1
|
Perez-Riverol Y, Bandla C, Kundu D, Kamatchinathan S, Bai J, Hewapathirana S, John N, Prakash A, Walzer M, Wang S, Vizcaíno J. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res 2025; 53:D543-D553. [PMID: 39494541 PMCID: PMC11701690 DOI: 10.1093/nar/gkae1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
The PRoteomics IDEntifications (PRIDE) database (https://www.ebi.ac.uk/pride/) is the world's leading mass spectrometry (MS)-based proteomics data repository and one of the founding members of the ProteomeXchange consortium. This manuscript summarizes the developments in PRIDE resources and related tools for the last three years. The number of submitted datasets to PRIDE Archive (the archival component of PRIDE) has reached on average around 534 datasets per month. This has been possible thanks to continuous improvements in infrastructure such as a new file transfer protocol for very large datasets (Globus), a new data resubmission pipeline and an automatic dataset validation process. Additionally, we will highlight novel activities such as the availability of the PRIDE chatbot (based on the use of open-source Large Language Models), and our work to improve support for MS crosslinking datasets. Furthermore, we will describe how we have increased our efforts to reuse, reanalyze and disseminate high-quality proteomics data into added-value resources such as UniProt, Ensembl and Expression Atlas.
Collapse
Affiliation(s)
- Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Chakradhar Bandla
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Deepti J Kundu
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Selvakumar Kamatchinathan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jingwen Bai
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Suresh Hewapathirana
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Nithu Sara John
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Ananth Prakash
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Mathias Walzer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Shengbo Wang
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
2
|
Bai J, Kamatchinathan S, Kundu DJ, Bandla C, Vizcaíno JA, Perez-Riverol Y. Open-source large language models in action: A bioinformatics chatbot for PRIDE database. Proteomics 2024; 24:e2400005. [PMID: 38556628 DOI: 10.1002/pmic.202400005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
We here present a chatbot assistant infrastructure (https://www.ebi.ac.uk/pride/chatbot/) that simplifies user interactions with the PRIDE database's documentation and dataset search functionality. The framework utilizes multiple Large Language Models (LLM): llama2, chatglm, mixtral (mistral), and openhermes. It also includes a web service API (Application Programming Interface), web interface, and components for indexing and managing vector databases. An Elo-ranking system-based benchmark component is included in the framework as well, which allows for evaluating the performance of each LLM and for improving PRIDE documentation. The chatbot not only allows users to interact with PRIDE documentation but can also be used to search and find PRIDE datasets using an LLM-based recommendation system, enabling dataset discoverability. Importantly, while our infrastructure is exemplified through its application in the PRIDE database context, the modular and adaptable nature of our approach positions it as a valuable tool for improving user experiences across a spectrum of bioinformatics and proteomics tools and resources, among other domains. The integration of advanced LLMs, innovative vector-based construction, the benchmarking framework, and optimized documentation collectively form a robust and transferable chatbot assistant infrastructure. The framework is open-source (https://github.com/PRIDE-Archive/pride-chatbot).
Collapse
Affiliation(s)
- Jingwen Bai
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Selvakumar Kamatchinathan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Deepti J Kundu
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Chakradhar Bandla
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
3
|
Nitz A, Mongane AR, Squires L, Payne SH. Attracting Computational Researchers to Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2544-2546. [PMID: 39214610 PMCID: PMC11457304 DOI: 10.1021/jasms.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Alyssa
A Nitz
- Department of Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Ansima R Mongane
- Department of Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Luke Squires
- Department of Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
4
|
Dens C, Adams C, Laukens K, Bittremieux W. Machine Learning Strategies to Tackle Data Challenges in Mass Spectrometry-Based Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2143-2155. [PMID: 39074335 DOI: 10.1021/jasms.4c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
In computational proteomics, machine learning (ML) has emerged as a vital tool for enhancing data analysis. Despite significant advancements, the diversity of ML model architectures and the complexity of proteomics data present substantial challenges in the effective development and evaluation of these tools. Here, we highlight the necessity for high-quality, comprehensive data sets to train ML models and advocate for the standardization of data to support robust model development. We emphasize the instrumental role of key data sets like ProteomeTools and MassIVE-KB in advancing ML applications in proteomics and discuss the implications of data set size on model performance, highlighting that larger data sets typically yield more accurate models. To address data scarcity, we explore algorithmic strategies such as self-supervised pretraining and multitask learning. Ultimately, we hope that this discussion can serve as a call to action for the proteomics community to collaborate on data standardization and collection efforts, which are crucial for the sustainable advancement and refinement of ML methodologies in the field.
Collapse
Affiliation(s)
- Ceder Dens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium
| | - Charlotte Adams
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium
| | - Wout Bittremieux
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium
| |
Collapse
|
5
|
Kundu P, Beura S, Mondal S, Das AK, Ghosh A. Machine learning for the advancement of genome-scale metabolic modeling. Biotechnol Adv 2024; 74:108400. [PMID: 38944218 DOI: 10.1016/j.biotechadv.2024.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/13/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Constraint-based modeling (CBM) has evolved as the core systems biology tool to map the interrelations between genotype, phenotype, and external environment. The recent advancement of high-throughput experimental approaches and multi-omics strategies has generated a plethora of new and precise information from wide-ranging biological domains. On the other hand, the continuously growing field of machine learning (ML) and its specialized branch of deep learning (DL) provide essential computational architectures for decoding complex and heterogeneous biological data. In recent years, both multi-omics and ML have assisted in the escalation of CBM. Condition-specific omics data, such as transcriptomics and proteomics, helped contextualize the model prediction while analyzing a particular phenotypic signature. At the same time, the advanced ML tools have eased the model reconstruction and analysis to increase the accuracy and prediction power. However, the development of these multi-disciplinary methodological frameworks mainly occurs independently, which limits the concatenation of biological knowledge from different domains. Hence, we have reviewed the potential of integrating multi-disciplinary tools and strategies from various fields, such as synthetic biology, CBM, omics, and ML, to explore the biochemical phenomenon beyond the conventional biological dogma. How the integrative knowledge of these intersected domains has improved bioengineering and biomedical applications has also been highlighted. We categorically explained the conventional genome-scale metabolic model (GEM) reconstruction tools and their improvement strategies through ML paradigms. Further, the crucial role of ML and DL in omics data restructuring for GEM development has also been briefly discussed. Finally, the case-study-based assessment of the state-of-the-art method for improving biomedical and metabolic engineering strategies has been elaborated. Therefore, this review demonstrates how integrating experimental and in silico strategies can help map the ever-expanding knowledge of biological systems driven by condition-specific cellular information. This multiview approach will elevate the application of ML-based CBM in the biomedical and bioengineering fields for the betterment of society and the environment.
Collapse
Affiliation(s)
- Pritam Kundu
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Satyajit Beura
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Suman Mondal
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
6
|
Ye J, He X, Wang S, Dong MQ, Wu F, Lu S, Feng F. Test-Time Training for Deep MS/MS Spectrum Prediction Improves Peptide Identification. J Proteome Res 2024; 23:550-559. [PMID: 38153036 DOI: 10.1021/acs.jproteome.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In bottom-up proteomics, peptide-spectrum matching is critical for peptide and protein identification. Recently, deep learning models have been used to predict tandem mass spectra of peptides, enabling the calculation of similarity scores between the predicted and experimental spectra for peptide-spectrum matching. These models follow the supervised learning paradigm, which trains a general model using paired peptides and spectra from standard data sets and directly employs the model on experimental data. However, this approach can lead to inaccurate predictions due to differences between the training data and the experimental data, such as sample types, enzyme specificity, and instrument calibration. To tackle this problem, we developed a test-time training paradigm that adapts the pretrained model to generate experimental data-specific models, namely, PepT3. PepT3 yields a 10-40% increase in peptide identification depending on the variability in training and experimental data. Intriguingly, when applied to a patient-derived immunopeptidomic sample, PepT3 increases the identification of tumor-specific immunopeptide candidates by 60%. Two-thirds of the newly identified candidates are predicted to bind to the patient's human leukocyte antigen isoforms. To facilitate access of the model and all the results, we have archived all the intermediate files in Zenodo.org with identifier 8231084.
Collapse
Affiliation(s)
- Jianbai Ye
- MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangnan He
- MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shujuan Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Feng Wu
- MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shan Lu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Fuli Feng
- MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
van der Burgt Y, Wuhrer M. The role of clinical glyco(proteo)mics in precision medicine. Mol Cell Proteomics 2023:100565. [PMID: 37169080 DOI: 10.1016/j.mcpro.2023.100565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
Glycoproteomics reveals site-specific O- and N-glycosylation that may influence protein properties including binding, activity and half-life. The increasingly mature toolbox with glycomic- and glycoproteomic strategies is applied for the development of biopharmaceuticals and discovery and clinical evaluation of glycobiomarkers in various disease fields. Notwithstanding the contributions of glycoscience in identifying new drug targets, the current report is focused on the biomarker modality that is of interest for diagnostic and monitoring purposes. To this end it is noted that the identification of biomarkers has received more attention than corresponding quantification. Most analytical methods are very efficient in detecting large numbers of analytes but developments to accurately quantify these have so far been limited. In this perspective a parallel is made with earlier proposed tiers for protein quantification using mass spectrometry. Moreover, the foreseen reporting of multimarker readouts is discussed to describe an individual's health or disease state and their role in clinical decision-making. The potential of longitudinal sampling and monitoring of glycomic features for diagnosis and treatment monitoring is emphasized. Finally, different strategies that address quantification of a multimarker panel will be discussed.
Collapse
Affiliation(s)
- Yuri van der Burgt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Neely BA, Dorfer V, Martens L, Bludau I, Bouwmeester R, Degroeve S, Deutsch EW, Gessulat S, Käll L, Palczynski P, Payne SH, Rehfeldt TG, Schmidt T, Schwämmle V, Uszkoreit J, Vizcaíno JA, Wilhelm M, Palmblad M. Toward an Integrated Machine Learning Model of a Proteomics Experiment. J Proteome Res 2023; 22:681-696. [PMID: 36744821 PMCID: PMC9990124 DOI: 10.1021/acs.jproteome.2c00711] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 02/07/2023]
Abstract
In recent years machine learning has made extensive progress in modeling many aspects of mass spectrometry data. We brought together proteomics data generators, repository managers, and machine learning experts in a workshop with the goals to evaluate and explore machine learning applications for realistic modeling of data from multidimensional mass spectrometry-based proteomics analysis of any sample or organism. Following this sample-to-data roadmap helped identify knowledge gaps and define needs. Being able to generate bespoke and realistic synthetic data has legitimate and important uses in system suitability, method development, and algorithm benchmarking, while also posing critical ethical questions. The interdisciplinary nature of the workshop informed discussions of what is currently possible and future opportunities and challenges. In the following perspective we summarize these discussions in the hope of conveying our excitement about the potential of machine learning in proteomics and to inspire future research.
Collapse
Affiliation(s)
- Benjamin A. Neely
- National
Institute of Standards and Technology, Charleston, South Carolina 29412, United States
| | - Viktoria Dorfer
- Bioinformatics
Research Group, University of Applied Sciences
Upper Austria, Softwarepark
11, 4232 Hagenberg, Austria
| | - Lennart Martens
- VIB-UGent
Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Health Sciences and Medicine, Ghent University, 9000 Ghent, Belgium
| | - Isabell Bludau
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Robbin Bouwmeester
- VIB-UGent
Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Health Sciences and Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sven Degroeve
- VIB-UGent
Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Health Sciences and Medicine, Ghent University, 9000 Ghent, Belgium
| | - Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | | | - Lukas Käll
- Science
for Life Laboratory, KTH - Royal Institute
of Technology, 171 21 Solna, Sweden
| | - Pawel Palczynski
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, 5230 Odense, Denmark
| | - Samuel H. Payne
- Department
of Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Tobias Greisager Rehfeldt
- Institute
for Mathematics and Computer Science, University
of Southern Denmark, 5230 Odense, Denmark
| | | | - Veit Schwämmle
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, 5230 Odense, Denmark
| | - Julian Uszkoreit
- Medical
Proteome Analysis, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, 44801 Bochum, Germany
- Medizinisches
Proteom-Center, Medical Faculty, Ruhr University
Bochum, 44801 Bochum, Germany
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory,
European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United
Kingdom
| | - Mathias Wilhelm
- Computational
Mass Spectrometry, Technical University
of Munich (TUM), 85354 Freising, Germany
| | - Magnus Palmblad
- Leiden University Medical Center, Postbus 9600, 2300
RC Leiden, The Netherlands
| |
Collapse
|
9
|
Rehfeldt TG, Krawczyk K, Echers SG, Marcatili P, Palczynski P, Röttger R, Schwämmle V. Variability analysis of LC-MS experimental factors and their impact on machine learning. Gigascience 2022; 12:giad096. [PMID: 37983748 PMCID: PMC10659119 DOI: 10.1093/gigascience/giad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/23/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Machine learning (ML) technologies, especially deep learning (DL), have gained increasing attention in predictive mass spectrometry (MS) for enhancing the data-processing pipeline from raw data analysis to end-user predictions and rescoring. ML models need large-scale datasets for training and repurposing, which can be obtained from a range of public data repositories. However, applying ML to public MS datasets on larger scales is challenging, as they vary widely in terms of data acquisition methods, biological systems, and experimental designs. RESULTS We aim to facilitate ML efforts in MS data by conducting a systematic analysis of the potential sources of variability in public MS repositories. We also examine how these factors affect ML performance and perform a comprehensive transfer learning to evaluate the benefits of current best practice methods in the field for transfer learning. CONCLUSIONS Our findings show significantly higher levels of homogeneity within a project than between projects, which indicates that it is important to construct datasets most closely resembling future test cases, as transferability is severely limited for unseen datasets. We also found that transfer learning, although it did increase model performance, did not increase model performance compared to a non-pretrained model.
Collapse
Affiliation(s)
- Tobias Greisager Rehfeldt
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
| | - Konrad Krawczyk
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
| | | | - Paolo Marcatili
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pawel Palczynski
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|