1
|
Meng Y, Zhang L, Zhang L, Wang Z, Wang X, Li C, Chen Y, Shang S, Li L. CysModDB: a comprehensive platform with the integration of manually curated resources and analysis tools for cysteine posttranslational modifications. Brief Bioinform 2022; 23:6775608. [PMID: 36305460 PMCID: PMC9677505 DOI: 10.1093/bib/bbac460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/27/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022] Open
Abstract
The unique chemical reactivity of cysteine residues results in various posttranslational modifications (PTMs), which are implicated in regulating a range of fundamental biological processes. With the advent of chemical proteomics technology, thousands of cysteine PTM (CysPTM) sites have been identified from multiple species. A few CysPTM-based databases have been developed, but they mainly focus on data collection rather than various annotations and analytical integration. Here, we present a platform-dubbed CysModDB, integrated with the comprehensive CysPTM resources and analysis tools. CysModDB contains five parts: (1) 70 536 experimentally verified CysPTM sites with annotations of sample origin and enrichment techniques, (2) 21 654 modified proteins annotated with functional regions and structure information, (3) cross-references to external databases such as the protein-protein interactions database, (4) online computational tools for predicting CysPTM sites and (5) integrated analysis tools such as gene enrichment and investigation of sequence features. These parts are integrated using a customized graphic browser and a Basket. The browser uses graphs to represent the distribution of modified sites with different CysPTM types on protein sequences and mapping these sites to the protein structures and functional regions, which assists in exploring cross-talks between the modified sites and their potential effect on protein functions. The Basket connects proteins and CysPTM sites to the analysis tools. In summary, CysModDB is an integrated platform to facilitate the CysPTM research, freely accessible via https://cysmoddb.bioinfogo.org/.
Collapse
Affiliation(s)
| | | | - Laizhi Zhang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ziyu Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xuanwen Wang
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Chan Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yu Chen
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Shipeng Shang
- Corresponding authors: Lei Li, Faculty of Biomedical and Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China. Tel/Fax: +86 532 8581 2983; E-mail: ; Shipeng Shang, School of Basic Medicine, Qingdao University, Qingdao 266071, China. Tel.: +86 532 8595 1111; Fax: +86 532 8581 2983; E-mail:
| | - Lei Li
- Corresponding authors: Lei Li, Faculty of Biomedical and Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China. Tel/Fax: +86 532 8581 2983; E-mail: ; Shipeng Shang, School of Basic Medicine, Qingdao University, Qingdao 266071, China. Tel.: +86 532 8595 1111; Fax: +86 532 8581 2983; E-mail:
| |
Collapse
|
2
|
Alberio T, Brughera M, Lualdi M. Current Insights on Neurodegeneration by the Italian Proteomics Community. Biomedicines 2022; 10:biomedicines10092297. [PMID: 36140397 PMCID: PMC9496271 DOI: 10.3390/biomedicines10092297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
The growing number of patients affected by neurodegenerative disorders represents a huge problem for healthcare systems, human society, and economics. In this context, omics strategies are crucial for the identification of molecular factors involved in disease pathobiology, and for the discovery of biomarkers that allow early diagnosis, patients’ stratification, and treatment response prediction. The integration of different omics data is a required step towards the goal of personalized medicine. The Italian proteomics community is actively developing and applying proteomics approaches to the study of neurodegenerative disorders; moreover, it is leading the mitochondria-focused initiative of the Human Proteome Project, which is particularly important given the central role of mitochondrial impairment in neurodegeneration. Here, we describe how Italian research groups in proteomics have contributed to the knowledge of many neurodegenerative diseases, through the elucidation of the pathobiology of these disorders, and through the discovery of disease biomarkers. In particular, we focus on the central role of post-translational modifications analysis, the implementation of network-based approaches in functional proteomics, the integration of different omics in a systems biology view, and the development of novel platforms for biomarker discovery for the high-throughput quantification of thousands of proteins at a time.
Collapse
|
3
|
Mass spectrometry analysis of S-nitrosylation of proteins and its role in cancer, cardiovascular and neurodegenerative diseases. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Zhang C, Xu Y, Wang G, Fang C, Bao H, Zhang Y, Lu H. FluoroTRAQ: Quantitative Analysis of Protein S-Nitrosylation through Fluorous Solid-Phase Extraction Combining with iTRAQ by Mass Spectrometry. Anal Chem 2020; 92:15317-15322. [PMID: 33174720 DOI: 10.1021/acs.analchem.0c01706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
S-Nitrosylation is an important post-translational modification that occurs on cysteine amino acid and regulates signal transduction in diverse cell processes. Dysregulation of protein nitrosylation has shown close association with cardiovascular and neurological diseases, thus demanding further precise and in-depth understanding. Mass spectrometry-based proteomics has been the method of choice for analyzing S-nitrosylated (SNO-) proteins. However, due to their extremely low expression level and rapid turnover rate, quantitative analysis of the S-nitrosylation at the proteomic level remains challenging. Herein, we developed a novel approach termed FluoroTRAQ, which combined the fluorous solid-phase extraction of SNO-peptides and iTRAQ labeling for the quantitative analysis of the SNO-proteome with high sensitivity and specificity. This new analytical strategy was subsequently applied to examine the dynamic SNO-proteome changes of human umbilical vein endothelial cells upon in vitro S-nitrosoglutathione induction. Our data identified a number of novel SNO-proteins and revealed their temporal modulation as validated by biotin switch assay. Our study offered a practical approach for quantitative analysis of protein S-nitrosylation.
Collapse
Affiliation(s)
- Cheng Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Yaoyao Xu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Guoli Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Caiyun Fang
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032 P. R. China
| | - Huimin Bao
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032 P. R. China
| | - Ying Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China.,Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032 P. R. China
| |
Collapse
|
5
|
The S-nitrosylation of parkin attenuated the ubiquitination of divalent metal transporter 1 in MPP +-treated SH-SY5Y cells. Sci Rep 2020; 10:15542. [PMID: 32968192 PMCID: PMC7511936 DOI: 10.1038/s41598-020-72630-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/02/2020] [Indexed: 11/19/2022] Open
Abstract
Abnormal iron accumulation caused by elevated levels of divalent metal transporter 1 (DMT1) contributes to progressive neurodegeneration in Parkinson's disease (PD). Parkin is a E3 ubiquitin ligase for the ubiquitination of DMT1. S-nitrosylated parkin (SNO-parkin) is commonly observed in PD. However, the effects of S-nitrosylation on the E3 ubiquitin ligase activity of parkin for the ubiquitination of DMT1 in PD are largely unknown. To elucidate the role of S-nitrosylated parkin and DMT1 in PD, SH-SY5Y cells were transfected with parkin, being treated with S-nitrosoglutathione (GSNO) and 1-methyl-4-phenylpyridinium (MPP+). The results showed increased levels of oxidized nitric oxide (NO) and S-nitrosylated parkin after the treatment of GSNO and MPP+ in parkin-transfected cells. Consistently, increased levels of DMT1, iron uptake and cell viability were observed. Interestingly, inhibition of S-nitrosylated parkin reduced the level of DMT1. Further, S-nitrosylation of parkin significantly inhibited the ubiquitination of DMT1. When HEK293T cells were transfected with plasmid of parkin with single site mutation (Cys241A, Cys260A, Cys323A), ubiquitination of DMT1 was also inhibited. However, the cells cotransfected with plasmids containing all three mutations, GSNO treatment did not affect the ubiquitination of DMT1. The expression of SNO-parkin and DMT1 protein in substantia nigra increased significantly gradually after 2 h, 4 h and 24 h with MPTP injection. These results indicate that the S-nitrosylation of parkin inhibits its E3 ubiquitin ligase activity for the ubiquitination of DMT1, which contributes to iron accumulation and degenerative process in PD. Targeted S-nitrosylation could provide a potential therapeutic strategy against PD.
Collapse
|
6
|
Daniel T, Faruq HM, Laura Magdalena J, Manuela G, Christopher Horst L. Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism-Review. Molecules 2020; 25:E3860. [PMID: 32854270 PMCID: PMC7503856 DOI: 10.3390/molecules25173860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/26/2022] Open
Abstract
Glutathione (GSH) was initially identified and characterized for its redox properties and later for its contributions to detoxification reactions. Over the past decade, however, the essential contributions of glutathione to cellular iron metabolism have come more and more into focus. GSH is indispensable in mitochondrial iron-sulfur (FeS) cluster biosynthesis, primarily by co-ligating FeS clusters as a cofactor of the CGFS-type (class II) glutaredoxins (Grxs). GSH is required for the export of the yet to be defined FeS precursor from the mitochondria to the cytosol. In the cytosol, it is an essential cofactor, again of the multi-domain CGFS-type Grxs, master players in cellular iron and FeS trafficking. In this review, we summarize the recent advances and progress in this field. The most urgent open questions are discussed, such as the role of GSH in the export of FeS precursors from mitochondria, the physiological roles of the CGFS-type Grx interactions with BolA-like proteins and the cluster transfer between Grxs and recipient proteins.
Collapse
Affiliation(s)
- Trnka Daniel
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Hossain Md Faruq
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Jordt Laura Magdalena
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Gellert Manuela
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Lillig Christopher Horst
- Christopher Horst Lillig, Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| |
Collapse
|
7
|
Ahuie GK, Gagnon H, Pace PE, Peskin AV, Wagner RJ, Naylor S, Klarskov K. Investigating protein thiol chemistry associated with dehydroascorbate, homocysteine and glutathione using mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8774. [PMID: 32119756 DOI: 10.1002/rcm.8774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/05/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Oxidative stress is an imbalance between reactive free radical oxygen species and antioxidant defenses. Its consequences can lead to numerous pathologies. Regulating oxidative stress is the complex interplay between antioxidant recycling and thiol-containing regulatory proteins. Understanding these regulatory mechanisms is important for preventing onset of oxidative stress. The aim of this study was to investigae S-thiol protein chemistry associated with oxidized vitamin C (dehydroascorbate, DHA), homocysteine (HcySH) and glutathione (GSH) using mass spectrometry. METHODS Glutaredoxin-1 (Grx-1) was incubated with DHA, with and without GSH and HcySH. Disulfide formation was followed by electrospray ionization mass spectrometry (ESI-MS) of intact proteins and by LC/ESI-MS/MS of peptides from protein tryptic digestions. The mechanism of DHA-mediated S-thiolation was investigated using two synthetic peptides: AcFHACAAK and AcFHACE. Three proteins, i.e. human hemoglobin (HHb), recombinant peroxiredoxin 2 (Prdx2) and Grx-1, were S-homocysteinylated followed by S-transthiolyation with GSH and investigated by ESI-MS and ESI-MS/MS. RESULTS ESI-MS analysis reveals that DHA mediates disulfide formation and S-thiolation by HcySH as well as GSH of Grx-1. LC/ESI-MS/MS analysis allows identification of Grx-1 S-thiolated cysteine adducts. The mechanism by which DHA mediates S-thiolation of heptapeptide AcFHACAAK is shown to be via initial formation of a thiohemiketal adduct. In addition, ESI-MS of intact proteins shows that GSH can S-transthiolate S-homocysteinylated Grx-1_ HHb and Prdx2. The GS-S-protein adducts over time dominate the ESI-MS spectrum profile. CONCLUSIONS Mass spectrometry is a unique analytical technique for probing complex reaction mechanisms associated with oxidative stress. Using model proteins, ESI-MS reveals the mechanism of DHA-facilitated S-thiolation, which consists of thiohemiketal formation, disulfide formation or S-thiolation. Furthermore, protein S-thiolation by HcySH can be reversed by reversible GSH thiol exchange. The use of mass spectrometry with in vitro models of protein S-thiolation in oxidative stress may provide significant insight into possible mechanisms of action occurring in vivo.
Collapse
Affiliation(s)
- Grace Kouakou Ahuie
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Hugo Gagnon
- PhenoSwitch Bioscience, 975 Rue Léon-Trépanier, Sherbrooke, Quebec, J1G 5J6, Canada
| | - Paul E Pace
- Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140, New Zealand
| | - Alexander V Peskin
- Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140, New Zealand
| | - Richard J Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Stephen Naylor
- ReNeuroGen LLC, 2160 San Fernando Drive, Elm Grove, WI, 53122, USA
| | - Klaus Klarskov
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 Avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada
| |
Collapse
|
8
|
Fert-Bober J, Murray CI, Parker SJ, Van Eyk JE. Precision Profiling of the Cardiovascular Post-Translationally Modified Proteome: Where There Is a Will, There Is a Way. Circ Res 2019; 122:1221-1237. [PMID: 29700069 DOI: 10.1161/circresaha.118.310966] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is an exponential increase in biological complexity as initial gene transcripts are spliced, translated into amino acid sequence, and post-translationally modified. Each protein can exist as multiple chemical or sequence-specific proteoforms, and each has the potential to be a critical mediator of a physiological or pathophysiological signaling cascade. Here, we provide an overview of how different proteoforms come about in biological systems and how they are most commonly measured using mass spectrometry-based proteomics and bioinformatics. Our goal is to present this information at a level accessible to every scientist interested in mass spectrometry and its application to proteome profiling. We will specifically discuss recent data linking various protein post-translational modifications to cardiovascular disease and conclude with a discussion for enablement and democratization of proteomics across the cardiovascular and scientific community. The aim is to inform and inspire the readership to explore a larger breadth of proteoform, particularity post-translational modifications, related to their particular areas of expertise in cardiovascular physiology.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Christopher I Murray
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Sarah J Parker
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA.
| | - Jennifer E Van Eyk
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
9
|
Xu X, Qiu H, Shi F, Wang Z, Wang X, Jin L, Chi L, Zhang Q. The protein S-nitrosylation of splicing and translational machinery in vascular endothelial cells is susceptible to oxidative stress induced by oxidized low-density lipoprotein. J Proteomics 2019; 195:11-22. [PMID: 30630120 DOI: 10.1016/j.jprot.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/18/2018] [Accepted: 01/05/2019] [Indexed: 12/24/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL) can impair endothelial function and lead to the atherosclerosis development. Protein S-nitrosylation is sensitive to cellular redox state and acts as a crucial regulator and executor of nitric oxide (NO) signaling pathways. Aberrant S-nitrosylation contributes to the pathogenesis of cardiovascular and cerebrovascular diseases. However, the effect of ox-LDL on S-nitrosylation and its significance for endothelial dysfunction have not been studied at proteome level. Herein, the combined quantitative analysis of proteome and S-nitrosoproteome was performed using an integrated biotin switch and iTRAQ labeling approach in EA.hy926 cell line derived from human umbilical vein endothelial cell (HUVEC) treated with ox-LDL. A total of 2204 S-nitrosylated (SNO) peptides of 1318 SNO-proteins were quantified. Notably, 352 SNO-peptides of 262 SNO-proteins were significantly regulated after excluding S-nitrosylation changes caused by protein expression alterations. Many of them belonged to mRNA splicing, ribosomal structure and translational regulatory proteins, covering the entire translation process. The results indicated that S-nitrosylation of the splicing and translational machinery in vascular endothelial cells was susceptible to ox-LDL. Abnormal protein S-nitrosylation may be one pivotal mechanism underlying endothelial dysfunction induced by ox-LDL. This study potentially enriches the present understanding of pro-atherogenic effect of ox-LDL from the perspective of S-nitrosylation. SIGNIFICANCE: The role of ox-LDL in endothelial dysfunction and atherosclerosis development has been recognized from the aspect of impaired NO production. However, its effect on S-nitrosylation, which is directly related to NO signaling pathway, still remains largely unexplored. Our work initially provided a systematic characterization of S-nitrosoproteome in ox-LDL-treated endothelial cells after ruling out the changes of S-nitrosylation modification caused by protein expression alone. MS-based approach coupled with iTRAQ technique indicated 262 SNO-proteins were significantly regulated. Functional enrichment and interaction network analysis revealed that proteins involved in mRNA splicing and translational machinery were susceptible to abnormal S-nitrosylation under ox-LDL treatment. This achievement suggested one potential mechanism underlying endothelial dysfunction induced by ox-LDL from the perspective of S-nitrosoproteome.
Collapse
Affiliation(s)
- Xiaohui Xu
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Hongyan Qiu
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Feng Shi
- Scientific Research Division, Shandong Institute for Food and Drug Control, Jinan, Shandong 250101, China
| | - Zhe Wang
- Division of Endocrinology and Metabolism, Provincial Hospital affiliated with Shandong University, Jinan, Shandong 250021, China
| | - Xiaowei Wang
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Lan Jin
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Lianli Chi
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250021, China.
| | - Qunye Zhang
- National Glycoengineering Research Center, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
10
|
Gianazza E, Banfi C. Post-translational quantitation by SRM/MRM: applications in cardiology. Expert Rev Proteomics 2018; 15:477-502. [DOI: 10.1080/14789450.2018.1484283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Erica Gianazza
- Unit of Proteomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Cristina Banfi
- Unit of Proteomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
11
|
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 2018; 52:507-543. [PMID: 29589770 DOI: 10.1080/10715762.2018.1457217] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - I M Mokhosoev
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - N B Feldman
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - S V Lutsenko
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| |
Collapse
|
12
|
Wijasa TS, Sylvester M, Brocke-Ahmadinejad N, Kummer MP, Brosseron F, Gieselmann V, Heneka MT. Proteome profiling of s-nitrosylated synaptosomal proteins by isobaric mass tags. J Neurosci Methods 2017; 291:95-100. [PMID: 28789995 PMCID: PMC5625850 DOI: 10.1016/j.jneumeth.2017.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 11/20/2022]
Abstract
Protocol for quantitative proteomics of nitrosylation on synaptosomal proteins. Identification of endogenous nitrosylation independent of induction by NO donors. Use of iodoTMT sixplex mass tags for stable labeling, enrichment, identification, and multiplex quantitation. Applicable on low amounts of sample material of mouse and human brain tissue.
Collapse
Affiliation(s)
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, University of Bonn, Germany
| | | | - Markus P Kummer
- Department of Neurodegenerative Diseases & Gerontopsychiatry, University Hospital Bonn, Bonn, Germany
| | | | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, University of Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurodegenerative Diseases & Gerontopsychiatry, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|