1
|
Lottes EN, Ciger F, Bhattacharjee S, Timmins EA, Tete B, Tran T, Matta J, Patel AA, Cox DN. CCT and Cullin1 Regulate the TORC1 Pathway to Promote Dendritic Arborization in Health and Disease. Cells 2024; 13:1029. [PMID: 38920658 PMCID: PMC11201622 DOI: 10.3390/cells13121029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
The development of cell-type-specific dendritic arbors is integral to the proper functioning of neurons within their circuit networks. In this study, we examine the regulatory relationship between the cytosolic chaperonin CCT, key insulin pathway genes, and an E3 ubiquitin ligase (Cullin1) in dendritic development. CCT loss of function (LOF) results in dendritic hypotrophy in Drosophila Class IV (CIV) multi-dendritic larval sensory neurons, and CCT has recently been shown to fold components of the TOR (Target of Rapamycin) complex 1 (TORC1) in vitro. Through targeted genetic manipulations, we confirm that an LOF of CCT and the TORC1 pathway reduces dendritic complexity, while overexpression of key TORC1 pathway genes increases the dendritic complexity in CIV neurons. Furthermore, both CCT and TORC1 LOF significantly reduce microtubule (MT) stability. CCT has been previously implicated in regulating proteinopathic aggregation, thus, we examine CIV dendritic development in disease conditions as well. The expression of mutant Huntingtin leads to dendritic hypotrophy in a repeat-length-dependent manner, which can be rescued by Cullin1 LOF. Together, our data suggest that Cullin1 and CCT influence dendritic arborization through the regulation of TORC1 in both health and disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
2
|
Li F, Wu C, Wang G. Targeting NAD Metabolism for the Therapy of Age-Related Neurodegenerative Diseases. Neurosci Bull 2024; 40:218-240. [PMID: 37253984 PMCID: PMC10838897 DOI: 10.1007/s12264-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023] Open
Abstract
As the aging population continues to grow rapidly, age-related diseases are becoming an increasing burden on the healthcare system and a major concern for the well-being of elderly individuals. While aging is an inevitable process for all humans, it can be slowed down and age-related diseases can be treated or alleviated. Nicotinamide adenine dinucleotide (NAD) is a critical coenzyme or cofactor that plays a central role in metabolism and is involved in various cellular processes including the maintenance of metabolic homeostasis, post-translational protein modifications, DNA repair, and immune responses. As individuals age, their NAD levels decline, and this decrease has been suggested to be a contributing factor to the development of numerous age-related diseases, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In pursuit of healthy aging, researchers have investigated approaches to boost or maintain NAD levels. Here, we provide an overview of NAD metabolism and the role of NAD in age-related diseases and summarize recent progress in the development of strategies that target NAD metabolism for the treatment of age-related diseases, particularly neurodegenerative diseases.
Collapse
Affiliation(s)
- Feifei Li
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Chou Wu
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gelin Wang
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Pradhan SS, R SS, Kanikaram SP, V M DD, Pargaonkar A, Dandamudi RB, Sivaramakrishnan V. Metabolic deregulation associated with aging modulates protein aggregation in the yeast model of Huntington's disease. J Biomol Struct Dyn 2023; 42:10521-10538. [PMID: 37732342 DOI: 10.1080/07391102.2023.2257322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Huntington's disease is associated with increased CAG repeat resulting in an expanded polyglutamine tract in the protein Huntingtin (HTT) leading to its aggregation resulting in neurodegeneration. Previous studies have shown that N-terminal HTT with 46Q aggregated in the stationary phase but not the logarithmic phase in the yeast model of HD. We carried out a metabolomic analysis of logarithmic and stationary phase yeast model of HD expressing different polyQ lengths attached to N-terminal HTT tagged with enhanced green fluorescent protein (EGFP). The results show significant changes in the metabolic profile and deregulated pathways in stationary phase cells compared to logarithmic phase cells. Comparison of metabolic pathways obtained from logarithmic phase 46Q versus 25Q with those obtained for presymptomatic HD patients from our previous study and drosophila model of HD showed considerable overlap. The arginine biosynthesis pathway emerged as one of the key pathways that is common in stationary phase yeast compared to logarithmic phase and HD patients. Treatment of yeast with arginine led to a significant decrease, while transfer to arginine drop-out media led to a significant increase in the size of protein aggregates in both logarithmic and stationary phase yeast model of HD. Knockout of arginine transporters in the endoplasmic reticulum and vacuole led to a significant decrease in mutant HTT aggregation. Overall our results highlight arginine as a critical metabolite that modulates the aggregation of mutant HTT and disease progression in HD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Sai Swaroop R
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Sai Phalguna Kanikaram
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Datta Darshan V M
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| | - Ashish Pargaonkar
- Application Division, Agilent Technologies Ltd., Bengaluru, Karnataka, India
| | | | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, India
| |
Collapse
|
4
|
Lottes EN, Ciger FH, Bhattacharjee S, Timmins-Wilde EA, Tete B, Tran T, Matta J, Patel AA, Cox DN. CCT and Cullin1 regulate the TORC1 pathway to promote dendritic arborization in health and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551324. [PMID: 37577581 PMCID: PMC10418059 DOI: 10.1101/2023.07.31.551324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The development of cell-type-specific dendritic arbors is integral to the proper functioning of neurons within their circuit networks. In this study, we examine the regulatory relationship between the cytosolic chaperonin CCT, key insulin pathway genes, and an E3 ubiquitin ligase (Cullin1) in homeostatic dendritic development. CCT loss of function (LOF) results in dendritic hypotrophy in Drosophila Class IV (CIV) multidendritic larval sensory neurons, and CCT has recently been shown to fold components of the TOR (Target of Rapamycin) complex 1 (TORC1), in vitro. Through targeted genetic manipulations, we have confirmed that LOF of CCT and the TORC1 pathway reduces dendritic complexity, while overexpression of key TORC1 pathway genes increases dendritic complexity in CIV neurons. Both CCT and TORC1 LOF significantly reduce microtubule (MT) stability. CCT has been previously implicated in regulating proteinopathic aggregation, thus we examined CIV dendritic development in disease conditions as well. Expression of mutant Huntingtin leads to dendritic hypotrophy in a repeat-length-dependent manner, which can be rescued by TORC1 disinhibition via Cullin1 LOF. Together, our data suggest that Cullin1 and CCT influence dendritic arborization through regulation of TORC1 in both health and disease.
Collapse
Affiliation(s)
- Erin N. Lottes
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States
| | - Feyza H. Ciger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States
| | | | | | - Benoit Tete
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States
| | - Tommy Tran
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States
| | - Jais Matta
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States
| |
Collapse
|
5
|
Rand MD, Tennessen JM, Mackay TFC, Anholt RRH. Perspectives on the Drosophila melanogaster Model for Advances in Toxicological Science. Curr Protoc 2023; 3:e870. [PMID: 37639638 PMCID: PMC10463236 DOI: 10.1002/cpz1.870] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The use of Drosophila melanogaster for studies of toxicology has grown considerably in the last decade. The Drosophila model has long been appreciated as a versatile and powerful model for developmental biology and genetics because of its ease of handling, short life cycle, low cost of maintenance, molecular genetic accessibility, and availability of a wide range of publicly available strains and data resources. These features, together with recent unique developments in genomics and metabolomics, make the fly model especially relevant and timely for the development of new approach methodologies and movements toward precision toxicology. Here, we offer a perspective on how flies can be leveraged to identify risk factors relevant to environmental exposures and human health. First, we review and discuss fundamental toxicologic principles for experimental design with Drosophila. Next, we describe quantitative and systems genetics approaches to resolve the genetic architecture and candidate pathways controlling susceptibility to toxicants. Finally, we summarize the current state and future promise of the emerging field of Drosophila metabolomics for elaborating toxic mechanisms. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Matthew D. Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Trudy F. C. Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, South Carolina 29646, USA
| | - Robert R. H. Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, South Carolina 29646, USA
| |
Collapse
|
6
|
Liu X, Fang Y, Xu J, Yang T, Xu J, He J, Liu W, Yu X, Wen Y, Zhang N, Li C. Oxidative stress, dysfunctional energy metabolism, and destabilizing neurotransmitters altered the cerebral metabolic profile in a rat model of simulated heliox saturation diving to 4.0 MPa. PLoS One 2023; 18:e0282700. [PMID: 36917582 PMCID: PMC10013885 DOI: 10.1371/journal.pone.0282700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
The main objective of the present study was to determine metabolic profile changes in the brains of rats after simulated heliox saturated diving (HSD) to 400 meters of sea water compared to the blank controls. Alterations in the polar metabolome in the rat brain due to HSD were investigated in cortex, hippocampus, and striatum tissue samples by applying an NMR-based metabolomic approach coupled with biochemical detection in the cortex. The reduction in glutathione and taurine levels may hypothetically boost antioxidant defenses during saturation diving, which was also proven by the increased malondialdehyde level, the decreased superoxide dismutase, and the decreased glutathione peroxidase in the cortex. The concomitant decrease in aerobic metabolic pathways and anaerobic metabolic pathways comprised downregulated energy metabolism, which was also proven by the biochemical quantification of the metabolic enzymes Na-K ATPase and LDH in cerebral cortex tissue. The significant metabolic abnormalities of amino acid neurotransmitters, such as GABA, glycine, and aspartate, decreased aromatic amino acids, including tyrosine and phenylalanine, both of which are involved in the metabolism of dopamine and noradrenaline, which are downregulated in the cortex. Particularly, a decline in the level of N-acetyl aspartate is associated with neuronal damage. In summary, hyperbaric decompression of a 400 msw HSD affected the brain metabolome in a rat model, potentially including a broad range of disturbing amino acid homeostasis, metabolites related to oxidative stress and energy metabolism, and destabilizing neurotransmitter components. These disturbances may contribute to the neurochemical and neurological phenotypes of HSD.
Collapse
Affiliation(s)
- Xia Liu
- Department of Diving and Hyperbaric Medicine, Navy Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yiqun Fang
- Department of Diving and Hyperbaric Medicine, Navy Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
- * E-mail: (YF); (CL)
| | - Jiajun Xu
- Department of Diving and Hyperbaric Medicine, Navy Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Tao Yang
- Department of Diving and Hyperbaric Medicine, Navy Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ji Xu
- Department of Diving and Hyperbaric Medicine, Navy Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jia He
- Department of Diving and Hyperbaric Medicine, Navy Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, Navy Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xuhua Yu
- Department of Diving and Hyperbaric Medicine, Navy Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yukun Wen
- Department of Diving and Hyperbaric Medicine, Navy Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Naixia Zhang
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ci Li
- Department of Diving and Hyperbaric Medicine, Navy Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai, China
- * E-mail: (YF); (CL)
| |
Collapse
|
7
|
Yang X, Zhang X, Shu X, Zhang W, Kai J, Tang M, Gong J, Yang J, Lin J, Chai Y, Liu J. Effects of multi-walled carbon nanotubes in soil on earthworm growth and reproduction, enzymatic activities, and metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114158. [PMID: 36228358 DOI: 10.1016/j.ecoenv.2022.114158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Increased production and environmental release of multi-walled carbon nanotubes (MWCNTs) increase soil exposure and potential risk to earthworms. However, MWCNT toxicity to earthworms remains unclear, with some studies identifying negative effects and others negligible effects. In this study, to determine whether exposure to MWCNTs negatively affects earthworms and to elucidate possible mechanisms of toxicity, earthworms were exposed to sublethal soil concentrations of MWCNTs (10, 50, and 100 mg/kg) for 28 days. Earthworm growth and reproduction, activities of cytochrome P450 (CYP) isoforms (1A2, 2C9, and 3A4) and antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transferase (GST)), and metabolomics were determined. Effects of MWCNTs on earthworms depended on exposure concentration. Exposure to MWCNTs did not significantly affect growth and reproduction of individual earthworms. Exposure to 50 mg/kg MWCNTs significantly increased activities of CYP2C9, CYP3A4, SOD, CAT, and GST but clearly reduced levels of L-aspartate, L-asparagine, and glutamine. With exposure to 100 mg/kg MWCNTs, toxic effects on earthworms were observed, with significant inhibition in activities of CYP isoenzymes and SOD, significant reductions in L-aspartate, L-asparagine, glutamine, and tryptophan, and simultaneous accumulations of citrate, isocitrate, fumarate, 2-oxoglutarate, pyruvate, D-galactose, carbamoyl phosphate, formyl anthranilate, hypoxanthine, and xanthine. Results suggest that toxicity of MWCNTs to earthworms is associated with reduced detoxification capacity, excessive oxidative stress, and disturbance of multiple metabolic pathways, including amino acids metabolism, the tricarboxylic acid cycle, pyruvate metabolism, D-galactose metabolism, and purine metabolism. The study provides new insights to better understand and predict the toxicity of MWCNTs in soil.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China.
| | - Xuemei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Xiao Shu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Wei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Jianrong Kai
- Institute of Quality Standard and Testing Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750000, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Mingfeng Tang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China.
| | - Jiuping Gong
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Junying Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Junjie Lin
- Institute of Quality Standard and Testing Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750000, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Yong Chai
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Jianfei Liu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| |
Collapse
|
8
|
Bénit P, Goncalves J, El Khoury R, Rak M, Favier J, Gimenez-Roqueplo AP, Rustin P. Succinate Dehydrogenase, Succinate, and Superoxides: A Genetic, Epigenetic, Metabolic, Environmental Explosive Crossroad. Biomedicines 2022; 10:1788. [PMID: 35892689 PMCID: PMC9394281 DOI: 10.3390/biomedicines10081788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Research focused on succinate dehydrogenase (SDH) and its substrate, succinate, culminated in the 1950s accompanying the rapid development of research dedicated to bioenergetics and intermediary metabolism. This allowed researchers to uncover the implication of SDH in both the mitochondrial respiratory chain and the Krebs cycle. Nowadays, this theme is experiencing a real revival following the discovery of the role of SDH and succinate in a subset of tumors and cancers in humans. The aim of this review is to enlighten the many questions yet unanswered, ranging from fundamental to clinically oriented aspects, up to the danger of the current use of SDH as a target for a subclass of pesticides.
Collapse
Affiliation(s)
- Paule Bénit
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (P.B.); (M.R.)
| | - Judith Goncalves
- Paris Centre de Recherche Cardiovasculaire (PARCC), Inserm, Université Paris Cité, F-75015 Paris, France; (J.G.); (J.F.)
| | - Riyad El Khoury
- Department of Pathology and Laboratory Medicine, Neuromuscular Diagnostic Laboratory, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Malgorzata Rak
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (P.B.); (M.R.)
| | - Judith Favier
- Paris Centre de Recherche Cardiovasculaire (PARCC), Inserm, Université Paris Cité, F-75015 Paris, France; (J.G.); (J.F.)
| | - Anne-Paule Gimenez-Roqueplo
- Département de Médecine Génomique des Tumeurs et des Cancers, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, F-75015 Paris, France;
| | - Pierre Rustin
- NeuroDiderot, Inserm, Université Paris Cité, F-75019 Paris, France; (P.B.); (M.R.)
| |
Collapse
|
9
|
Tashlitsky VN, Artiukhov AV, Fedorova NV, Sukonnikov MA, Ksenofontov AL, Bunik VI, Baratova LA. Analysis of Content of 2-Oxoacids in Rat Brain Extracts Using High-Performance Liquid Chromatography. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:356-365. [PMID: 35527374 DOI: 10.1134/s0006297922040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
2-Oxoacids are involved in a number of important metabolic processes and can be used as biomarkers in some human diseases. A new optimized method for quantification of 2,4-dinitrophenylhydrazine derivatives of 2-oxoacids using high-performance liquid chromatography was developed based on available techniques for quantification of 2-oxoacids in mammalian brain. The use of the 2,4-dinitrophenylhydrazine derivatives of 2-oxoacids was shown to be more advantageous in comparison with the previously used phenylhydrazine derivatives, due to a high chemical stability of the former. Here, we determined the concentrations of pyruvate, glyoxylate, 2-oxoglutarate, 2-oxomalonate, and 4-methylthio-2-oxobutyrate in the methanol/acetic acid extracts of the rat brain using the developed method, as well discussed the procedures for the sample preparation in analysis of mammalian brain extracts. The validation parameters of the method demonstrated that the quantification limits for each of the analyzed of 2-oxoacids was 2 nmol/mg tissue. The developed method facilitates identification of subtle changes in the tissue and cellular content of 2-oxoacids as (patho)physiological biomarkers of metabolism in mammalian tissues.
Collapse
Affiliation(s)
- Vadim N Tashlitsky
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Artem V Artiukhov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Biochemistry, Sechenov University, Moscow, 119991, Russia
| | - Natalia V Fedorova
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maxim A Sukonnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander L Ksenofontov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Victoria I Bunik
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Biochemistry, Sechenov University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ludmila A Baratova
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
10
|
Solana-Manrique C, Sanz FJ, Torregrosa I, Palomino-Schätzlein M, Hernández-Oliver C, Pineda-Lucena A, Paricio N. Metabolic Alterations in a Drosophila Model of Parkinson's Disease Based on DJ-1 Deficiency. Cells 2022; 11:cells11030331. [PMID: 35159141 PMCID: PMC8834223 DOI: 10.3390/cells11030331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second-most common neurodegenerative disorder, whose physiopathology is still unclear. Moreover, there is an urgent need to discover new biomarkers and therapeutic targets to facilitate its diagnosis and treatment. Previous studies performed in PD models and samples from PD patients already demonstrated that metabolic alterations are associated with this disease. In this context, the aim of this study is to provide a better understanding of metabolic disturbances underlying PD pathogenesis. To achieve this goal, we used a Drosophila PD model based on inactivation of the DJ-1β gene (ortholog of human DJ-1). Metabolomic analyses were performed in 1-day-old and 15-day-old DJ-1β mutants and control flies using 1H nuclear magnetic resonance spectroscopy, combined with expression and enzymatic activity assays of proteins implicated in altered pathways. Our results showed that the PD model flies exhibited protein metabolism alterations, a shift fromthe tricarboxylic acid cycle to glycolytic pathway to obtain ATP, together with an increase in the expression of some urea cycle enzymes. Thus, these metabolic changes could contribute to PD pathogenesis and might constitute possible therapeutic targets and/or biomarkers for this disease.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | - Isabel Torregrosa
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | | | - Carolina Hernández-Oliver
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (C.H.-O.); (A.P.-L.)
| | - Antonio Pineda-Lucena
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (C.H.-O.); (A.P.-L.)
- Programa de Terapias Moleculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
- Correspondence: ; Tel.: +34-96-354-3005; Fax: +34-96-354-3029
| |
Collapse
|
11
|
Lundt S, Ding S. NAD + Metabolism and Diseases with Motor Dysfunction. Genes (Basel) 2021; 12:1776. [PMID: 34828382 PMCID: PMC8625820 DOI: 10.3390/genes12111776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases result in the progressive deterioration of the nervous system, with motor and cognitive impairments being the two most observable problems. Motor dysfunction could be caused by motor neuron diseases (MNDs) characterized by the loss of motor neurons, such as amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease, or other neurodegenerative diseases with the destruction of brain areas that affect movement, such as Parkinson's disease and Huntington's disease. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in the human body and is involved with numerous cellular processes, including energy metabolism, circadian clock, and DNA repair. NAD+ can be reversibly oxidized-reduced or directly consumed by NAD+-dependent proteins. NAD+ is synthesized in cells via three different paths: the de novo, Preiss-Handler, or NAD+ salvage pathways, with the salvage pathway being the primary producer of NAD+ in mammalian cells. NAD+ metabolism is being investigated for a role in the development of neurodegenerative diseases. In this review, we discuss cellular NAD+ homeostasis, looking at NAD+ biosynthesis and consumption, with a focus on the NAD+ salvage pathway. Then, we examine the research, including human clinical trials, focused on the involvement of NAD+ in MNDs and other neurodegenerative diseases with motor dysfunction.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
12
|
Maravat M, Bertrand M, Landon C, Fayon F, Morisset-Lopez S, Sarou-Kanian V, Decoville M. Complementary Nuclear Magnetic Resonance-Based Metabolomics Approaches for Glioma Biomarker Identification in a Drosophila melanogaster Model. J Proteome Res 2021; 20:3977-3991. [PMID: 34286978 DOI: 10.1021/acs.jproteome.1c00304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human malignant gliomas are the most common type of primary brain tumor. Composed of glial cells and their precursors, they are aggressive and highly invasive, leading to a poor prognosis. Due to the difficulty of surgically removing tumors and their resistance to treatments, novel therapeutic approaches are needed to improve patient life expectancy and comfort. Drosophila melanogaster is a compelling genetic model to better understanding human neurological diseases owing to its high conservation in signaling pathways and cellular content of the brain. Here, glioma has been induced in Drosophila by co-activating the epidermal growth factor receptor and the phosphatidyl-inositol-3 kinase signaling pathways. Complementary nuclear magnetic resonance (NMR) techniques were used to obtain metabolic profiles in the third instar larvae brains. Fresh organs were directly studied by 1H high resolution-magic angle spinning (HR-MAS) NMR, and brain extracts were analyzed by solution-state 1H-NMR. Statistical analyses revealed differential metabolic signatures, impacted metabolic pathways, and glioma biomarkers. Each method was efficient to determine biomarkers. The highlighted metabolites including glucose, myo-inositol, sarcosine, glycine, alanine, and pyruvate for solution-state NMR and proline, myo-inositol, acetate, and glucose for HR-MAS show very good performances in discriminating samples according to their nature with data mining based on receiver operating characteristic curves. Combining results allows for a more complete view of induced disturbances and opens the possibility of deciphering the biochemical mechanisms of these tumors. The identified biomarkers provide a means to rebalance specific pathways through targeted metabolic therapy and to study the effects of pharmacological treatments using Drosophila as a model organism.
Collapse
Affiliation(s)
- Marion Maravat
- CNRS, CEMHTI UPR3079, Université d'Orléans, F-45071 Orléans, France
| | | | - Céline Landon
- CNRS, CBM UPR4301, Université d'Orléans, F-45071 Orléans, France
| | - Franck Fayon
- CNRS, CEMHTI UPR3079, Université d'Orléans, F-45071 Orléans, France
| | | | | | | |
Collapse
|
13
|
Hua D, Desaire H. Improved Discrimination of Disease States Using Proteomics Data with the Updated Aristotle Classifier. J Proteome Res 2021; 20:2823-2829. [PMID: 33909976 DOI: 10.1021/acs.jproteome.1c00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry data sets from omics studies are an optimal information source for discriminating patients with disease and identifying biomarkers. Thousands of proteins or endogenous metabolites can be queried in each analysis, spanning several orders of magnitude in abundance. Machine learning tools that effectively leverage these data to accurately identify disease states are in high demand. While mass spectrometry data sets are rich with potentially useful information, using the data effectively can be challenging because of missing entries in the data sets and because the number of samples is typically much smaller than the number of features, two challenges that make machine learning difficult. To address this problem, we have modified a new supervised classification tool, the Aristotle Classifier, so that omics data sets can be better leveraged for identifying disease states. The optimized classifier, AC.2021, is benchmarked on multiple data sets against its predecessor and two leading supervised classification tools, Support Vector Machine (SVM) and XGBoost. The new classifier, AC.2021, outperformed existing tools on multiple tests using proteomics data. The underlying code for the classifier, provided herein, would be useful for researchers who desire improved classification accuracy when using their omics data sets to identify disease states.
Collapse
Affiliation(s)
- David Hua
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|