms241310562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Small open reading frames (sORFs) are often overlooked features in genomes. In the past, they were labeled as noncoding or "transcriptional noise". However, accumulating evidence from recent years suggests that sORFs may be transcribed and translated to produce sORF-encoded polypeptides (SEPs) with less than 100 amino acids. The vigorous development of computational algorithms, ribosome profiling, and peptidome has facilitated the prediction and identification of many new SEPs. These SEPs were revealed to be involved in a wide range of basic biological processes, such as gene expression regulation, embryonic development, cellular metabolism, inflammation, and even carcinogenesis. To effectively understand the potential biological functions of SEPs, we discuss the history and development of the newly emerging research on sORFs and SEPs. In particular, we review a range of recently discovered bioinformatics tools for identifying, predicting, and validating SEPs as well as a variety of biochemical experiments for characterizing SEP functions. Lastly, this review underlines the challenges and future directions in identifying and validating sORFs and their encoded micropeptides, providing a significant reference for upcoming research on sORF-encoded peptides.
Collapse
Affiliation(s)
- Xiaoping Dong
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| | - Kun Zhang
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Chengfeng Xun
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| | - Tianqi Chu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| | - Songping Liang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| | - Yong Zeng
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhonghua Liu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
8
|
Wang Z, Cui Q, Su C, Zhao S, Wang R, Wang Z, Meng J, Luan Y. Unveiling the secrets of non-coding RNA-encoded peptides in plants: A comprehensive review of mining methods and research progress. Int J Biol Macromol 2023:124952. [PMID: 37257526 DOI: 10.1016/j.ijbiomac.2023.124952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Non-coding RNAs (ncRNAs) are not conventionally involved in protein encoding. However, recent findings indicate that ncRNAs possess the capacity to code for proteins or peptides. These ncRNA-encoded peptides (ncPEPs) are vital for diverse plant life processes and exhibit significant potential value. Despite their importance, research on plant ncPEPs is limited, with only a few studies conducted and less information on the underlying mechanisms, and the field remains in its nascent stage. This manuscript provides a comprehensive overview of ncPEPs mining methods in plants, focusing on prediction, identification, and functional analysis. We discuss the strengths and weaknesses of various techniques, identify future research directions in the ncPEPs domain, and elucidate the biological functions and agricultural application prospects of plant ncPEPs. By highlighting the immense potential and research value of ncPEPs, we aim to lay a solid foundation for more in-depth studies in plant science.
Collapse
Affiliation(s)
- Zhengjie Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qi Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Chenglin Su
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Siyuan Zhao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruiming Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhicheng Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
9
|
Hadjeras L, Heiniger B, Maaß S, Scheuer R, Gelhausen R, Azarderakhsh S, Barth-Weber S, Backofen R, Becher D, Ahrens CH, Sharma CM, Evguenieva-Hackenberg E. Unraveling the small proteome of the plant symbiont Sinorhizobium meliloti by ribosome profiling and proteogenomics. MICROLIFE 2023; 4:uqad012. [PMID: 37223733 PMCID: PMC10117765 DOI: 10.1093/femsml/uqad012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 05/25/2023]
Abstract
The soil-dwelling plant symbiont Sinorhizobium meliloti is a major model organism of Alphaproteobacteria. Despite numerous detailed OMICS studies, information about small open reading frame (sORF)-encoded proteins (SEPs) is largely missing, because sORFs are poorly annotated and SEPs are hard to detect experimentally. However, given that SEPs can fulfill important functions, identification of translated sORFs is critical for analyzing their roles in bacterial physiology. Ribosome profiling (Ribo-seq) can detect translated sORFs with high sensitivity, but is not yet routinely applied to bacteria because it must be adapted for each species. Here, we established a Ribo-seq procedure for S. meliloti 2011 based on RNase I digestion and detected translation for 60% of the annotated coding sequences during growth in minimal medium. Using ORF prediction tools based on Ribo-seq data, subsequent filtering, and manual curation, the translation of 37 non-annotated sORFs with ≤ 70 amino acids was predicted with confidence. The Ribo-seq data were supplemented by mass spectrometry (MS) analyses from three sample preparation approaches and two integrated proteogenomic search database (iPtgxDB) types. Searches against standard and 20-fold smaller Ribo-seq data-informed custom iPtgxDBs confirmed 47 annotated SEPs and identified 11 additional novel SEPs. Epitope tagging and Western blot analysis confirmed the translation of 15 out of 20 SEPs selected from the translatome map. Overall, by combining MS and Ribo-seq approaches, the small proteome of S. meliloti was substantially expanded by 48 novel SEPs. Several of them are part of predicted operons and/or are conserved from Rhizobiaceae to Bacteria, suggesting important physiological functions.
Collapse
Affiliation(s)
- Lydia Hadjeras
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Benjamin Heiniger
- Molecular Ecology,
Agroscope and SIB Swiss Institute of Bioinformatics, 8046 Zurich, Switzerland
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Robina Scheuer
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Christian H Ahrens
- Molecular Ecology, Agroscope and SIB Swiss Institute of Bioinformatics, 8046 Zurich, Switzerland
| | - Cynthia M Sharma
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | | |
Collapse
|
10
|
Impact of Growth Rate on the Protein-mRNA Ratio in Pseudomonas aeruginosa. mBio 2023; 14:e0306722. [PMID: 36475772 PMCID: PMC9973009 DOI: 10.1128/mbio.03067-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our understanding of how bacterial pathogens colonize and persist during human infection has been hampered by the limited characterization of bacterial physiology during infection and a research bias toward in vitro, fast-growing bacteria. Recent research has begun to address these gaps in knowledge by directly quantifying bacterial mRNA levels during human infection, with the goal of assessing microbial community function at the infection site. However, mRNA levels are not always predictive of protein levels, which are the primary functional units of a cell. Here, we used carefully controlled chemostat experiments to examine the relationship between mRNA and protein levels across four growth rates in the bacterial pathogen Pseudomonas aeruginosa. We found a genome-wide positive correlation between mRNA and protein abundances across all growth rates, with genes required for P. aeruginosa viability having stronger correlations than nonessential genes. We developed a statistical method to identify genes whose mRNA abundances poorly predict protein abundances and calculated an RNA-to-protein (RTP) conversion factor to improve mRNA predictions of protein levels. The application of the RTP conversion factor to publicly available transcriptome data sets was highly robust, enabling the more accurate prediction of P. aeruginosa protein levels across strains and growth conditions. Finally, the RTP conversion factor was applied to P. aeruginosa human cystic fibrosis (CF) infection transcriptomes to provide greater insights into the functionality of this bacterium in the CF lung. This study addresses a critical problem in infection microbiology by providing a framework for enhancing the functional interpretation of bacterial human infection transcriptome data. IMPORTANCE Our understanding of bacterial physiology during human infection is limited by the difficulty in assessing bacterial function at the infection site. Recent studies have begun to address this question by quantifying bacterial mRNA levels in human-derived samples using transcriptomics. One challenge for these studies is the poor predictivity of mRNA for protein levels for some genes. Here, we addressed this challenge by measuring the transcriptomes and proteomes of P. aeruginosa grown at four growth rates. Our results revealed that the growth rate does not impact the genome-wide correlation of mRNA and protein levels. We used statistical methods to identify the genes for which mRNA and protein were poorly correlated and developed an RNA-to-protein (RTP) conversion factor that improved the predictivity of protein levels across strains and growth conditions. Our results provide new insights into mRNA-protein correlations and tools to enhance our understanding of bacterial physiology from transcriptome data.
Collapse
|
11
|
Hadjeras L, Bartel J, Maier LK, Maaß S, Vogel V, Svensson SL, Eggenhofer F, Gelhausen R, Müller T, Alkhnbashi OS, Backofen R, Becher D, Sharma CM, Marchfelder A. Revealing the small proteome of Haloferax volcanii by combining ribosome profiling and small-protein optimized mass spectrometry. MICROLIFE 2023; 4:uqad001. [PMID: 37223747 PMCID: PMC10117724 DOI: 10.1093/femsml/uqad001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 05/25/2023]
Abstract
In contrast to extensively studied prokaryotic 'small' transcriptomes (encompassing all small noncoding RNAs), small proteomes (here defined as including proteins ≤70 aa) are only now entering the limelight. The absence of a complete small protein catalogue in most prokaryotes precludes our understanding of how these molecules affect physiology. So far, archaeal genomes have not yet been analyzed broadly with a dedicated focus on small proteins. Here, we present a combinatorial approach, integrating experimental data from small protein-optimized mass spectrometry (MS) and ribosome profiling (Ribo-seq), to generate a high confidence inventory of small proteins in the model archaeon Haloferax volcanii. We demonstrate by MS and Ribo-seq that 67% of the 317 annotated small open reading frames (sORFs) are translated under standard growth conditions. Furthermore, annotation-independent analysis of Ribo-seq data showed ribosomal engagement for 47 novel sORFs in intergenic regions. A total of seven of these were also detected by proteomics, in addition to an eighth novel small protein solely identified by MS. We also provide independent experimental evidence in vivo for the translation of 12 sORFs (annotated and novel) using epitope tagging and western blotting, underlining the validity of our identification scheme. Several novel sORFs are conserved in Haloferax species and might have important functions. Based on our findings, we conclude that the small proteome of H. volcanii is larger than previously appreciated, and that combining MS with Ribo-seq is a powerful approach for the discovery of novel small protein coding genes in archaea.
Collapse
Affiliation(s)
- Lydia Hadjeras
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | | | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Verena Vogel
- Biology II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sarah L Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Florian Eggenhofer
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Teresa Müller
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Omer S Alkhnbashi
- Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Anita Marchfelder
- Biology II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
12
|
Malekos E, Carpenter S. Short open reading frame genes in innate immunity: from discovery to characterization. Trends Immunol 2022; 43:741-756. [PMID: 35965152 PMCID: PMC10118063 DOI: 10.1016/j.it.2022.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/27/2022]
Abstract
Next-generation sequencing (NGS) technologies have greatly expanded the size of the known transcriptome. Many newly discovered transcripts are classified as long noncoding RNAs (lncRNAs) which are assumed to affect phenotype through sequence and structure and not via translated protein products despite the vast majority of them harboring short open reading frames (sORFs). Recent advances have demonstrated that the noncoding designation is incorrect in many cases and that sORF-encoded peptides (SEPs) translated from these transcripts are important contributors to diverse biological processes. Interest in SEPs is at an early stage and there is evidence for the existence of thousands of SEPs that are yet unstudied. We hope to pique interest in investigating this unexplored proteome by providing a discussion of SEP characterization generally and describing specific discoveries in innate immunity.
Collapse
Affiliation(s)
- Eric Malekos
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Susan Carpenter
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA; Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
13
|
Fijalkowski I, Willems P, Jonckheere V, Simoens L, Van Damme P. Hidden in plain sight: challenges in proteomics detection of small ORF-encoded polypeptides. MICROLIFE 2022; 3:uqac005. [PMID: 37223358 PMCID: PMC10117744 DOI: 10.1093/femsml/uqac005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 05/25/2023]
Abstract
Genomic studies of bacteria have long pointed toward widespread prevalence of small open reading frames (sORFs) encoding for short proteins, <100 amino acids in length. Despite the mounting genomic evidence of their robust expression, relatively little progress has been made in their mass spectrometry-based detection and various blanket statements have been used to explain this observed discrepancy. In this study, we provide a large-scale riboproteogenomics investigation of the challenging nature of proteomic detection of such small proteins as informed by conditional translation data. A panel of physiochemical properties alongside recently developed mass spectrometry detectability metrics was interrogated to provide a comprehensive evidence-based assessment of sORF-encoded polypeptide (SEP) detectability. Moreover, a large-scale proteomics and translatomics compendium of proteins produced by Salmonella Typhimurium (S. Typhimurium), a model human pathogen, across a panel of growth conditions is presented and used in support of our in silico SEP detectability analysis. This integrative approach is used to provide a data-driven census of small proteins expressed by S. Typhimurium across growth phases and infection-relevant conditions. Taken together, our study pinpoints current limitations in proteomics-based detection of novel small proteins currently missing from bacterial genome annotations.
Collapse
Affiliation(s)
- Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Patrick Willems
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Laure Simoens
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Zhang Z, Li Y, Yuan W, Wang Z, Wan C. Proteomic-driven identification of short open reading frame-encoded peptides. Proteomics 2022; 22:e2100312. [PMID: 35384297 DOI: 10.1002/pmic.202100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022]
Abstract
Accumulating evidence has shown that a large number of short open reading frames (sORFs) also have the ability to encode proteins. The discovery of sORFs opens up a new research area, leading to the identification and functional study of sORF encoded peptides (SEPs) at the omics level. Besides bioinformatics prediction and ribosomal profiling, mass spectrometry (MS) has become a significant tool as it directly detects the sequence of SEPs. Though MS-based proteomics methods have proved to be effective for qualitative and quantitative analysis of SEPs, the detection of SEPs is still a great challenge due to their low abundance and short sequence. To illustrate the progress in method development, we described and discussed the main steps of large-scale proteomics identification of SEPs, including SEP extraction and enrichment, MS detection, data processing and quality control, quantification, and function prediction and validation methods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Yujie Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Wenqian Yuan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Zhiwei Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| |
Collapse
|
15
|
Leong AZX, Lee PY, Mohtar MA, Syafruddin SE, Pung YF, Low TY. Short open reading frames (sORFs) and microproteins: an update on their identification and validation measures. J Biomed Sci 2022; 29:19. [PMID: 35300685 PMCID: PMC8928697 DOI: 10.1186/s12929-022-00802-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
A short open reading frame (sORFs) constitutes ≤ 300 bases, encoding a microprotein or sORF-encoded protein (SEP) which comprises ≤ 100 amino acids. Traditionally dismissed by genome annotation pipelines as meaningless noise, sORFs were found to possess coding potential with ribosome profiling (RIBO-Seq), which unveiled sORF-based transcripts at various genome locations. Nonetheless, the existence of corresponding microproteins that are stable and functional was little substantiated by experimental evidence initially. With recent advancements in multi-omics, the identification, validation, and functional characterisation of sORFs and microproteins have become feasible. In this review, we discuss the history and development of an emerging research field of sORFs and microproteins. In particular, we focus on an array of bioinformatics and OMICS approaches used for predicting, sequencing, validating, and characterizing these recently discovered entities. These strategies include RIBO-Seq which detects sORF transcripts via ribosome footprints, and mass spectrometry (MS)-based proteomics for sequencing the resultant microproteins. Subsequently, our discussion extends to the functional characterisation of microproteins by incorporating CRISPR/Cas9 screen and protein–protein interaction (PPI) studies. Our review discusses not only detection methodologies, but we also highlight on the challenges and potential solutions in identifying and validating sORFs and their microproteins. The novelty of this review lies within its validation for the functional role of microproteins, which could contribute towards the future landscape of microproteomics.
Collapse
Affiliation(s)
- Alyssa Zi-Xin Leong
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500, Selangor, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Kute PM, Soukarieh O, Tjeldnes H, Trégouët DA, Valen E. Small Open Reading Frames, How to Find Them and Determine Their Function. Front Genet 2022; 12:796060. [PMID: 35154250 PMCID: PMC8831751 DOI: 10.3389/fgene.2021.796060] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Advances in genomics and molecular biology have revealed an abundance of small open reading frames (sORFs) across all types of transcripts. While these sORFs are often assumed to be non-functional, many have been implicated in physiological functions and a significant number of sORFs have been described in human diseases. Thus, sORFs may represent a hidden repository of functional elements that could serve as therapeutic targets. Unlike protein-coding genes, it is not necessarily the encoded peptide of an sORF that enacts its function, sometimes simply the act of translating an sORF might have a regulatory role. Indeed, the most studied sORFs are located in the 5′UTRs of coding transcripts and can have a regulatory impact on the translation of the downstream protein-coding sequence. However, sORFs have also been abundantly identified in non-coding RNAs including lncRNAs, circular RNAs and ribosomal RNAs suggesting that sORFs may be diverse in function. Of the many different experimental methods used to discover sORFs, the most commonly used are ribosome profiling and mass spectrometry. These can confirm interactions between transcripts and ribosomes and the production of a peptide, respectively. Extensions to ribosome profiling, which also capture scanning ribosomes, have further made it possible to see how sORFs impact the translation initiation of mRNAs. While high-throughput techniques have made the identification of sORFs less difficult, defining their function, if any, is typically more challenging. Together, the abundance and potential function of many of these sORFs argues for the necessity of including sORFs in gene annotations and systematically characterizing these to understand their potential functional roles. In this review, we will focus on the high-throughput methods used in the detection and characterization of sORFs and discuss techniques for validation and functional characterization.
Collapse
Affiliation(s)
- Preeti Madhav Kute
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Omar Soukarieh
- Department of Molecular Epidemiology Of Vascular and Brain Disorders, INSERM, BPH, U1219, University of Bordeaux, Bordeaux, France
| | - Håkon Tjeldnes
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - David-Alexandre Trégouët
- Department of Molecular Epidemiology Of Vascular and Brain Disorders, INSERM, BPH, U1219, University of Bordeaux, Bordeaux, France
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- *Correspondence: Eivind Valen,
| |
Collapse
|
17
|
Weidenbach K, Gutt M, Cassidy L, Chibani C, Schmitz RA. Small Proteins in Archaea, a Mainly Unexplored World. J Bacteriol 2022; 204:e0031321. [PMID: 34543104 PMCID: PMC8765429 DOI: 10.1128/jb.00313-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In recent years, increasing numbers of small proteins have moved into the focus of science. Small proteins have been identified and characterized in all three domains of life, but the majority remains functionally uncharacterized, lack secondary structure, and exhibit limited evolutionary conservation. While quite a few have already been described for bacteria and eukaryotic organisms, the amount of known and functionally analyzed archaeal small proteins is still very limited. In this review, we compile the current state of research, show strategies for systematic approaches for global identification of small archaeal proteins, and address selected functionally characterized examples. Besides, we document exemplarily for one archaeon the tool development and optimization to identify small proteins using genome-wide approaches.
Collapse
Affiliation(s)
- Katrin Weidenbach
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Miriam Gutt
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Liam Cassidy
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Cynthia Chibani
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
18
|
Ahrens CH, Wade JT, Champion MM, Langer JD. A Practical Guide to Small Protein Discovery and Characterization Using Mass Spectrometry. J Bacteriol 2022; 204:e0035321. [PMID: 34748388 PMCID: PMC8765459 DOI: 10.1128/jb.00353-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Small proteins of up to ∼50 amino acids are an abundant class of biomolecules across all domains of life. Yet due to the challenges inherent in their size, they are often missed in genome annotations, and are difficult to identify and characterize using standard experimental approaches. Consequently, we still know few small proteins even in well-studied prokaryotic model organisms. Mass spectrometry (MS) has great potential for the discovery, validation, and functional characterization of small proteins. However, standard MS approaches are poorly suited to the identification of both known and novel small proteins due to limitations at each step of a typical proteomics workflow, i.e., sample preparation, protease digestion, liquid chromatography, MS data acquisition, and data analysis. Here, we outline the major MS-based workflows and bioinformatic pipelines used for small protein discovery and validation. Special emphasis is placed on highlighting the adjustments required to improve detection and data quality for small proteins. We discuss both the unbiased detection of small proteins and the targeted analysis of small proteins of interest. Finally, we provide guidelines to prioritize novel small proteins, and an outlook on methods with particular potential to further improve comprehensive discovery and characterization of small proteins.
Collapse
Affiliation(s)
- Christian H. Ahrens
- Agroscope, Method Development and Analytics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Julian D. Langer
- Mass Spectrometry and Proteomics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Proteomics, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Chen L, Yang Y, Zhang Y, Li K, Cai H, Wang H, Zhao Q. The Small Open Reading Frame-Encoded Peptides: Advances in Methodologies and Functional Studies. Chembiochem 2021; 23:e202100534. [PMID: 34862721 DOI: 10.1002/cbic.202100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Indexed: 11/07/2022]
Abstract
Small open reading frames (sORFs) are an important class of genes with less than 100 codons. They were historically annotated as noncoding or even junk sequences. In recent years, accumulating evidence suggests that sORFs could encode a considerable number of polypeptides, many of which play important roles in both physiology and disease pathology. However, it has been technically challenging to directly detect sORF-encoded peptides (SEPs). Here, we discuss the latest advances in methodologies for identifying SEPs with mass spectrometry, as well as the progress on functional studies of SEPs.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Ying Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Yuanliang Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Kecheng Li
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510623, P. R. China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, P. R. China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
20
|
Fijalkowski I, Peeters MKR, Van Damme P. Small Protein Enrichment Improves Proteomics Detection of sORF Encoded Polypeptides. Front Genet 2021; 12:713400. [PMID: 34721520 PMCID: PMC8554064 DOI: 10.3389/fgene.2021.713400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
With the rapid growth in the number of sequenced genomes, genome annotation efforts became almost exclusively reliant on automated pipelines. Despite their unquestionable utility, these methods have been shown to underestimate the true complexity of the studied genomes, with small open reading frames (sORFs; ORFs typically considered shorter than 300 nucleotides) and, in consequence, their protein products (sORF encoded polypeptides or SEPs) being the primary example of a poorly annotated and highly underexplored class of genomic elements. With the advent of advanced translatomics such as ribosome profiling, reannotation efforts have progressed a great deal in providing translation evidence for numerous, previously unannotated sORFs. However, proteomics validation of these riboproteogenomics discoveries remains challenging due to their short length and often highly variable physiochemical properties. In this work we evaluate and compare tailored, yet easily adaptable, protein extraction methodologies for their efficacy in the extraction and concomitantly proteomics detection of SEPs expressed in the prokaryotic model pathogen Salmonella typhimurium (S. typhimurium). Further, an optimized protocol for the enrichment and efficient detection of SEPs making use of the of amphipathic polymer amphipol A8-35 and relying on differential peptide vs. protein solubility was developed and compared with global extraction methods making use of chaotropic agents. Given the versatile biological functions SEPs have been shown to exert, this work provides an accessible protocol for proteomics exploration of this fascinating class of small proteins.
Collapse
Affiliation(s)
- Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - Marlies K. R. Peeters
- BioBix, Department of Data Analysis and Mathematical Modelling, Ghent University, Gent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| |
Collapse
|
21
|
Peeters MKR, Baggerman G, Gabriels R, Pepermans E, Menschaert G, Boonen K. Ion Mobility Coupled to a Time-of-Flight Mass Analyzer Combined With Fragment Intensity Predictions Improves Identification of Classical Bioactive Peptides and Small Open Reading Frame-Encoded Peptides. Front Cell Dev Biol 2021; 9:720570. [PMID: 34604223 PMCID: PMC8484717 DOI: 10.3389/fcell.2021.720570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Bioactive peptides exhibit key roles in a wide variety of complex processes, such as regulation of body weight, learning, aging, and innate immune response. Next to the classical bioactive peptides, emerging from larger precursor proteins by specific proteolytic processing, a new class of peptides originating from small open reading frames (sORFs) have been recognized as important biological regulators. But their intrinsic properties, specific expression pattern and location on presumed non-coding regions have hindered the full characterization of the repertoire of bioactive peptides, despite their predominant role in various pathways. Although the development of peptidomics has offered the opportunity to study these peptides in vivo, it remains challenging to identify the full peptidome as the lack of cleavage enzyme specification and large search space complicates conventional database search approaches. In this study, we introduce a proteogenomics methodology using a new type of mass spectrometry instrument and the implementation of machine learning tools toward improved identification of potential bioactive peptides in the mouse brain. The application of trapped ion mobility spectrometry (tims) coupled to a time-of-flight mass analyzer (TOF) offers improved sensitivity, an enhanced peptide coverage, reduction in chemical noise and the reduced occurrence of chimeric spectra. Subsequent machine learning tools MS2PIP, predicting fragment ion intensities and DeepLC, predicting retention times, improve the database searching based on a large and comprehensive custom database containing both sORFs and alternative ORFs. Finally, the identification of peptides is further enhanced by applying the post-processing semi-supervised learning tool Percolator. Applying this workflow, the first peptidomics workflow combined with spectral intensity and retention time predictions, we identified a total of 167 predicted sORF-encoded peptides, of which 48 originating from presumed non-coding locations, next to 401 peptides from known neuropeptide precursors, linked to 66 annotated bioactive neuropeptides from within 22 different families. Additional PEAKS analysis expanded the pool of SEPs on presumed non-coding locations to 84, while an additional 204 peptides completed the list of peptides from neuropeptide precursors. Altogether, this study provides insights into a new robust pipeline that fuses technological advancements from different fields ensuring an improved coverage of the neuropeptidome in the mouse brain.
Collapse
Affiliation(s)
- Marlies K. R. Peeters
- BioBix, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Ralf Gabriels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Elise Pepermans
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Gerben Menschaert
- BioBix, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
- OHMX.bio, Ghent, Belgium
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, Mol, Belgium
| |
Collapse
|
22
|
Cassidy L, Kaulich PT, Maaß S, Bartel J, Becher D, Tholey A. Bottom-up and top-down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame-encoded peptides. Proteomics 2021; 21:e2100008. [PMID: 34145981 DOI: 10.1002/pmic.202100008] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 01/14/2023]
Abstract
The recent discovery of alternative open reading frames creates a need for suitable analytical approaches to verify their translation and to characterize the corresponding gene products at the molecular level. As the analysis of small proteins within a background proteome by means of classical bottom-up proteomics is challenging, method development for the analysis of small open reading frame encoded peptides (SEPs) have become a focal point for research. Here, we highlight bottom-up and top-down proteomics approaches established for the analysis of SEPs in both pro- and eukaryotes. Major steps of analysis, including sample preparation and (small) proteome isolation, separation and mass spectrometry, data interpretation and quality control, quantification, the analysis of post-translational modifications, and exploration of functional aspects of the SEPs by means of proteomics technologies are described. These methods do not exclusively cover the analytics of SEPs but simultaneously include the low molecular weight proteome, and moreover, can also be used for the proteome-wide analysis of proteolytic processing events.
Collapse
Affiliation(s)
- Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
23
|
Fuchs S, Kucklick M, Lehmann E, Beckmann A, Wilkens M, Kolte B, Mustafayeva A, Ludwig T, Diwo M, Wissing J, Jänsch L, Ahrens CH, Ignatova Z, Engelmann S. Towards the characterization of the hidden world of small proteins in Staphylococcus aureus, a proteogenomics approach. PLoS Genet 2021; 17:e1009585. [PMID: 34061833 PMCID: PMC8195425 DOI: 10.1371/journal.pgen.1009585] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/11/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023] Open
Abstract
Small proteins play essential roles in bacterial physiology and virulence, however, automated algorithms for genome annotation are often not yet able to accurately predict the corresponding genes. The accuracy and reliability of genome annotations, particularly for small open reading frames (sORFs), can be significantly improved by integrating protein evidence from experimental approaches. Here we present a highly optimized and flexible bioinformatics workflow for bacterial proteogenomics covering all steps from (i) generation of protein databases, (ii) database searches and (iii) peptide-to-genome mapping to (iv) visualization of results. We used the workflow to identify high quality peptide spectrum matches (PSMs) for small proteins (≤ 100 aa, SP100) in Staphylococcus aureus Newman. Protein extracts from S. aureus were subjected to different experimental workflows for protein digestion and prefractionation and measured with highly sensitive mass spectrometers. In total, 175 proteins with up to 100 aa (SP100) were identified. Out of these 24 (ranging from 9 to 99 aa) were novel and not contained in the used genome annotation.144 SP100 are highly conserved and were found in at least 50% of the publicly available S. aureus genomes, while 127 are additionally conserved in other staphylococci. Almost half of the identified SP100 were basic, suggesting a role in binding to more acidic molecules such as nucleic acids or phospholipids.
Collapse
Affiliation(s)
- Stephan Fuchs
- Robert Koch Institute, Methodenentwicklung und Forschungsinfrastruktur (MF), Berlin, Germany
| | - Martin Kucklick
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Erik Lehmann
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Alexander Beckmann
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Maya Wilkens
- Robert Koch Institute, Methodenentwicklung und Forschungsinfrastruktur (MF), Berlin, Germany
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Baban Kolte
- University of Hamburg, Institute of Biochemistry and Molecular Biology, Hamburg, Germany
| | - Ayten Mustafayeva
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Tobias Ludwig
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Maurice Diwo
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| | - Josef Wissing
- Helmholtz Center for Infection Research GmbH, Cellular Proteomics, Braunschweig, Germany
| | - Lothar Jänsch
- Helmholtz Center for Infection Research GmbH, Cellular Proteomics, Braunschweig, Germany
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Zoya Ignatova
- University of Hamburg, Institute of Biochemistry and Molecular Biology, Hamburg, Germany
| | - Susanne Engelmann
- University of Technical Sciences Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Braunschweig, Germany
| |
Collapse
|
24
|
Kaulich PT, Cassidy L, Bartel J, Schmitz RA, Tholey A. Multi-protease Approach for the Improved Identification and Molecular Characterization of Small Proteins and Short Open Reading Frame-Encoded Peptides. J Proteome Res 2021; 20:2895-2903. [PMID: 33760615 DOI: 10.1021/acs.jproteome.1c00115] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The identification of proteins below approximately 70-100 amino acids in bottom-up proteomics is still a challenging task due to the limited number of peptides generated by proteolytic digestion. This includes the short open reading frame-encoded peptides (SEPs), which are a subset of the small proteins that were not previously annotated or that are alternatively encoded. Here, we systematically investigated the use of multiple proteases (trypsin, chymotrypsin, LysC, LysargiNase, and GluC) in GeLC-MS/MS analysis to improve the sequence coverage and the number of identified peptides for small proteins, with a focus on SEPs, in the archaeon Methanosarcina mazei. Combining the data of all proteases, we identified 63 small proteins and additional 28 SEPs with at least two unique peptides, while only 55 small proteins and 22 SEP could be identified using trypsin only. For 27 small proteins and 12 SEPs, a complete sequence coverage was achieved. Moreover, for five SEPs, incorrectly predicted translation start points or potential in vivo proteolytic processing were identified, confirming the data of a previous top-down proteomics study of this organism. The results show clearly that a multi-protease approach allows to improve the identification and molecular characterization of small proteins and SEPs. LC-MS data: ProteomeXchange PXD023921.
Collapse
Affiliation(s)
- Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel 24105, Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel 24105, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald 17489, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel 24118, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel 24105, Germany
| |
Collapse
|
25
|
Fabre B, Combier JP, Plaza S. Recent advances in mass spectrometry-based peptidomics workflows to identify short-open-reading-frame-encoded peptides and explore their functions. Curr Opin Chem Biol 2021; 60:122-130. [PMID: 33401134 DOI: 10.1016/j.cbpa.2020.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Short open reading frame (sORF)-encoded polypeptides (SEPs) have recently emerged as key regulators of major cellular processes. Computational methods for the annotation of sORFs combined with transcriptomics and ribosome profiling approaches predicted the existence of tens of thousands of SEPs across the kingdom of life. Although, we still lack unambiguous evidence for most of them. The method of choice to validate the expression of SEPs is mass spectrometry (MS)-based peptidomics. Peptides are less abundant than proteins, which tends to hinder their detection. Therefore, optimization and enrichment methods are necessary to validate the existence of SEPs. In this article, we discuss the challenges for the detection of SEPs by MS and recent developments of biochemical approaches applied to the study of these peptides. We detail the advances made in the different key steps of a typical peptidomics workflow and highlight possible alternatives that have not been explored yet.
Collapse
Affiliation(s)
- Bertrand Fabre
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, UPS, CNRS, 31320, Auzeville-Tolosane, France.
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, UPS, CNRS, 31320, Auzeville-Tolosane, France
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, UPS, CNRS, 31320, Auzeville-Tolosane, France
| |
Collapse
|