2
|
Sinclair JE, Vedelago C, Ryan FJ, Carney M, Redd MA, Lynn MA, Grubor-Bauk B, Cao Y, Henders AK, Chew KY, Gilroy D, Greaves K, Labzin L, Ziser L, Ronacher K, Wallace LM, Zhang Y, Macauslane K, Ellis DJ, Rao S, Burr L, Bain A, Karawita A, Schulz BL, Li J, Lynn DJ, Palpant N, Wuethrich A, Trau M, Short KR. Post-acute sequelae of SARS-CoV-2 cardiovascular symptoms are associated with trace-level cytokines that affect cardiomyocyte function. Nat Microbiol 2024; 9:3135-3147. [PMID: 39478108 PMCID: PMC11602718 DOI: 10.1038/s41564-024-01838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/25/2024] [Indexed: 11/06/2024]
Abstract
An estimated 65 million people globally suffer from post-acute sequelae of COVID-19 (PASC), with many experiencing cardiovascular symptoms (PASC-CVS) like chest pain and heart palpitations. This study examines the role of chronic inflammation in PASC-CVS, particularly in individuals with symptoms persisting over a year after infection. Blood samples from three groups-recovered individuals, those with prolonged PASC-CVS and SARS-CoV-2-negative individuals-revealed that those with PASC-CVS had a blood signature linked to inflammation. Trace-level pro-inflammatory cytokines were detected in the plasma from donors with PASC-CVS 18 months post infection using nanotechnology. Importantly, these trace-level cytokines affected the function of primary human cardiomyocytes. Plasma proteomics also demonstrated higher levels of complement and coagulation proteins in the plasma from patients with PASC-CVS. This study highlights chronic inflammation's role in the symptoms of PASC-CVS.
Collapse
Affiliation(s)
- Jane E Sinclair
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Courtney Vedelago
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Meagan Carney
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Deborah Gilroy
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kim Greaves
- Sunshine Coast University Hospital, Queensland Health, Birtinya, Queensland, Australia
- National Centre for Epidemiology and Population Health, ANU College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Larisa Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Laura Ziser
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Ronacher
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Leanne M Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Yiwen Zhang
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Kyle Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel J Ellis
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lucy Burr
- Mater Research Institute, The University of Queensland, South Brisbane, Queensland, Australia
- Department of Respiratory Medicine, Mater Adult Hospital, South Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Amanda Bain
- Gene Regulation and Translational Medicine Laboratory, Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anjana Karawita
- Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Junrong Li
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Nathan Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Matt Trau
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia.
- Queensland Immunology Research Centre, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
3
|
Li H, Cai Q, Li P, Jie G. Zero-Background Dual-Mode Closed Bipolar Electrode Electrochemiluminescence Biosensor Based on ZnCoN-C Potential Regulation for Ultrasensitive Detection of Ochratoxin A. Anal Chem 2024. [PMID: 39140171 DOI: 10.1021/acs.analchem.4c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this work, the relationship between electrochemiluminescence (ECL) signal and driving voltage was first studied by self-made reduced and oxidized closed bipolar electrodes (CBPEs). It was found that when the driving voltage was large enough, the maximum ECL signals for the two kinds of CBPEs were the same but their required drive voltages were different. Zinc cobalt nitrogen doped carbon material (ZnCoN-C) had an outstanding electric double layer (EDL) property and conductivity. Therefore, it could significantly reduce the driving voltage of two kinds of CBPE systems, reaching the maximum ECL signal of Ru(bpy)32+. Interestingly, when the ZnCoN-C modified electrode reached the maximum ECL signal, the bare electrode signal was zero. As a proof-of-concept application, a zero-background dual-mode CBPE-ECL biosensor was constructed for the ultrasensitive detection of ochratoxin A (OTA) in beer. Considering that beer samples contained a large number of reducing substances, a reduced CBPE system was selected to build the biosensor. Furthermore, a convenient ECL imaging platform using a smartphone was built for the detection of OTA. This work used a unique EDL material ZnCoN-C to regulate the driving voltage of CBPE for the first time; thus, a novel zero-background ECL sensor was constructed. Further, this work provided a deeper understanding of the CBPE-ECL system and opened a new door for zero-background detection.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qianqian Cai
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Pingping Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
4
|
Laureys D, Baillière J, Vermeir P, Vanderputten D, De Clippeleer J. The Impact of 10 Unmalted Alternative Adjuncts on Wort Characteristics. Foods 2023; 12:4206. [PMID: 38231655 DOI: 10.3390/foods12234206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Consumers are more than ever in search of novel and exciting beer choices, and brewers are, therefore, continuously experimenting to adapt their product portfolio. One interesting way to naturally incorporate novel flavors and tastes is by using alternative adjuncts, but this is not always an easy and straightforward process. In this study, a 40% unmalted alternative adjunct (einkorn, emmer, spelt, khorasan, quinoa, amaranth, buckwheat, sorghum, teff, and tritordeum) or reference (barley malt, unmalted barley, and unmalted wheat) was added to 60% barley malt, after which three different laboratory mashing processes (Congress mash, Congress mash with pre-gelatinization of the adjunct, and Evans mash) were performed, and their behavior during mashing and the resulting wort characteristics were investigated in detail. Overall, the extraction process of all 10 unmalted alternative adjuncts was not complete for all three laboratory mashing processes, whereby Congress mashing resulted in the highest extract and fastest filtration, whereas Evans mashing resulted in the lowest extract and slowest filtration. Pre-gelatinization of the unmalted was generally only beneficial for adjuncts with high onset starch gelatinization temperatures. This process also inactivated endogenous enzymes in the unmalted adjuncts, which had an adverse effect on the mashing process.
Collapse
Affiliation(s)
- David Laureys
- Innovation Centre for Brewing & Fermentation (IBF), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Jeroen Baillière
- Innovation Centre for Brewing & Fermentation (IBF), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Pieter Vermeir
- Laboratory of Chemical Analysis (LCA), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Dana Vanderputten
- Innovation Centre for Brewing & Fermentation (IBF), AgroFoodNature, HOGENT University of Applied Sciences and Arts, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Jessika De Clippeleer
- Innovation Centre for Brewing & Fermentation (IBF), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
- Innovation Centre for Brewing & Fermentation (IBF), AgroFoodNature, HOGENT University of Applied Sciences and Arts, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|