1
|
Asadzadeh N, Ghorbanpour M, Sayyah A. Effects of filler type and content on mechanical, thermal, and physical properties of carrageenan biocomposite films. Int J Biol Macromol 2023; 253:127551. [PMID: 37865375 DOI: 10.1016/j.ijbiomac.2023.127551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
This study investigates the influence of various fillers on the properties of carrageenan, a natural polymer derived from red seaweed. Despite its potential for enhanced biocomposite film development, carrageenan faces challenges related to strength. The incorporation of nanoclay into the carrageenan film resulted in a significant increase in film thickness from 0.026 to 0.068 mm. The UV light transmission value for the carrageenan film alone was measured at 30.9 %, whereas films containing 5 wt% of Tetraethyl orthosilicate (TEOS), 3-Aminopropyltriethoxysilane (APTES), and nanoclay exhibited reduced transmission values of 23 %, 18 %, and 1 %, respectively. Notably, the tensile strength of the unfilled carrageenan film was 38.4 MPa, which increased to 38.6, 57, and 60 MPa upon the addition of 3 wt% of nanoclay, APTES, and TEOS fillers, respectively. All fillers contributed to improved tensile strength, with TEOS demonstrating the highest enhancement. The optimal filler content was determined to be 3 wt%. Regarding thermal properties, films containing TEOS displayed higher thermal stability compared to those with APTES, while films incorporating nanoclay exhibited the lowest stability. Findings provide insights into the effects of different fillers on the mechanical, physical and thermal properties of carrageenan films, supporting the development of improved biocomposite materials suitable for application in food packaging.
Collapse
Affiliation(s)
- Naser Asadzadeh
- Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Mohammad Ghorbanpour
- Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| | - Ali Sayyah
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| |
Collapse
|
2
|
Zhong B, An Y, Gao H, Zhao L, Li X, Liang Z, Zhang Y, Zhao Q, Zhang L. In vivo cross-linking-based affinity purification and mass spectrometry for targeting intracellular protein-protein interactions. Anal Chim Acta 2023; 1265:341273. [PMID: 37230567 DOI: 10.1016/j.aca.2023.341273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Comprehensive interactome analysis of targeted proteins is important to understand how proteins work together in regulating functions. Commonly, affinity purification followed by mass spectrometry (AP-MS) has been recognized as the most often used technique for studying protein-protein interactions (PPIs). However, some proteins with weak interactions, which are responsible for key roles in regulation, are easily broken during cell lysis and purification through an AP approach. Herein, we have developed an approach termed in vivo cross-linking-based affinity purification and mass spectrometry (ICAP-MS). By this method, in vivo cross-linking was introduced to covalently fix intracellular PPIs in their functional states to assure all PPIs could be integrally maintained during cell disruption. In addition, the chemically cleavable crosslinkers which were employed enabled unbinding of PPIs for in-depth identification of components within the interactome and biological analysis, while allowing binding of PPIs for cross-linking-mass spectrometry (CXMS)-based direct interaction determination. Multi-level information on targeted PPIs network can be obtained by ICAP-MS, including composition of interacting proteins, as well as direct interacting partners and binding sites. As a proof of concept, the interactome of MAPK3 from 293A cells was profiled with 6.15-fold improvement in identification than by conventional AP-MS. Meanwhile, 184 cross-link site pairs of these PPIs were experimentally identified by CXMS. Furthermore, ICAP-MS was applied in the temporal profiling of MAPK3 interactions under activation by cAMP-mediated pathway. The regulatory manner of MAPK pathways was presented through the quantitative changes of MAPK3 and its interacting proteins at different time points after activation. Therefore, all reported results demonstrated that the ICAP-MS approach may provide comprehensive information on interactome of targeted protein for functional exploration.
Collapse
Affiliation(s)
- Bowen Zhong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China
| | - Yuxin An
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China.
| |
Collapse
|
3
|
Barth M, Toto Nienguesso A, Navarrete Santos A, Schmidt C. Quantitative proteomics and in-cell cross-linking reveal cellular reorganisation during early neuronal differentiation of SH-SY5Y cells. Commun Biol 2022; 5:551. [PMID: 35672350 PMCID: PMC9174471 DOI: 10.1038/s42003-022-03478-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
The neuroblastoma cell line SH-SY5Y is commonly employed to study neuronal function and disease. This includes cells grown under standard conditions or differentiated to neuron-like cells by administration of chemical reagents such as retinoic acid (RA) or phorbol-12-myristate-13-acetate (PMA). Even though SH-SY5Y cells are widely explored, a complete description of the resulting proteomes and cellular reorganisation during differentiation is still missing. Here, we relatively quantify the proteomes of cells grown under standard conditions and obtained from two differentiation protocols employing RA or a combination of RA and PMA. Relative quantification and KEGG pathway analysis of the proteins reveals the presence of early differentiating cells and provides a list of marker proteins for undifferentiated and differentiated cells. For characterisation of neuronal sub-types, we analyse expression of marker genes and find that RA-differentiated cells are acetylcholinergic and cholinergic, while RA/PMA-differentiated cells show high expression of acetylcholinergic and dopaminergic marker genes. In-cell cross-linking further allows capturing protein interactions in different cellular organelles. Specifically, we observe structural reorganisation upon differentiation involving regulating protein factors of the actin cytoskeleton. Quantitative proteomic analyses are employed to explore the changes in the proteome that occur upon neuronal differentiation in the SH-SY5Y cell line.
Collapse
Affiliation(s)
- Marie Barth
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alicia Toto Nienguesso
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anne Navarrete Santos
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
4
|
Kelly JJ, Tranter D, Pardon E, Chi G, Kramer H, Happonen L, Knee KM, Janz JM, Steyaert J, Bulawa C, Paavilainen VO, Huiskonen JT, Yue WW. Snapshots of actin and tubulin folding inside the TRiC chaperonin. Nat Struct Mol Biol 2022; 29:420-429. [PMID: 35449234 PMCID: PMC9113939 DOI: 10.1038/s41594-022-00755-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/01/2022] [Indexed: 01/16/2023]
Abstract
The integrity of a cell's proteome depends on correct folding of polypeptides by chaperonins. The chaperonin TCP-1 ring complex (TRiC) acts as obligate folder for >10% of cytosolic proteins, including he cytoskeletal proteins actin and tubulin. Although its architecture and how it recognizes folding substrates are emerging from structural studies, the subsequent fate of substrates inside the TRiC chamber is not defined. We trapped endogenous human TRiC with substrates (actin, tubulin) and cochaperone (PhLP2A) at different folding stages, for structure determination by cryo-EM. The already-folded regions of client proteins are anchored at the chamber wall, positioning unstructured regions toward the central space to achieve their native fold. Substrates engage with different sections of the chamber during the folding cycle, coupled to TRiC open-and-close transitions. Further, the cochaperone PhLP2A modulates folding, acting as a molecular strut between substrate and TRiC chamber. Our structural snapshots piece together an emerging model of client protein folding within TRiC.
Collapse
Affiliation(s)
- John J Kelly
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dale Tranter
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kelly M Knee
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Jay M Janz
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Christine Bulawa
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Ville O Paavilainen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK.
| | - Wyatt W Yue
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
5
|
Slavin M, Zamel J, Zohar K, Eliyahu T, Braitbard M, Brielle E, Baraz L, Stolovich-Rain M, Friedman A, Wolf DG, Rouvinski A, Linial M, Schneidman-Duhovny D, Kalisman N. Targeted in situ cross-linking mass spectrometry and integrative modeling reveal the architectures of three proteins from SARS-CoV-2. Proc Natl Acad Sci U S A 2021; 118:e2103554118. [PMID: 34373319 PMCID: PMC8403911 DOI: 10.1073/pnas.2103554118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Atomic structures of several proteins from the coronavirus family are still partial or unavailable. A possible reason for this gap is the instability of these proteins outside of the cellular context, thereby prompting the use of in-cell approaches. In situ cross-linking and mass spectrometry (in situ CLMS) can provide information on the structures of such proteins as they occur in the intact cell. Here, we applied targeted in situ CLMS to structurally probe Nsp1, Nsp2, and nucleocapsid (N) proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and obtained cross-link sets with an average density of one cross-link per 20 residues. We then employed integrative modeling that computationally combined the cross-linking data with domain structures to determine full-length atomic models. For the Nsp2, the cross-links report on a complex topology with long-range interactions. Integrative modeling with structural prediction of individual domains by the AlphaFold2 system allowed us to generate a single consistent all-atom model of the full-length Nsp2. The model reveals three putative metal binding sites and suggests a role for Nsp2 in zinc regulation within the replication-transcription complex. For the N protein, we identified multiple intra- and interdomain cross-links. Our integrative model of the N dimer demonstrates that it can accommodate three single RNA strands simultaneously, both stereochemically and electrostatically. For the Nsp1, cross-links with the 40S ribosome were highly consistent with recent cryogenic electron microscopy structures. These results highlight the importance of cellular context for the structural probing of recalcitrant proteins and demonstrate the effectiveness of targeted in situ CLMS and integrative modeling.
Collapse
Affiliation(s)
- Moriya Slavin
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Joanna Zamel
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Keren Zohar
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tsiona Eliyahu
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Merav Braitbard
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Esther Brielle
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Leah Baraz
- Hadassah Academic College Jerusalem, Jerusalem 9101001, Israel
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Miri Stolovich-Rain
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ahuva Friedman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, 9190401 Jerusalem, Israel
| | - Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Dina Schneidman-Duhovny
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nir Kalisman
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| |
Collapse
|