1
|
Schwarz MCR, Moskaluk AE, Daniels JB, VandeWoude S, Reynolds MM. Current Analytical Methods and Challenges for the Clinical Diagnosis of Invasive Pulmonary Aspergillosis Infection. J Fungi (Basel) 2024; 10:829. [PMID: 39728325 DOI: 10.3390/jof10120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
In the last decade, pulmonary fungal infections such as invasive pulmonary aspergillosis (IPA) have increased in incidence due to the increased number of immunocompromised individuals. This increase is especially problematic when considering mortality rates associated with IPA are upwards of 70%. This high mortality rate is due to, in part, the length of time it takes to diagnose a patient with IPA. When diagnosed early, mortality rates of IPA decrease by as much as 30%. In this review, we discuss current technologies employed in both medical and research laboratories to diagnose IPA, including culture, imaging, polymerase chain reaction, peptide nucleic acid-fluorescence in situ hybridization, enzyme-linked immunosorbent assay, lateral flow assay, and liquid chromatography mass spectrometry. For each technique, we discuss both promising results and potential areas for improvement that would lead to decreased diagnosis time for patients suspected of contracting IPA. Further study into methods that offer increased speed and both analytical and clinical sensitivity to decrease diagnosis time for IPA is warranted.
Collapse
Affiliation(s)
- Madeline C R Schwarz
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO 80523, USA
| | - Alex E Moskaluk
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada
| | - Joshua B Daniels
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA
| | - Melissa M Reynolds
- Department of Chemistry, Colorado State University, 1801 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
Suwanchaikasem P, Rattanapisit K, Strasser R, Phoolcharoen W. Quality control in SARS-CoV-2 RBD-Fc vaccine production using LC-MS to confirm strain selection and detect contaminations from other strains. Sci Rep 2024; 14:9629. [PMID: 38671013 PMCID: PMC11053075 DOI: 10.1038/s41598-024-59860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing outbreak, disrupting human life worldwide. Vaccine development was prioritized to obtain a biological substance for combating the viral pathogen and lessening disease severity. In vaccine production, biological origin and relevant materials must be carefully examined for potential contaminants in conformity with good manufacturing practice. Due to fast mutation, several SARS-CoV-2 variants and sublineages have been identified. Currently, most of COVID-19 vaccines are developed based on the protein sequence of the Wuhan wild type strain. New vaccines specific for emerging SARS-CoV-2 strains are continuously needed to tackle the incessant evolution of the virus. Therefore, in vaccine development and production, a reliable method to identify the nature of subunit vaccines is required to avoid cross-contamination. In this study, liquid chromatography-mass spectrometry using quadrupole-time of flight along with tryptic digestion was developed for distinguishing protein materials derived from different SARS-CoV-2 strains. After analyzing the recombinantly produced receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, nine characteristic peptides were identified with acceptable limits of detection. They can be used together to distinguish 14 SARS-CoV-2 strains, except Kappa and Epsilon. Plant-produced RBD-Fc protein derived from Omicron strains can be easily distinguished from the others with 4-5 unique peptides. Eventually, a peptide key was developed based on the nine peptides, offering a prompt and precise flowchart to facilitate SARS-CoV-2 strain identification in COVID-19 vaccine manufacturing.
Collapse
Affiliation(s)
| | | | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, 1180, Vienna, Austria
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. MASS SPECTROMETRY REVIEWS 2024; 43:193-229. [PMID: 36177493 PMCID: PMC9538640 DOI: 10.1002/mas.21813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonMassachusettsUSA
- Bioinformatics ProgramBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
4
|
Marin LM, Katselis GS, Chumala P, Sanche S, Julseth L, Penz E, Skomro R, Siqueira WL. Identification of SARS-CoV-2 biomarkers in saliva by transcriptomic and proteomics analysis. Clin Proteomics 2023; 20:30. [PMID: 37537537 PMCID: PMC10398966 DOI: 10.1186/s12014-023-09417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2023] [Indexed: 08/05/2023] Open
Abstract
The detection of SARS-CoV-2 biomarkers by real time PCR (rRT-PCR) has shown that the sensitivity of the test is negatively affected by low viral loads and the severity of the disease. This limitation can be overcome by the use of more sensitive approaches such as mass spectrometry (MS), which has not been explored for the detection of SARS-CoV-2 proteins in saliva. Thus, this study aimed at assessing the translational applicability of mass spectrometry-based proteomics approaches to identify viral proteins in saliva from people diagnosed with COVID-19 within fourteen days after the initial diagnosis, and to compare its performance with rRT-PCR. After ethics approval, saliva samples were self-collected by 42 COVID-19 positive and 16 healthy individuals. Samples from people positive for COVID-19 were collected on average on the sixth day (± 4 days) after initial diagnosis. Viable viral particles in saliva were heat-inactivated followed by the extraction of total proteins and viral RNA. Proteins were digested and then subjected to tandem MS analysis (LC-QTOF-MS/MS) using a data-dependent MS/MS acquisition qualitative shotgun proteomics approach. The acquired spectra were queried against a combined SARS-CoV-2 and human database. The qualitative detection of SARS-CoV-2 specific RNA was done by rRT-PCR. SARS-CoV-2 proteins were identified in all COVID-19 samples (100%), while viral RNA was detected in only 24 out of 42 COVID-19 samples (57.1%). Seven out of 18 SARS-CoV-2 proteins were identified in saliva from COVID-19 positive individuals, from which the most frequent were replicase polyproteins 1ab (100%) and 1a (91.3%), and nucleocapsid (45.2%). Neither viral proteins nor RNA were detected in healthy individuals. Our mass spectrometry approach appears to be more sensitive than rRT-PCR for the detection of SARS-CoV-2 biomarkers in saliva collected from COVID-19 positive individuals up to 14 days after the initial diagnostic test. Based on the novel data presented here, our MS technology can be used as an effective diagnostic test of COVID-19 for initial diagnosis or follow-up of symptomatic cases, especially in patients with reduced viral load.
Collapse
Affiliation(s)
- Lina M Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - George S Katselis
- Canadian Centre for Health and Safety in Agriculture, Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Paulos Chumala
- Canadian Centre for Health and Safety in Agriculture, Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Stephen Sanche
- Division of Infectious Diseases, Department of Medicine, and Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Lucas Julseth
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
- Canadian Centre for Health and Safety in Agriculture, Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Erika Penz
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Robert Skomro
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0X8, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
5
|
Shen Q, Hossain F, Fang C, Shu T, Zhang X, Law JLM, Logan M, Houghton M, Tyrrell DL, Joyce MA, Serpe MJ. Bovine Serum Albumin-Protected Gold Nanoclusters for Sensing of SARS-CoV-2 Antibodies and Virus. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37314985 DOI: 10.1021/acsami.3c03705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An approach to assess severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (and past infection) was developed. For virus detection, the SARS-CoV-2 virus nucleocapsid protein (NP) was targeted. To detect the NP, antibodies were immobilized on magnetic beads to capture the NPs, which were subsequently detected using rabbit anti-SARS-CoV-2 nucleocapsid antibodies and alkaline phosphatase (AP)-conjugated anti-rabbit antibodies. A similar approach was used to assess SARS-CoV-2-neutralizing antibody levels by capturing spike receptor-binding domain (RBD)-specific antibodies utilizing RBD protein-modified magnetic beads and detecting them using AP-conjugated anti-human IgG antibodies. The sensing mechanism for both assays is based on cysteamine etching-induced fluorescence quenching of bovine serum albumin-protected gold nanoclusters where cysteamine is generated in proportion to the amount of either SARS-CoV-2 virus or anti-SARS-CoV-2 receptor-binding domain-specific immunoglobulin antibodies (anti-RBD IgG antibodies). High sensitivity can be achieved in 5 h 15 min for the anti-RBD IgG antibody detection and 6 h 15 min for virus detection, although the assay can be run in "rapid" mode, which takes 1 h 45 min for the anti-RBD IgG antibody detection and 3 h 15 min for the virus. By spiking the anti-RBD IgG antibodies and virus in serum and saliva, we demonstrate that the assay can detect the anti-RBD IgG antibodies with a limit of detection (LOD) of 4.0 and 2.0 ng/mL in serum and saliva, respectively. For the virus, we can achieve an LOD of 8.5 × 105 RNA copies/mL and 8.8 × 105 RNA copies/mL in serum and saliva, respectively. Interestingly, this assay can be easily modified to detect myriad analytes of interest.
Collapse
Affiliation(s)
- Qiming Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Faisal Hossain
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram 4331, Bangladesh
| | - Changhao Fang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tong Shu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, International Health Science Innovation Center, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - John Lok Man Law
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael Logan
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael Houghton
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael A Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
6
|
Zhou W, Sui Z, Liu J, He Y, Yuan H, Sun Y, Liang Z, Yang K, Zhang L, Zhang Y. High-Sensitivity Detection toward SARS-CoV-2 S1 Glycoprotein by Parallel Reaction Monitoring Mass Spectrometry. Anal Chem 2023; 95:8752-8757. [PMID: 37246519 DOI: 10.1021/acs.analchem.2c05770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has overwhelmed the global economy and human well-being. On account of the sharp increase in test demand, there is a need for an accurate and alternative diagnosis method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, with the aim to specifically identify the trace SARS-CoV-2 S1 glycoprotein, we developed a high-sensitivity and high-selectivity diagnostic method based on the targeted parallel reaction monitoring (PRM) assay of eight selected peptides. This study emphasizes the outstanding detection sensitivity of 0.01 pg of the SARS-CoV-2 S1 glycoprotein even in the interference of other structural proteins, which to our knowledge is the current minimum limit of detection for the SARS-CoV-2 S1 glycoprotein. This technology could further identify 0.01 pg of the SARS-CoV-2 S1 glycoprotein in a spike pseudovirus, revealing its practical effectiveness. All our preliminary results throw light on the capability of the mass spectrometry-based targeted PRM assay to identify SARS-CoV-2 as a practicable orthogonal diagnostic tool. Furthermore, this technology could be extended to other pathogens (e.g., MERS-CoV S1 protein or SARS-CoV S1 protein) by quickly adjusting the targeted peptides of MS data acquisition. In summary, this strategy is universal and flexible and could be quickly adjusted to detect and discriminate different mutants and pathogens.
Collapse
Affiliation(s)
- Wen Zhou
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Sui
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianhui Liu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yingyun He
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiming Yuan
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yue Sun
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kaiguang Yang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
7
|
Balvers M, Gordijn IF, Voskamp-Visser IA, Schelling MF, Schuurman R, Heikens E, Braakman R, Stingl C, van Leeuwen HC, Luider TM, Dekker LJ, Levin E, Paauw A. Proteome2virus: Shotgun mass spectrometry data analysis pipeline for virus identification. JOURNAL OF CLINICAL VIROLOGY PLUS 2023. [DOI: 10.1016/j.jcvp.2023.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
8
|
New Monoclonal Antibodies Specific for Different Epitopes of the Spike Protein of SARS-CoV-2 and Its Major Variants: Additional Tools for a More Specific COVID-19 Diagnosis. Biomedicines 2023; 11:biomedicines11020610. [PMID: 36831149 PMCID: PMC9953266 DOI: 10.3390/biomedicines11020610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The emergence of the new pathogen SARS-CoV-2 determined a rapid need for monoclonal antibodies (mAbs) to detect the virus in biological fluids as a rapid tool to identify infected individuals to be treated or quarantined. The majority of commercially available antigenic tests for SARS-CoV-2 rely on the detection of N antigen in biologic fluid using anti-N antibodies, and their capacity to specifically identify subjects infected by SARS-CoV-2 is questionable due to several structural analogies among the N proteins of different coronaviruses. In order to produce new specific antibodies, BALB/c mice were immunized three times at 20-day intervals with a recombinant spike (S) protein. The procedure used was highly efficient, and 40 different specific mAbs were isolated, purified and characterized, with 13 ultimately being selected for their specificity and lack of cross reactivity with other human coronaviruses. The specific epitopes recognized by the selected mAbs were identified through a peptide library and/or by recombinant fragments of the S protein. In particular, the selected mAbs recognized different linear epitopes along the S1, excluding the receptor binding domain, and along the S2 subunits of the S protein of SARS-CoV-2 and its major variants of concern. We identified combinations of anti-S mAbs suitable for use in ELISA or rapid diagnostic tests, with the highest sensitivity and specificity coming from proof-of-concept tests using recombinant antigens, SARS-CoV-2 or biological fluids from infected individuals, that represent important additional tools for the diagnosis of COVID-19.
Collapse
|
9
|
Rajoria S, Nair D, Suvarna K, Pai MGJ, Salkar A, Palanivel V, Verma A, Barpanda A, Awasthi G, Doshi H, Dhara V, Burli A, Agrawal S, Shrivastav O, Shastri J, Srivastava S. Proteomic Investigation of COVID-19 Severity During the Tsunamic Second Wave in Mumbai. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:175-195. [PMID: 37378767 DOI: 10.1007/978-3-031-28012-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Maharashtra was severely affected during the noxious second wave of COVID-19, with the highest number of cases recorded across India. The emergence of new symptoms and dysregulation of multiple organs resulted in high disease severity during the second wave which led to increased difficulties in understanding the molecular mechanisms behind the disease pathology. Exploring the underlying factors can help to relieve the burden on the medical communities to some extent by prioritizing the patients and, at the same time, opening avenues for improved treatments. In the current study, we have performed a mass-spectrometry-based proteomic analysis to investigate the disease pathology using nasopharyngeal swab samples collected from the COVID-19 patients in the Mumbai region of Maharashtra over the period of March-June 2021, the peak of the second wave. A total of 59 patients, including 32 non-severe and 27 severe cases, were considered for this proteomic study. We identified 23 differentially regulated proteins in severe patients as a host response to infection. In addition to the previously identified innate mechanisms of neutrophil and platelet degranulation, this study revealed significant alterations of anti-microbial peptide pathways in severe conditions, illustrating its role in the severity of the infectious strain of COVID-19 during the second wave. Furthermore, myeloperoxidase, cathepsin G, and profilin-1 were identified as potential therapeutic targets of the FDA-approved drugs dabrafenib, ZINC4097343, and ritonavir. This study has enlightened the role of the anti-microbial peptide pathway associated with the second wave in India and proposed its importance in potential therapeutics for COVID-19.
Collapse
Affiliation(s)
- Sakshi Rajoria
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Divya Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kruthi Suvarna
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Medha Gayathri J Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Akanksha Salkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Viswanthram Palanivel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ayushi Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Abhilash Barpanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Gaurav Awasthi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Hastyn Doshi
- Department of Computer Science, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Vivek Dhara
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ananya Burli
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sachee Agrawal
- Kasturba Hospital for Infectious Diseases, Chinchpokli, Mumbai, Maharashtra, India
| | - Om Shrivastav
- Kasturba Hospital for Infectious Diseases, Chinchpokli, Mumbai, Maharashtra, India
| | - Jayanthi Shastri
- Kasturba Hospital for Infectious Diseases, Chinchpokli, Mumbai, Maharashtra, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
10
|
Van Puyvelde B, Van Uytfanghe K, Van Oudenhove L, Gabriels R, Van Royen T, Matthys A, Razavi M, Yip R, Pearson T, Drouin N, Claereboudt J, Foley D, Wardle R, Wyndham K, Hankemeier T, Jones D, Saelens X, Martens G, Stove CP, Deforce D, Martens L, Vissers JPC, Anderson NL, Dhaenens M. Cov 2MS: An Automated and Quantitative Matrix-Independent Assay for Mass Spectrometric Measurement of SARS-CoV-2 Nucleocapsid Protein. Anal Chem 2022; 94:17379-17387. [PMID: 36490367 PMCID: PMC9773173 DOI: 10.1021/acs.analchem.2c01610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pandemic readiness toolbox needs to be extended, targeting different biomolecules, using orthogonal experimental set-ups. Here, we build on our Cov-MS effort using LC-MS, adding SISCAPA technology to enrich proteotypic peptides of the SARS-CoV-2 nucleocapsid (N) protein from trypsin-digested patient samples. The Cov2MS assay is compatible with most matrices including nasopharyngeal swabs, saliva, and plasma and has increased sensitivity into the attomole range, a 1000-fold improvement compared to direct detection in a matrix. A strong positive correlation was observed with qPCR detection beyond a quantification cycle of 30-31, the level where no live virus can be cultured. The automatable sample preparation and reduced LC dependency allow analysis of up to 500 samples per day per instrument. Importantly, peptide enrichment allows detection of the N protein in pooled samples without sensitivity loss. Easily multiplexed, we detect variants and propose targets for Influenza A and B detection. Thus, the Cov2MS assay can be adapted to test for many different pathogens in pooled samples, providing longitudinal epidemiological monitoring of large numbers of pathogens within a population as an early warning system.
Collapse
Affiliation(s)
- Bart Van Puyvelde
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Katleen Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | | | - Ralf Gabriels
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Tessa Van Royen
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent 9000 Belgium
| | - Arne Matthys
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent 9000 Belgium
| | - Morteza Razavi
- SISCAPA Assay Technologies, Inc., Box 53309, Washington, DC 20009, United States.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Richard Yip
- SISCAPA Assay Technologies, Inc., Box 53309, Washington, DC 20009, United States.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Terry Pearson
- SISCAPA Assay Technologies, Inc., Box 53309, Washington, DC 20009, United States.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Nicolas Drouin
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2333 AL Leiden, The Netherlands
| | | | - Dominic Foley
- Waters Corporation, Wilmslow SK9 4AX, United Kingdom.,Waters Corporation, Milford, Massachusetts 01757, United States
| | - Robert Wardle
- Waters Corporation, Wilmslow SK9 4AX, United Kingdom.,Waters Corporation, Milford, Massachusetts 01757, United States
| | - Kevin Wyndham
- Waters Corporation, Wilmslow SK9 4AX, United Kingdom.,Waters Corporation, Milford, Massachusetts 01757, United States
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2333 AL Leiden, The Netherlands
| | - Donald Jones
- Leicester Cancer Research Centre, RKCSB, Cardiovascular Research Centre, Glenfield Hospital, University of Leicester, Leicester LE1 7RH, United Kingdom.,John and Lucille van Geest Biomarker Facility, Leicester LE3 9QP, United Kingdom.,The Department of Chemical Pathology and Metabolic Diseases, Leicester Royal Infirmary, Level 4, Sandringham Building, Leicester LE1 7RH, United Kingdom
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent 9000 Belgium
| | - Geert Martens
- AZ Delta Medical Laboratories, AZ Delta General Hospital, 8800 Roeselare, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dieter Deforce
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Johannes P C Vissers
- Waters Corporation, Wilmslow SK9 4AX, United Kingdom.,Waters Corporation, Milford, Massachusetts 01757, United States
| | - N Leigh Anderson
- SISCAPA Assay Technologies, Inc., Box 53309, Washington, DC 20009, United States
| | - Maarten Dhaenens
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Gajbhiye A, Nalbant A, Heunis T, Sidgwick F, Porter A, Taha Y, Trost M. A fast and sensitive absolute quantification assay for the detection of SARS-CoV-2 peptides using parallel reaction monitoring mass spectrometry. J Proteomics 2022; 265:104664. [PMID: 35732269 PMCID: PMC9212948 DOI: 10.1016/j.jprot.2022.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 06/12/2022] [Indexed: 12/25/2022]
Abstract
The on-going SARS-CoV-2 (COVID-19) pandemic has called for an urgent need for rapid and high-throughput methods for mass testing and early detection, prevention as well as surveillance of the disease. We investigated whether targeted parallel reaction monitoring (PRM) quantification using high resolution Orbitrap instruments can provide the sensitivity and speed required for a high-throughput method that could be used for clinical diagnosis. We developed a high-throughput and sensitive PRM-MS assay that enables absolute quantification of SARS-CoV-2 nucleocapsid peptides with short turn-around times by using isotopically labelled synthetic SARS-CoV-2 concatenated peptides. We established a fast and high-throughput S-trap-based sample preparation method and utilized it for testing 25 positive and 25 negative heat-inactivated clinical nasopharyngeal swab samples for SARS-CoV-2 detection. The method was able to differentiate between negative and some of the positive patients with high viral load. Moreover, based on the absolute quantification calculations, our data show that patients with Ct values as low as 17.8 correspond to NCAP protein amounts of around 7.5 pmol in swab samples. The present high-throughput method could potentially be utilized in specialized clinics as an alternative tool for detection of SARS-CoV-2 but will require enrichment of viral proteins in order to compete with RT-qPCR.
Collapse
Affiliation(s)
- Akshada Gajbhiye
- Laboratory for Biomedical Mass Spectrometry, Newcastle University, Newcastle upon Tyne, UK
| | - Atakan Nalbant
- Laboratory for Biomedical Mass Spectrometry, Newcastle University, Newcastle upon Tyne, UK
| | - Tiaan Heunis
- Laboratory for Biomedical Mass Spectrometry, Newcastle University, Newcastle upon Tyne, UK
| | - Frances Sidgwick
- Laboratory for Biomedical Mass Spectrometry, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Porter
- Laboratory for Biomedical Mass Spectrometry, Newcastle University, Newcastle upon Tyne, UK
| | - Yusri Taha
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, Newcastle upon Tyne NE1 4LP, UK
| | - Matthias Trost
- Laboratory for Biomedical Mass Spectrometry, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Chen D, Bryden WA, Fenselau C, McLoughlin M, Haddaway CR, Devin AP, Caton ER, Bradrick SS, Miller JM, Tacheny EA, Lemmon MM, Bogan J. MALDI-TOF Mass Spectrometric Detection of SARS-CoV-2 Using Cellulose Sulfate Ester Enrichment and Hot Acid Treatment. J Proteome Res 2022; 21:2055-2062. [PMID: 35787094 PMCID: PMC9305670 DOI: 10.1021/acs.jproteome.2c00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/29/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here we report a novel strategy for the rapid detection of SARS-CoV-2 based on an enrichment approach exploiting the affinity between the virus and cellulose sulfate ester functional groups, hot acid hydrolysis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Virus samples were enriched using cellulose sulfate ester microcolumns. Virus peptides were prepared using the hot acid aspartate-selective hydrolysis and characterized by MALDI-TOF MS. Collected spectra were processed with a peptide fingerprint algorithm, and searching parameters were optimized for the detection of SARS-CoV-2. These peptides provide high sequence coverage for nucleocapsid (N protein) and allow confident identification of SARS-CoV-2. Peptide markers contributing to the detection were rigorously identified using bottom-up proteomics. The approach demonstrated in this study holds the potential for developing a rapid assay for COVID-19 diagnosis and detecting virus variants from a variety of sources, such as sewage and nasal swabs.
Collapse
Affiliation(s)
- Dapeng Chen
- Zeteo Tech, Inc.,
Sykesville, Maryland 21784, United States
| | | | - Catherine Fenselau
- Department of Chemistry and Biochemistry,
University of Maryland, College Park, Maryland 20742,
United States
| | | | | | - Alese P. Devin
- Zeteo Tech, Inc.,
Sykesville, Maryland 21784, United States
| | - Emily R. Caton
- Zeteo Tech, Inc.,
Sykesville, Maryland 21784, United States
| | | | - Joy M. Miller
- MRIGlobal, Kansas City,
Missouri 64110, United States
| | | | | | - Joseph Bogan
- MRIGlobal, Gaithersburg,
Maryland 20878, United States
| |
Collapse
|
13
|
Tapari A, Braliou GG, Papaefthimiou M, Mavriki H, Kontou PI, Nikolopoulos GK, Bagos PG. Performance of Antigen Detection Tests for SARS-CoV-2: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:1388. [PMID: 35741198 PMCID: PMC9221910 DOI: 10.3390/diagnostics12061388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) initiated global health care challenges such as the necessity for new diagnostic tests. Diagnosis by real-time PCR remains the gold-standard method, yet economical and technical issues prohibit its use in points of care (POC) or for repetitive tests in populations. A lot of effort has been exerted in developing, using, and validating antigen-based tests (ATs). Since individual studies focus on few methodological aspects of ATs, a comparison of different tests is needed. Herein, we perform a systematic review and meta-analysis of data from articles in PubMed, medRxiv and bioRxiv. The bivariate method for meta-analysis of diagnostic tests pooling sensitivities and specificities was used. Most of the AT types for SARS-CoV-2 were lateral flow immunoassays (LFIA), fluorescence immunoassays (FIA), and chemiluminescence enzyme immunoassays (CLEIA). We identified 235 articles containing data from 220,049 individuals. All ATs using nasopharyngeal samples show better performance than those with throat saliva (72% compared to 40%). Moreover, the rapid methods LFIA and FIA show about 10% lower sensitivity compared to the laboratory-based CLEIA method (72% compared to 82%). In addition, rapid ATs show higher sensitivity in symptomatic patients compared to asymptomatic patients, suggesting that viral load is a crucial parameter for ATs performed in POCs. Finally, all methods perform with very high specificity, reaching around 99%. LFIA tests, though with moderate sensitivity, appear as the most attractive method for use in POCs and for performing seroprevalence studies.
Collapse
Affiliation(s)
- Anastasia Tapari
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Helen Mavriki
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Panagiota I. Kontou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| |
Collapse
|
14
|
Grenga L, Pible O, Miotello G, Culotta K, Ruat S, Roncato MA, Gas F, Bellanger L, Claret PG, Dunyach-Remy C, Laureillard D, Sotto A, Lavigne JP, Armengaud J. Taxonomical and functional changes in COVID-19 faecal microbiome could be related to SARS-CoV-2 faecal load. Environ Microbiol 2022; 24:4299-4316. [PMID: 35506300 PMCID: PMC9347659 DOI: 10.1111/1462-2920.16028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023]
Abstract
Since the beginning of the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the gastro-intestinal (GI) tract has emerged as an important organ influencing the propensity to and potentially the severity of the related COVID-19 disease. However, the contribution of the SARS-CoV-2 intestinal infection on COVID-19 pathogenesis remains to be clarified. In this exploratory study, we highlighted a possible link between alterations in the composition of the gut microbiota and the levels of SARS-CoV-2 RNA in the gastrointestinal tract, which could be more important than the presence of SARS-CoV-2 in the respiratory tract, COVID-19 severity and GI symptoms. As established by metaproteomics, altered molecular functions in the microbiota profiles of high SARS-CoV-2 RNA level faeces highlight mechanisms such as inflammation-induced enterocyte damage, increased intestinal permeability and activation of immune response that may contribute to vicious cycles. Uncovering the role of this gut microbiota dysbiosis could drive the investigation of alternative therapeutic strategies to favour the clearance of the virus and potentially mitigate the effect of the SARS-CoV-2 infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lucia Grenga
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Olivier Pible
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Guylaine Miotello
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Karen Culotta
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Sylvie Ruat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Marie-Anne Roncato
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Fabienne Gas
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Laurent Bellanger
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | | | - Catherine Dunyach-Remy
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908, Nîmes, France
| | - Didier Laureillard
- Service des Maladies Infectieuses et Tropicales, CHU Nîmes, 30029, Nîmes, France
| | - Albert Sotto
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université de Montpellier, Service des Maladies Infectieuses et Tropicales, CHU Nîmes, 30908, Nîmes, France
| | - Jean-Philippe Lavigne
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908, Nîmes, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| |
Collapse
|
15
|
Maus A, Renuse S, Kemp J, Moehnke K, Mangalaparthi KK, Chavan S, Madugundu AK, Vanderboom PM, Dasari S, Kipp BR, Singh RJ, Grebe SK, Pandey A. Comparison of anti-peptide and anti-protein antibody-based purification techniques for detection of SARS-CoV-2 by targeted LC-MS/MS. ADVANCES IN SAMPLE PREPARATION 2022. [PMCID: PMC9108341 DOI: 10.1016/j.sampre.2022.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The COVID-19 pandemic has necessitated exploration of alternative testing methods for detection of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) to ensure clinical laboratories can continue to provide critical testing results. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established in many clinical laboratories due its high specificity and sensitivity, making it a logical alternative methodology. However, matching the sensitivity of quantitative reverse transcription-polymerase chain reaction (qRT-PCR) remains challenging, which forced utilization of antibody-based enrichment prior to targeted LC-MS/MS analysis. When utilizing antibody purification techniques, investigators must decide whether to enrich the target protein or peptides, but there are few studies comparing the two approaches to assist in this decision-making process. In this work, we present a comparison of intact protein and peptide antibody-based purification for LC-MS/MS based detection of SARS-CoV-2. We have found that protein purification yields more intense LC-MS/MS signals, but is also less specific, yielding higher noise and more background when compared to peptide purification techniques. Therefore, when using traditional data analysis techniques, the enrichment technique that provides superior sensitivity varies for individual peptides and no definitive overall conclusion can be made. These observations are corroborated when using a novel machine learning approach to determine positive/negative test results, which yielded superior sensitivity when using protein purification, but better specificity and area under the ROC curve when performing peptide purification.
Collapse
|
16
|
Maus A, Renuse S, Kemp J, Madugundu AK, Vanderboom PM, Blommel J, Jerde C, Dasari S, Kipp BR, Singh RJ, Grebe SK, Pandey A. Targeted Detection of SARS-CoV-2 Nucleocapsid Sequence Variants by Mass Spectrometric Analysis of Tryptic Peptides. J Proteome Res 2022; 21:142-150. [PMID: 34779632 PMCID: PMC8610007 DOI: 10.1021/acs.jproteome.1c00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 12/24/2022]
Abstract
COVID-19 vaccines are becoming more widely available, but accurate and rapid testing remains a crucial tool for slowing the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus. Although the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) remains the most prevalent testing methodology, numerous tests have been developed that are predicated on detection of the SARS-CoV-2 nucleocapsid protein, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay-based approaches. The continuing emergence of SARS-CoV-2 variants has complicated these approaches, as both qRT-PCR and antigen detection methods can be prone to missing viral variants. In this study, we describe several COVID-19 cases where we were unable to detect the expected peptide targets from clinical nasopharyngeal swabs. Whole genome sequencing revealed that single nucleotide polymorphisms in the gene encoding the viral nucleocapsid protein led to sequence variants that were not monitored in the targeted assay. Minor modifications to the LC-MS/MS method ensured detection of the variants of the target peptide. Additional nucleocapsid variants could be detected by performing the bottom-up proteomic analysis of whole viral genome-sequenced samples. This study demonstrates the importance of considering variants of SARS-CoV-2 in the assay design and highlights the flexibility of mass spectrometry-based approaches to detect variants as they evolve.
Collapse
Affiliation(s)
- Anthony Maus
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Santosh Renuse
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Center
for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jennifer Kemp
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Anil K. Madugundu
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Institute
of Bioinformatics, International Technology
Park, Bangalore 560066, Karnataka, India
- Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
- Center
for Molecular Medicine, National Institute
of Mental Health and Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Patrick M. Vanderboom
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Joseph Blommel
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Calvin Jerde
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Surendra Dasari
- Division
of Biomedical Statistics and Informatics, Department of Health Sciences
Research, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Benjamin R. Kipp
- Department
of Laboratory Medicine and Pathology, Division of Laboratory Genetics
and Genomics, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Ravinder J. Singh
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Stefan K. Grebe
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department
of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Akhilesh Pandey
- Department
of Laboratory Medicine and Pathology, Division of Clinical Biochemistry
and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Center
for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
17
|
Coupling immuno-magnetic capture with LC-MS/MS(MRM) as a sensitive, reliable, and specific assay for SARS-CoV-2 identification from clinical samples. Anal Bioanal Chem 2022; 414:1949-1962. [PMID: 34981149 PMCID: PMC8723902 DOI: 10.1007/s00216-021-03831-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/21/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022]
Abstract
Recently, numerous diagnostic approaches from different disciplines have been developed for SARS-CoV-2 diagnosis to monitor and control the COVID-19 pandemic. These include MS-based assays, which provide analytical information on viral proteins. However, their sensitivity is limited, estimated to be 5 × 104 PFU/ml in clinical samples. Here, we present a reliable, specific, and rapid method for the identification of SARS-CoV-2 from nasopharyngeal (NP) specimens, which combines virus capture followed by LC–MS/MS(MRM) analysis of unique peptide markers. The capture of SARS-CoV-2 from the challenging matrix, prior to its tryptic digestion, was accomplished by magnetic beads coated with polyclonal IgG-α-SARS-CoV-2 antibodies, enabling sample concentration while significantly reducing background noise interrupting with LC–MS analysis. A sensitive and specific LC–MS/MS(MRM) analysis method was developed for the identification of selected tryptic peptide markers. The combined assay, which resulted in S/N ratio enhancement, achieved an improved sensitivity of more than 10-fold compared with previously described MS methods. The assay was validated in 29 naive NP specimens, 19 samples were spiked with SARS-CoV-2 and 10 were used as negative controls. Finally, the assay was successfully applied to clinical NP samples (n = 26) pre-determined as either positive or negative by RT-qPCR. This work describes for the first time a combined approach for immuno-magnetic viral isolation coupled with MS analysis. This method is highly reliable, specific, and sensitive; thus, it may potentially serve as a complementary assay to RT-qPCR, the gold standard test. This methodology can be applied to other viruses as well.
Collapse
|
18
|
Viana LG, Lebkuchen A, Schuch RA, Okai GG, Salgueiro JS, Cardozo KHM, Carvalho VM. Mass Spectrometry Multiplexed Detection of SARS-CoV-2. Methods Mol Biol 2022; 2511:161-174. [PMID: 35838959 DOI: 10.1007/978-1-0716-2395-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Testing of large populations for virus infection is now a reality worldwide due to the coronavirus (SARS-CoV-2) pandemic. The demand for SARS-CoV-2 testing using alternatives other than PCR led to the development of mass spectrometry (MS)-based assays. However, MS for SARS-CoV-2 large-scale testing have some downsides, including complex sample preparation and slow data analysis. Here, we describe a high-throughput targeted proteomics method to detect SARS-CoV-2 directly from nasopharyngeal and oropharyngeal swabs. This strategy employs fully automated sample preparation mediated by magnetic particles, followed by detection of SARS-CoV-2 nucleoprotein peptides by turbulent flow chromatography coupled with tandem mass spectrometry.
Collapse
Affiliation(s)
| | - Adriana Lebkuchen
- Division of Research and Development, Fleury Group, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Do T, Guran R, Adam V, Zitka O. Use of MALDI-TOF mass spectrometry for virus identification: a review. Analyst 2022; 147:3131-3154. [DOI: 10.1039/d2an00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibilities of virus identification, including SARS-CoV-2, by MALDI-TOF mass spectrometry are discussed in this review.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
20
|
Pan Y, Wei X, Guo X, Wang H, Song H, Pan C, Xu N. Immunoassay based on Au-Ag bimetallic nanoclusters for colorimetric/fluorescent double biosensing of dicofol. Biosens Bioelectron 2021; 194:113611. [PMID: 34500229 DOI: 10.1016/j.bios.2021.113611] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022]
Abstract
The high toxicity of dicofol (DICO) to nontarget organisms has resulted in the contamination of food materials and caused a threat to human health. Developing a rapid and sensitive detection method of DICO in food samples is essential and still pursued. Fluorescent nanomaterials have been widely applied in biosensors to improve the sensitivity of detection. Herein, glutathione-capped Au-Ag bimetallic nanoclusters (Au-Ag NCs) exhibited the outstanding fluorescence characteristic with the average fluorescence lifetime of 1971.08 ns and photoluminescence quantum yield of 9.84% when the molar ratio of Au to Ag was 5:1. Polyethyleneimine modified gold nanoparticles (PEI-Au NPs) with the positive charge were prepared to generate a strong colorimetric signal. A dual-model colorimetric/fluorescent immune probe based on the Au-Ag NCs and PEI-Au NPs was successfully constructed by electrostatic force, and could be applied in both ic-ELISA and LFIA methods for rapid and ultrasensitive detection of DICO. In the ic-ELISA method, the introduction of fluorescence signal significantly increased the sensitivity of detection with the limit of detection (LOD) of 0.62 ng/mL and exhibited an excellent linear relationship within the range of 1.36 ng/mL-19.92 ng/mL. In the LFIA method, the fluorescence signal of Au-Ag NCs was accumulated on the test line and control line for the fluorescence model detection with a quantitative LOD at the level of 1.59 ng/mL. Such a dual-model colorimetric/fluorescent immunoassay serves as a promising candidate to develop new approaches in field detection.
Collapse
Affiliation(s)
- Yi Pan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xinlin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Xiaodong Guo
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haiyun Song
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Naifeng Xu
- Institute of Food Engineering, College of Life Science, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai, 200234, China
| |
Collapse
|
21
|
Hober A, Tran-Minh KH, Foley D, McDonald T, Vissers JPC, Pattison R, Ferries S, Hermansson S, Betner I, Uhlén M, Razavi M, Yip R, Pope ME, Pearson TW, Andersson LN, Bartlett A, Calton L, Alm JJ, Engstrand L, Edfors F. Rapid and sensitive detection of SARS-CoV-2 infection using quantitative peptide enrichment LC-MS analysis. eLife 2021; 10:e70843. [PMID: 34747696 PMCID: PMC8626084 DOI: 10.7554/elife.70843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Reliable, robust, large-scale molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for monitoring the ongoing coronavirus disease 2019 (COVID-19) pandemic. We have developed a scalable analytical approach to detect viral proteins based on peptide immuno-affinity enrichment combined with liquid chromatography-mass spectrometry (LC-MS). This is a multiplexed strategy, based on targeted proteomics analysis and read-out by LC-MS, capable of precisely quantifying and confirming the presence of SARS-CoV-2 in phosphate-buffered saline (PBS) swab media from combined throat/nasopharynx/saliva samples. The results reveal that the levels of SARS-CoV-2 measured by LC-MS correlate well with their correspondingreal-time polymerase chain reaction (RT-PCR) read-out (r = 0.79). The analytical workflow shows similar turnaround times as regular RT-PCR instrumentation with a quantitative read-out of viral proteins corresponding to cycle thresholds (Ct) equivalents ranging from 21 to 34. Using RT-PCR as a reference, we demonstrate that the LC-MS-based method has 100% negative percent agreement (estimated specificity) and 95% positive percent agreement (estimated sensitivity) when analyzing clinical samples collected from asymptomatic individuals with a Ct within the limit of detection of the mass spectrometer (Ct ≤ 30). These results suggest that a scalable analytical method based on LC-MS has a place in future pandemic preparedness centers to complement current virus detection technologies.
Collapse
Affiliation(s)
| | - Khue Hua Tran-Minh
- Science for Life LaboratorySolnaSweden
- The Royal Institute of Technology, Division of Systems Biology, Department of Protein Science, School of Chemistry, Biotechnology and HealthStockholmSweden
| | | | | | | | | | | | | | | | - Mathias Uhlén
- Science for Life LaboratorySolnaSweden
- The Royal Institute of Technology, Division of Systems Biology, Department of Protein Science, School of Chemistry, Biotechnology and HealthStockholmSweden
| | | | - Richard Yip
- SISCAPA Assay Technologies, IncVictoriaCanada
| | | | | | | | | | | | - Jessica J Alm
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology & National Pandemic Center, Karolinska InstitutetSolnaSweden
| | - Lars Engstrand
- Microbiology, Tumour and Cell Biology, Karolinska InstitutetStockholmSweden
| | - Fredrik Edfors
- Science for Life LaboratorySolnaSweden
- The Royal Institute of Technology, Division of Systems Biology, Department of Protein Science, School of Chemistry, Biotechnology and HealthStockholmSweden
| |
Collapse
|
22
|
Renuse S, Vanderboom PM, Maus AD, Kemp JV, Gurtner KM, Madugundu AK, Chavan S, Peterson JA, Madden BJ, Mangalaparthi KK, Mun DG, Singh S, Kipp BR, Dasari S, Singh RJ, Grebe SK, Pandey A. A mass spectrometry-based targeted assay for detection of SARS-CoV-2 antigen from clinical specimens. EBioMedicine 2021; 69:103465. [PMID: 34229274 PMCID: PMC8253671 DOI: 10.1016/j.ebiom.2021.103465] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Background The COVID-19 pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has overwhelmed health systems worldwide and highlighted limitations of diagnostic testing. Several types of diagnostic tests including RT-PCR-based assays and antigen detection by lateral flow assays, each with their own strengths and weaknesses, have been developed and deployed in a short time. Methods Here, we describe an immunoaffinity purification approach followed a by high resolution mass spectrometry-based targeted qualitative assay capable of detecting SARS-CoV-2 viral antigen from nasopharyngeal swab samples. Based on our discovery experiments using purified virus, recombinant viral protein and nasopharyngeal swab samples from COVID-19 positive patients, nucleocapsid protein was selected as a target antigen. We then developed an automated antibody capture-based workflow coupled to targeted high-field asymmetric waveform ion mobility spectrometry (FAIMS) - parallel reaction monitoring (PRM) assay on an Orbitrap Exploris 480 mass spectrometer. An ensemble machine learning-based model for determining COVID-19 positive samples was developed using fragment ion intensities from the PRM data. Findings The optimized targeted assay, which was used to analyze 88 positive and 88 negative nasopharyngeal swab samples for validation, resulted in 98% (95% CI = 0.922–0.997) (86/88) sensitivity and 100% (95% CI = 0.958–1.000) (88/88) specificity using RT-PCR-based molecular testing as the reference method. Interpretation Our results demonstrate that direct detection of infectious agents from clinical samples by tandem mass spectrometry-based assays have potential to be deployed as diagnostic assays in clinical laboratories, which has hitherto been limited to analysis of pure microbial cultures.
Collapse
Affiliation(s)
- Santosh Renuse
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, MN 55905, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Patrick M Vanderboom
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, MN 55905, USA
| | - Anthony D Maus
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, MN 55905, USA
| | - Jennifer V Kemp
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, MN 55905, USA
| | - Kari M Gurtner
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, MN 55905, USA
| | - Anil K Madugundu
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, MN 55905, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560066, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, Karnataka 560029, India
| | - Sandip Chavan
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, MN 55905, USA
| | - Jane A Peterson
- Proteomics Core, Medical Genome Facility, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin J Madden
- Proteomics Core, Medical Genome Facility, Mayo Clinic, Rochester, MN 55905, USA
| | - Kiran K Mangalaparthi
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, MN 55905, USA; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, MN 55905, USA
| | - Smrita Singh
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, MN 55905, USA; Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka 560066, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, Karnataka 560029, India
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Surendra Dasari
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Ravinder J Singh
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, MN 55905, USA.
| | - Stefan K Grebe
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, MN 55905, USA; Department of Medicine, Division of Endocrinology, Mayo Clinic, Rochester, MN 55902, USA.
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Division of Clinical Biochemistry and Immunology, Mayo Clinic, MN 55905, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, Karnataka 560029, India.
| |
Collapse
|
23
|
Ahsan N, Rao RSP, Wilson RS, Punyamurtula U, Salvato F, Petersen M, Ahmed MK, Abid MR, Verburgt JC, Kihara D, Yang Z, Fornelli L, Foster SB, Ramratnam B. Mass spectrometry-based proteomic platforms for better understanding of SARS-CoV-2 induced pathogenesis and potential diagnostic approaches. Proteomics 2021; 21:e2000279. [PMID: 33860983 PMCID: PMC8250252 DOI: 10.1002/pmic.202000279] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
While protein–protein interaction is the first step of the SARS‐CoV‐2 infection, recent comparative proteomic profiling enabled the identification of over 11,000 protein dynamics, thus providing a comprehensive reflection of the molecular mechanisms underlying the cellular system in response to viral infection. Here we summarize and rationalize the results obtained by various mass spectrometry (MS)‐based proteomic approaches applied to the functional characterization of proteins and pathways associated with SARS‐CoV‐2‐mediated infections in humans. Comparative analysis of cell‐lines versus tissue samples indicates that our knowledge in proteome profile alternation in response to SARS‐CoV‐2 infection is still incomplete and the tissue‐specific response to SARS‐CoV‐2 infection can probably not be recapitulated efficiently by in vitro experiments. However, regardless of the viral infection period, sample types, and experimental strategies, a thorough cross‐comparison of the recently published proteome, phosphoproteome, and interactome datasets led to the identification of a common set of proteins and kinases associated with PI3K‐Akt, EGFR, MAPK, Rap1, and AMPK signaling pathways. Ephrin receptor A2 (EPHA2) was identified by 11 studies including all proteomic platforms, suggesting it as a potential future target for SARS‐CoV‐2 infection mechanisms and the development of new therapeutic strategies. We further discuss the potentials of future proteomics strategies for identifying prognostic SARS‐CoV‐2 responsive age‐, gender‐dependent, tissue‐specific protein targets.
Collapse
Affiliation(s)
- Nagib Ahsan
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahomaUSA
| | - R. Shyama Prasad Rao
- Biostatistics and Bioinformatics DivisionYenepoya Research CenterYenepoya UniversityMangaluruIndia
| | - Rashaun S. Wilson
- Keck Mass Spectrometry and Proteomics ResourceYale UniversityNew HavenConnecticutUSA
| | - Ujwal Punyamurtula
- COBRE Center for Cancer Research DevelopmentProteomics Core FacilityRhode Island HospitalProvidenceRhode IslandUSA
| | - Fernanda Salvato
- Department of Plant and Microbial BiologyCollege of Agriculture and Life SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Max Petersen
- Signal Transduction Lab, Division of Hematology/OncologyRhode Island Hospital, Warren Alpert Medical School, Brown UniversityProvidenceRhode IslandUSA
| | - Mohammad Kabir Ahmed
- Department of BiochemistryFaculty of MedicineUniversiti Kuala Lumpur Royal College of Medicine PerakIpohPerakMalaysia
| | - M. Ruhul Abid
- Department of SurgeryCardiovascular Research CenterRhode Island HospitalWarren Alpert Medical SchoolBrown UniversityProvidenceRhode IslandUSA
| | - Jacob C. Verburgt
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Daisuke Kihara
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Zhibo Yang
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahomaUSA
| | - Luca Fornelli
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahomaUSA
- Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Steven B. Foster
- Department of Chemistry and BiochemistryUniversity of OklahomaNormanOklahomaUSA
| | - Bharat Ramratnam
- COBRE Center for Cancer Research DevelopmentProteomics Core FacilityRhode Island HospitalProvidenceRhode IslandUSA
- Division of Infectious DiseasesDepartment of MedicineWarren Alpert Medical SchoolBrown UniversityProvidenceRhode IslandUSA
| |
Collapse
|