1
|
Bruedigam C, Porter AH, Song A, Vroeg In de Wei G, Stoll T, Straube J, Cooper L, Cheng G, Kahl VFS, Sobinoff AP, Ling VY, Jebaraj BMC, Janardhanan Y, Haldar R, Bray LJ, Bullinger L, Heidel FH, Kennedy GA, Hill MM, Pickett HA, Abdel-Wahab O, Hartel G, Lane SW. Imetelstat-mediated alterations in fatty acid metabolism to induce ferroptosis as a therapeutic strategy for acute myeloid leukemia. NATURE CANCER 2024; 5:47-65. [PMID: 37904045 PMCID: PMC10824665 DOI: 10.1038/s43018-023-00653-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/14/2023] [Indexed: 11/01/2023]
Abstract
Telomerase enables replicative immortality in most cancers including acute myeloid leukemia (AML). Imetelstat is a first-in-class telomerase inhibitor with clinical efficacy in myelofibrosis and myelodysplastic syndromes. Here, we develop an AML patient-derived xenograft resource and perform integrated genomics, transcriptomics and lipidomics analyses combined with functional genetics to identify key mediators of imetelstat efficacy. In a randomized phase II-like preclinical trial in patient-derived xenografts, imetelstat effectively diminishes AML burden and preferentially targets subgroups containing mutant NRAS and oxidative stress-associated gene expression signatures. Unbiased, genome-wide CRISPR/Cas9 editing identifies ferroptosis regulators as key mediators of imetelstat efficacy. Imetelstat promotes the formation of polyunsaturated fatty acid-containing phospholipids, causing excessive levels of lipid peroxidation and oxidative stress. Pharmacological inhibition of ferroptosis diminishes imetelstat efficacy. We leverage these mechanistic insights to develop an optimized therapeutic strategy using oxidative stress-inducing chemotherapy to sensitize patient samples to imetelstat causing substantial disease control in AML.
Collapse
Affiliation(s)
- Claudia Bruedigam
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | - Amy H Porter
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Axia Song
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Thomas Stoll
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jasmin Straube
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Leanne Cooper
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Guidan Cheng
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vivian F S Kahl
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Victoria Y Ling
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Yashaswini Janardhanan
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rohit Haldar
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Laura J Bray
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Florian H Heidel
- Hematology, Oncology, Stem Cell Transplantation and Palliative Care, University Medicine Greifswald, Greifswald, Germany
- Leibniz Institute on Aging, Jena, Germany
| | - Glen A Kennedy
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Michelle M Hill
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Omar Abdel-Wahab
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Steven W Lane
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
He X, Yuan J, Gao Z, Wang Y. Promoter R-Loops Recruit U2AF1 to Modulate Its Phase Separation and RNA Splicing. J Am Chem Soc 2023; 145:21646-21660. [PMID: 37733759 PMCID: PMC10557143 DOI: 10.1021/jacs.3c08204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 09/23/2023]
Abstract
R-loops and guanine quadruplexes (G4s) are secondary structures of nucleic acids that are ubiquitously present in cells and are enriched in promoter regions of genes. By employing a bioinformatic approach based on overlap analysis of transcription factor chromatin immunoprecipitation sequencing (ChIP-seq) data sets, we found that many splicing factors, including U2AF1 whose recognition of the 3' splicing site is crucial for pre-mRNA splicing, exhibit pronounced enrichment at endogenous R-loop- and DNA G4-structure loci in promoter regions of human genes. We also revealed that U2AF1 binds directly to R-loops and DNA G4 structures at a low-nM binding affinity. Additionally, we showed the ability of U2AF1 to undergo phase separation, which could be stimulated by binding with R-loops, but not duplex DNA, RNA/DNA hybrid, DNA G4, or single-stranded RNA. We also demonstrated that U2AF1 binds to promoter R-loops in human cells, and this binding competes with U2AF1's interaction with 3' splicing site and leads to augmented distribution of RNA polymerase II (RNAPII) to promoters over gene bodies, thereby modulating cotranscriptional pre-mRNA splicing. Together, we uncovered a group of candidate proteins that can bind to both R-loops and DNA G4s, revealed the direct and strong interactions of U2AF1 with these nucleic acid structures, and established a biochemical rationale for U2AF1's occupancy in gene promoters. We also unveiled that interaction with R-loops promotes U2AF1's phase separation, and our work suggests that U2AF1 modulates pre-mRNA splicing by regulating RNAPII's partition in transcription initiation versus elongation.
Collapse
Affiliation(s)
- Xiaomei He
- Department
of Chemistry, University of California Riverside, Riverside, California 92521-0403, United
States
| | - Jun Yuan
- Environmental
Toxicology Graduate Program, University
of California Riverside, Riverside, California 92521-0403, United States
| | - Zi Gao
- Department
of Chemistry, University of California Riverside, Riverside, California 92521-0403, United
States
| | - Yinsheng Wang
- Department
of Chemistry, University of California Riverside, Riverside, California 92521-0403, United
States
- Environmental
Toxicology Graduate Program, University
of California Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
3
|
Dai Y, Teng X, Zhang Q, Hou H, Li J. Advances and challenges in identifying and characterizing G-quadruplex-protein interactions. Trends Biochem Sci 2023; 48:894-909. [PMID: 37422364 DOI: 10.1016/j.tibs.2023.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
G-quadruplexes (G4s) are peculiar nucleic acid secondary structures formed by DNA or RNA and are considered as fundamental features of the genome. Many proteins can specifically bind to G4 structures. There is increasing evidence that G4-protein interactions involve in the regulation of important cellular processes, such as DNA replication, transcription, RNA splicing, and translation. Additionally, G4-protein interactions have been demonstrated to be potential targets for disease treatment. In order to unravel the detailed regulatory mechanisms of G4-binding proteins (G4BPs), biochemical methods for detecting G4-protein interactions with high specificity and sensitivity are highly demanded. Here, we review recent advances in screening and validation of new G4BPs and highlight both their features and limitations.
Collapse
Affiliation(s)
- Yicong Dai
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Xucong Teng
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Qiushuang Zhang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing 102209, China.
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China; Beijing Life Science Academy, Beijing 102209, China; Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
4
|
Samee MAH. Noncanonical binding of transcription factors: time to revisit specificity? Mol Biol Cell 2023; 34:pe4. [PMID: 37486893 PMCID: PMC10398899 DOI: 10.1091/mbc.e22-08-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Transcription factors (TFs) are one of the most studied classes of DNA-binding proteins that have a direct functional impact on gene transcription and thus, on human physiology and disease. The mechanisms that TFs use for recognizing target DNA binding sites have been studied for nearly five decades, yet they remain poorly understood. It is classically assumed that a TF recognizes a specific sequence pattern, or motif, as its binding sites. However, recent studies are consistently finding examples of noncanonical binding, that is, TFs binding at sites that do not resemble their sequence motifs. Here we review the current literature on four major types of noncanonical TF binding, namely binding based on DNA shape readout, at Guanine-quadruplex structures, at repeat sequences, and bispecific binding. These examples point to a critical need for studies to unify our current observations, many of which are at odds with the "one TF, one motif" view, into a more comprehensive definition of the DNA-binding specificity of TFs.
Collapse
|
5
|
Gao Z, Yuan J, He X, Wang H, Wang Y. Phase Separation Modulates the Formation and Stabilities of DNA Guanine Quadruplex. JACS AU 2023; 3:1650-1657. [PMID: 37388701 PMCID: PMC10301798 DOI: 10.1021/jacsau.3c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023]
Abstract
In the presence of monovalent alkali metal ions, G-rich DNA sequences containing four runs of contiguous guanines can fold into G-quadruplex (G4) structures. Recent studies showed that these structures are located in critical regions of the human genome and assume important functions in many essential DNA metabolic processes, including replication, transcription, and repair. However, not all potential G4-forming sequences are actually folded into G4 structures in cells, where G4 structures are known to be dynamic and modulated by G4-binding proteins as well as helicases. It remains unclear whether there are other factors influencing the formation and stability of G4 structures in cells. Herein, we showed that DNA G4s can undergo phase separation in vitro. In addition, immunofluorescence microscopy and ChIP-seq experiments with the use of BG4, a G4 structure-specific antibody, revealed that disruption of phase separation could result in global destabilization of G4 structures in cells. Together, our work revealed phase separation as a new determinant in modulating the formation and stability of G4 structures in human cells.
Collapse
Affiliation(s)
- Zi Gao
- Department
of Chemistry, University of California Riverside, Riverside, California, 92521-0403, United
States
| | - Jun Yuan
- Environmental
Toxicology Graduate Program, University
of California Riverside, Riverside, California, 92521-0403, United States
| | - Xiaomei He
- Department
of Chemistry, University of California Riverside, Riverside, California, 92521-0403, United
States
| | - Handing Wang
- Department
of Chemistry, University of California Riverside, Riverside, California, 92521-0403, United
States
| | - Yinsheng Wang
- Department
of Chemistry, University of California Riverside, Riverside, California, 92521-0403, United
States
- Environmental
Toxicology Graduate Program, University
of California Riverside, Riverside, California, 92521-0403, United States
| |
Collapse
|
6
|
|
7
|
Rigo R, Groaz E, Sissi C. Polymorphic and Higher-Order G-Quadruplexes as Possible Transcription Regulators: Novel Perspectives for Future Anticancer Therapeutic Applications. Pharmaceuticals (Basel) 2022; 15:ph15030373. [PMID: 35337170 PMCID: PMC8950063 DOI: 10.3390/ph15030373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
In the past two decades, significant efforts have been put into designing small molecules to target selected genomic sites where DNA conformational rearrangements control gene expression. G-rich sequences at oncogene promoters are considered good points of intervention since, under specific environmental conditions, they can fold into non-canonical tetrahelical structures known as G-quadruplexes. However, emerging evidence points to a frequent lack of correlation between small molecule targeting of G-quadruplexes at gene promoters and the expression of the associated protein, which hampers pharmaceutical applications. The wide genomic localization of G-quadruplexes along with their highly polymorphic behavior may account for this scenario, suggesting the need for more focused drug design strategies. Here, we will summarize the G4 structural features that can be considered to fulfill this goal. In particular, by comparing a telomeric sequence with the well-characterized G-rich domain of the KIT promoter, we will address how multiple secondary structures might cooperate to control genome architecture at a higher level. If this holds true, the link between drug–DNA complex formation and the associated cellular effects will need to be revisited.
Collapse
Affiliation(s)
- Riccardo Rigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Marzolo 5, 35131 Padova, Italy; (R.R.); (E.G.)
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Elisabetta Groaz
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Marzolo 5, 35131 Padova, Italy; (R.R.); (E.G.)
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49-Box 1041, 3000 Leuven, Belgium
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Marzolo 5, 35131 Padova, Italy; (R.R.); (E.G.)
- Correspondence:
| |
Collapse
|