1
|
Niu C, Zhang J, Okolo PI. Harnessing Plant Flavonoids to Fight Pancreatic Cancer. Curr Nutr Rep 2024; 13:566-581. [PMID: 38700837 DOI: 10.1007/s13668-024-00545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE OF REVIEW This review draws on the last fifteen years (2009-2024) of published data to summarize the potential effect of plant flavonoids on pancreatic carcinogenesis and discuss the possible mechanisms of action to establish their applicability as anti-cancer agents. RECENT FINDINGS This review found that the plant flavonoids with anti-pancreatic cancer activity mainly include chalcones, dihydrochalcones, flavanols, flavanones, flavones, isoflavonoids, flavonols, isoflavones, and flavanonols. Most of these flavonoids have anti-proliferative, pro-apoptotic, cell cycle arrest, anti-angiogenic, anti-inflammatory, anti-epithelial-mesenchymal transition, and anti-metastatic properties. Some flavonoids can also regulate autophagy, immune and glucose uptake in the context of pancreatic cancer. Several molecules and signaling pathways are associated with the pharmacological activities of plant flavonoids, including AMP-activated protein kinase, mitogen-activated protein kinases, phosphatidylinositol-3-kinase/protein kinase B, nuclear factor-κB, signal transducer, and activator of transcription 3, Smad3, epidermal growth factor receptor, and vascular endothelial growth factor. This review provides strong evidence that plant flavonoids have potential against pancreatic carcinogenesis in experimental animals through various pharmacological mechanisms. They are a promising resource for use as adjuvant anti-cancer therapy. However, randomized controlled clinical trials with those flavonoids are needed.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
2
|
Lin Q, Serratore A, Perri J, Roy Chaudhuri T, Qu J, Ma WW, Kandel ES, Straubinger RM. Expression of fibroblast growth factor receptor 1 correlates inversely with the efficacy of single-agent fibroblast growth factor receptor-specific inhibitors in pancreatic cancer. Br J Pharmacol 2024; 181:1383-1403. [PMID: 37994108 DOI: 10.1111/bph.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Elevated fibroblast growth factor receptor (FGFR) activity correlates with pancreatic adenocarcinoma (PDAC) progression and poor prognosis. However, its potential as a therapeutic target remains largely unexplored. EXPERIMENTAL APPROACH The mechanisms of action and therapeutic effects of selective pan-FGFR inhibitors (pan-FGFRi) were explored using in vitro and in vivo PDAC models ranging from gemcitabine-sensitive to highly gemcitabine-resistant (GemR). Gain-/loss-of-function investigations were employed to define the role of individual FGFRs in cell proliferation, migration, and treatment response and resistance. RESULTS The pan-FGFRi NVP-BGJ398 significantly inhibited cell proliferation, migration, and invasion, and downregulated key cell survival- and invasiveness markers in multiple PDAC cell lines. Gemcitabine is a standard-of-care for PDAC, but development of resistance to gemcitabine (GemR) compromises its efficacy. Acquired GemR was modelled experimentally by developing highly GemR cells using escalating gemcitabine exposure in vitro and in vivo. FGFRi treatment inhibited GemR cell proliferation, migration, GemR marker expression, and tumour progression. FGFR2 or FGFR3 loss-of-function by shRNA knockdown failed to decrease cell growth, whereas FGFR1 knockdown was lethal. FGFR1 overexpression promoted cell migration more than proliferation, and reduced FGFRi-mediated inhibition of proliferation and migration. Single-agent FGFRi suppressed the viability and growth of multiple patient-derived xenografts inversely with respect to FGFR1 expression, underscoring the influence of FGFR1-dependent tumour responses to FGFRi. Importantly, secondary data analysis showed that PDAC tumours expressed FGFR1 at lower levels than in normal pancreas tissue. CONCLUSIONS AND IMPLICATIONS Single-agent FGFR inhibitors mediate selective, molecularly-targeted suppression of PDAC proliferation, and their effects are greatest in PDAC tumours expressing low-to-moderate levels of FGFR1.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Andrea Serratore
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Jonathan Perri
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Tista Roy Chaudhuri
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Wen Wee Ma
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
3
|
Lin Q, Serratore A, Niu J, Shen S, Roy Chaudhuri T, Ma WW, Qu J, Kandel ES, Straubinger RM. Fibroblast growth factor receptor 1 inhibition suppresses pancreatic cancer chemoresistance and chemotherapy-driven aggressiveness. Drug Resist Updat 2024; 73:101064. [PMID: 38387284 DOI: 10.1016/j.drup.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is often intrinsically-resistant to standard-of-care chemotherapies such as gemcitabine. Acquired gemcitabine resistance (GemR) can arise from treatment of initially-sensitive tumors, and chemotherapy can increase tumor aggressiveness. We investigated the molecular mechanisms of chemoresistance and chemotherapy-driven tumor aggressiveness, which are understood incompletely. METHODS Differential proteomic analysis was employed to investigate chemotherapy-driven chemoresistance drivers and responses of PDAC cells and patient-derived tumor xenografts (PDX) having different chemosensitivities. We also investigated the prognostic value of FGFR1 expression in the efficacy of selective pan-FGFR inhibitor (FGFRi)-gemcitabine combinations. RESULTS Quantitative proteomic analysis of a highly-GemR cell line revealed fibroblast growth factor receptor 1 (FGFR1) as the highest-expressed receptor tyrosine kinase. FGFR1 knockdown or FGFRi co-treatment enhanced gemcitabine efficacy and decreased GemR marker expression, implicating FGFR1 in augmentation of GemR. FGFRi treatment reduced PDX tumor progression and prolonged survival significantly, even in highly-resistant tumors in which neither single-agent showed efficacy. Gemcitabine exacerbated aggressiveness of highly-GemR tumors, based upon proliferation and metastatic markers. Combining FGFRi with gemcitabine or gemcitabine+nab-paclitaxel reversed tumor aggressiveness and progression, and prolonged survival significantly. In multiple PDAC PDXs, FGFR1 expression correlated with intrinsic tumor gemcitabine sensitivity. CONCLUSION FGFR1 drives chemoresistance and tumor aggressiveness, which FGFRi can reverse.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Andrea Serratore
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Jin Niu
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Shichen Shen
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Tista Roy Chaudhuri
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Wen Wee Ma
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jun Qu
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|