1
|
Roman-Ramos H, Ho PL. Current Technologies in Snake Venom Analysis and Applications. Toxins (Basel) 2024; 16:458. [PMID: 39591213 PMCID: PMC11598588 DOI: 10.3390/toxins16110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
This comprehensive review explores the cutting-edge advancements in snake venom research, focusing on the integration of proteomics, genomics, transcriptomics, and bioinformatics. Highlighting the transformative impact of these technologies, the review delves into the genetic and ecological factors driving venom evolution, the complex molecular composition of venoms, and the regulatory mechanisms underlying toxin production. The application of synthetic biology and multi-omics approaches, collectively known as venomics, has revolutionized the field, providing deeper insights into venom function and its therapeutic potential. Despite significant progress, challenges such as the functional characterization of toxins and the development of cost-effective antivenoms remain. This review also discusses the future directions of venom research, emphasizing the need for interdisciplinary collaborations and new technologies (mRNAs, cryo-electron microscopy for structural determinations of toxin complexes, synthetic biology, and other technologies) to fully harness the biomedical potential of venoms and toxins from snakes and other animals.
Collapse
Affiliation(s)
- Henrique Roman-Ramos
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil;
| | - Paulo Lee Ho
- Centro Bioindustrial, Instituto Butantan, São Paulo 05503-900, SP, Brazil
| |
Collapse
|
2
|
Wang CR, McFarlane LO, Pukala TL. Exploring snake venoms beyond the primary sequence: From proteoforms to protein-protein interactions. Toxicon 2024; 247:107841. [PMID: 38950738 DOI: 10.1016/j.toxicon.2024.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Snakebite envenomation has been a long-standing global issue that is difficult to treat, largely owing to the flawed nature of current immunoglobulin-based antivenom therapy and the complexity of snake venoms as sophisticated mixtures of bioactive proteins and peptides. Comprehensive characterisation of venom compositions is essential to better understanding snake venom toxicity and inform effective and rationally designed antivenoms. Additionally, a greater understanding of snake venom composition will likely unearth novel biologically active proteins and peptides that have promising therapeutic or biotechnological applications. While a bottom-up proteomic workflow has been the main approach for cataloguing snake venom compositions at the toxin family level, it is unable to capture snake venom heterogeneity in the form of protein isoforms and higher-order protein interactions that are important in driving venom toxicity but remain underexplored. This review aims to highlight the importance of understanding snake venom heterogeneity beyond the primary sequence, in the form of post-translational modifications that give rise to different proteoforms and the myriad of higher-order protein complexes in snake venoms. We focus on current top-down proteomic workflows to identify snake venom proteoforms and further discuss alternative or novel separation, instrumentation, and data processing strategies that may improve proteoform identification. The current higher-order structural characterisation techniques implemented for snake venom proteins are also discussed; we emphasise the need for complementary and higher resolution structural bioanalytical techniques such as mass spectrometry-based approaches, X-ray crystallography and cryogenic electron microscopy, to elucidate poorly characterised tertiary and quaternary protein structures. We envisage that the expansion of the snake venom characterisation "toolbox" with top-down proteomics and high-resolution protein structure determination techniques will be pivotal in advancing structural understanding of snake venoms towards the development of improved therapeutic and biotechnology applications.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Lewis O McFarlane
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
3
|
Miyamoto JG, Kitano ES, Zelanis A, Nachtigall PG, Junqueira-de-Azevedo I, Sant'Anna SS, Lauria da Silva R, Bersanetti PA, Carmona AK, Barbosa Pereira PJ, Serrano SMT, Vilela Oliva ML, Tashima AK. A novel metalloproteinase-derived cryptide from Bothrops cotiara venom inhibits angiotensin-converting enzyme activity. Biochimie 2024; 216:90-98. [PMID: 37839625 DOI: 10.1016/j.biochi.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
Snake venoms are primarily composed of proteins and peptides, which selectively interact with specific molecular targets, disrupting prey homeostasis. Identifying toxins and the mechanisms involved in envenoming can lead to the discovery of new drugs based on natural peptide scaffolds. In this study, we used mass spectrometry-based peptidomics to sequence 197 peptides in the venom of Bothrops cotiara, including a novel 7-residue peptide derived from a snake venom metalloproteinase. This peptide, named Bc-7a, features a pyroglutamic acid at the N-terminal and a PFR motif at the C-terminal, homologous to bradykinin. Using FRET (fluorescence resonance energy transfer) substrate assays, we demonstrated that Bc-7a strongly inhibits the two domains of angiotensin converting enzyme (Ki < 1 μM). Our findings contribute to the repertoire of biologically active peptides from snake venoms capable of inhibiting angiotensin-converting enzyme (ACE), beyond current known structural motifs and precursors. In summary, we report a novel snake venom peptide with ACE inhibitory activity, suggesting its potential contribution to the hypotensive effect observed in envenomation.
Collapse
Affiliation(s)
- Jackson Gabriel Miyamoto
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Eduardo Shigueo Kitano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, SP, 05503-900, São Paulo, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São José dos Campos, Brazil
| | - Pedro Gabriel Nachtigall
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, SP, 05503-900, São Paulo, Brazil
| | - Inácio Junqueira-de-Azevedo
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, SP, 05503-900, São Paulo, Brazil
| | | | - Rogério Lauria da Silva
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, SP, 05503-900, São Paulo, Brazil
| | - Maria Luiza Vilela Oliva
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Abu Aisheh M, Kayili HM, Numanoglu Cevik Y, Kanat MA, Salih B. Composition characterization of various viperidae snake venoms using MS-based proteomics N-glycoproteomics and N-glycomics. Toxicon 2023; 235:107328. [PMID: 37884129 DOI: 10.1016/j.toxicon.2023.107328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Viperidae snake species is widely abundant and responsible for most envenomation cases in Turkey. The structural and compositional profiles of snake venom have been investigated to study the venom component variation across different species and to profile the venom biological activity variation against prey. In this context, we used proteomics, glycoproteomics and glycomics strategies to characterize the protein, glycoproteins and glycan structural and compositional profiles of various snake venoms in the Viperidae family. Moreover, we compared these profiles using the downstream bioinformatics and machine learning classification modules. The overall mass spectrometry profiles identified 144 different proteins, 36 glycoproteins and 78 distinct N-glycan structures varying in composition across the five venoms. A high amount of the characterized proteins belongs to the glycosylated protein family Trypsin-like serine protease (Tryp_SPc), Disintegrin (DISIN), and ADAM Cysteine-Rich (ACR). Most identified N-glycans have a complex chain carrying galactosylated N-glycans abundantly. The glycan composition data obtained from glycoproteomics aligns consistently with the findings from glycomics. The clustering and principal component analyses (PCA) illustrated the composition-based similarities and differences between each snake venom species' proteome, glycoproteome and glycan profiles. Specifically, the N-glycan profiles of M. xanthina (Mx) and V. a. ammodytes (Vaa) venoms were identical and difficult to differentiate; in contrast, their proteome profiles were distinct. Interestingly, the variety of the proteins across the species highlighted the impact of glycosylation on the diversity of the glycosylated protein families. This proposed high throughput approach provides accurate and comprehensive profiles of the composition and function of various Viperidae snake venoms.
Collapse
Affiliation(s)
- Marwa Abu Aisheh
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey
| | - Haci Mehmet Kayili
- Department of Medical Engineering, Faculty of Engineering, Karabük University, 78000, Karabük, Turkey
| | - Yasemin Numanoglu Cevik
- Microbiology Reference Laboratory, Turkish Public Health Institute, Ministery of Health, 06430, Ankara, Turkey
| | - Mehmet Ali Kanat
- Microbiology and Reference Laboratory and Biological Products Department, General Directorate of Public Health, Minister of Health, 06430, Ankara, Turkey
| | - Bekir Salih
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey.
| |
Collapse
|
5
|
Sialic acid-containing glycans play a role in the activity of snake venom proteases. Biochimie 2023; 204:140-153. [PMID: 36210615 DOI: 10.1016/j.biochi.2022.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Structural variability is a feature of snake venom proteins, and glycosylation is a post-translational modification that contributes to the diversification of venom proteomes. Studies by our group have shown that Bothrops venoms are distinctly defined by their glycoprotein content, and that most hybrid/complex N-glycans identified in these venoms contain sialic acid. Considering that metalloproteases and serine proteases are abundant components of Bothrops venoms and essential in the envenomation process, and that these enzymes contain several glycosylation sites, the role of sialic acid in venom proteolytic activity was evaluated. Here we show that removal of sialic acid by treatment of nine Bothrops venoms with neuraminidase (i) altered the pattern of gelatinolysis in zymography of most venoms and reduced the gelatinolytic activity of all venoms, (ii) decreased the proteolytic activity of some venoms on fibrinogen and the clotting activity of human plasma of all venoms, and (iii) altered the proteolysis profile of plasma proteins by B. jararaca venom, suggesting that sialic acid may play a role in the interaction of proteases with their protein substrates. In contrast, the profile of venom amidolytic activity on Bz-Arg-pNA did not change after removal of sialic acid, indicating that this monosaccharide is not essential in N-glycans of serine proteases acting on small substrates. In summary, these results expand the knowledge about the variability of the subproteomes of Bothrops venom proteases, and for the first time point to the importance of carbohydrate chains containing sialic acid in the enzymatic activities of venom proteases relevant in human envenomation.
Collapse
|
6
|
Fernandes FF, Moraes JR, Santos JLD, Soares TG, Gouveia VJP, Matavel ACS, Borges WDC, Cordeiro MDN, Figueiredo SG, Borges MH. Comparative venomic profiles of three spiders of the genus Phoneutria. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210042. [PMID: 35283937 PMCID: PMC8875809 DOI: 10.1590/1678-9199-jvatitd-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Spider venoms induce different physio-pharmacological effects by binding
with high affinity on molecular targets, therefore being of biotechnological
interest. Some of these toxins, acting on different types of ion channels,
have been identified in the venom of spiders of the genus
Phoneutria, mainly from P.
nigriventer. In spite of the pharmaceutical potential demonstrated
by P. nigriventer toxins, there is limited information on
molecules from venoms of the same genus, as their toxins remain poorly
characterized. Understanding this diversity and clarifying the differences
in the mechanisms of action of spider toxins is of great importance for
establishing their true biotechnological potential. This prompted us to
compare three different venoms of the Phoneutria genus:
P. nigriventer (Pn-V), P. eickstedtae
(Pe-V) and P. pertyi (Pp-V). Methods: Biochemical and functional comparison of the venoms were carried out by
SDS-PAGE, HPLC, mass spectrometry, enzymatic activities and
electrophysiological assays (whole-cell patch clamp). Results: The employed approach revealed that all three venoms had an overall
similarity in their components, with only minor differences. The presence of
a high number of similar proteins was evident, particularly toxins in the
mass range of ~6.0 kDa. Hyaluronidase and proteolytic activities were
detected in all venoms, in addition to isoforms of the toxins Tx1 and Tx2-6.
All Tx1 isoforms blocked Nav1.6 ion currents, with slight differences. Conclusion: Our findings showed that Pn-V, Pe-V and Pp-V are highly similar concerning
protein composition and enzymatic activities, containing isoforms of the
same toxins sharing high sequence homology, with minor modifications.
However, these structural and functional variations are very important for
venom diversity. In addition, our findings will contribute to the
comprehension of the molecular diversity of the venoms of the other species
from Phoneutria genus, exposing their biotechnological
potential as a source for searching for new active molecules.
Collapse
|
7
|
Andrade-Silva D, Nishiyama MY, Stuginski DR, Zelanis A, Serrano SMT. The distinct N-terminomes of Bothrops jararaca newborn and adult venoms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140643. [PMID: 33722654 DOI: 10.1016/j.bbapap.2021.140643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
Using approaches of transcriptomics and proteomics we have shown that the phenotype of Bothrops jararaca venom undergoes a significant rearrangement upon neonate to adult transition. Most regulatory processes in biology are intrinsically related to modifications of protein structure, function, and abundance. However, it is unclear to which extent intrinsic proteolysis affects toxins and snake venom phenotypes upon ontogenesis. Here we assessed the natural N-terminome of Bothrops jararaca newborn and adult venoms and explored the degree of N-terminal protein truncation in ontogenetic-based proteome variation. To this end we applied the Terminal Amine Isotopic Labeling of Substrates (TAILS) technology to characterize venom collected in the presence of proteinase inhibitors. We identified natural N-terminal sequences in the newborn (71) and adult (84) venoms, from which only 37 were common to both. However, truncated toxins were found in higher number in the newborn (212) than in the adult (140) venom. Moreover, sequences N-terminally blocked by pyroglutamic acid were identified in the newborn (55) and adult (49) venoms. Most toxin classes identified by their natural N-terminal sequences showed a similar number of unique peptides in the newborn and adult venoms, however, those of serine proteinases and C-type lectins were more abundant in the adult venom. Truncated sequences from at least ten toxin classes were detected, however the catalytic and cysteine-rich domains of metalloproteinases were the most prone to proteolysis, mainly in the newborn venom. Our results underscore the pervasiveness of truncations in most toxin classes and highlight variable post-translational events in newborn and adult venoms.
Collapse
Affiliation(s)
- Débora Andrade-Silva
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | - Milton Y Nishiyama
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | | | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo, (ICT-UNIFESP), São José dos Campos, SP, Brazil
| | - Solange M T Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil.
| |
Collapse
|