1
|
Sun X, Wang S, Wong CC. Mass spectrometry–based proteomics technology in pancreatic cancer research. JOURNAL OF PANCREATOLOGY 2024; 7:145-163. [DOI: 10.1097/jp9.0000000000000152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has become a significant health concern with increasing incidence and mortality rates over the past few decades. Researchers have turned their attention to cutting-edge mass spectrometry (MS) technology due to its high-throughput and accurate detection capacity, which plays a vital role in understanding the mechanisms and discovering biomarkers for pancreatic diseases. In this review, we comprehensively investigate various methodologies of quantitative and qualitative proteomics MS technologies, alongside bioinformatical platforms employed in pancreatic cancer research. The integration of these optimized approaches provides novel insights into the molecular mechanisms underlying tumorigenesis and disease progression, ultimately facilitating the discovery of potential diagnostic, prognostic biomarkers, and therapeutic targets. The robust MS-based strategy shows promise in paving the way for early diagnosis and personalized medicine for pancreatic cancer patients.
Collapse
Affiliation(s)
- Xue Sun
- First School of Clinical Medicine, Peking University Health Science Center, Peking University, Beijing 100871, China
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Siyuan Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Catherine C.L. Wong
- First School of Clinical Medicine, Peking University Health Science Center, Peking University, Beijing 100871, China
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
- Tsinghua-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Increased levels of acidic free-N-glycans, including multi-antennary and fucosylated structures, in the urine of cancer patients. PLoS One 2022; 17:e0266927. [PMID: 35413075 PMCID: PMC9004742 DOI: 10.1371/journal.pone.0266927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/29/2022] [Indexed: 12/01/2022] Open
Abstract
We recently reported increased levels of urinary free-glycans in some cancer patients. Here, we focused on cancer related alterations in the levels of high molecular weight free-glycans. The rationale for this study was that branching, elongation, fucosylation and sialylation, which lead to increases in the molecular weight of glycans, are known to be up-regulated in cancer. Urine samples from patients with gastric cancer, pancreatic cancer, cholangiocarcinoma and colorectal cancer and normal controls were analyzed. The extracted free-glycans were fluorescently labeled with 2-aminopyridine and analyzed by multi-step liquid chromatography. Comparison of the glycan profiles revealed increased levels of glycans in some cancer patients. Structural analysis of the glycans was carried out by performing chromatography and mass spectrometry together with enzymatic or chemical treatments. To compare glycan levels between samples with high sensitivity and selectivity, simultaneous measurements by reversed-phase liquid chromatography-selected ion monitoring of mass spectrometry were also performed. As a result, three lactose-core glycans and 78 free-N-glycans (one phosphorylated oligomannose-type, four sialylated hybrid-type and 73 bi-, tri- and tetra-antennary complex-type structures) were identified. Among them, glycans with α1,3-fucosylation ((+/− sialyl) Lewis X), triply α2,6-sialylated tri-antennary structures and/or a (Man3)GlcNAc1-core displayed elevated levels in cancer patients. However, simple α2,3-sialylation and α1,6-core-fucosylation did not appear to contribute to the observed increase in the level of glycans. Interestingly, one tri-antennary free-N-glycan that showed remarkable elevation in some cancer patients contained a unique Glcβ1-4GlcNAc-core instead of the common GlcNAc2-core at the reducing end. This study provides further insights into free-glycans as potential tumor markers and their processing pathways in cancer.
Collapse
|
3
|
Occurrence of a D-arabinose-containing complex-type free-N-glycan in the urine of cancer patients. Sci Rep 2022; 12:4889. [PMID: 35318379 PMCID: PMC8941101 DOI: 10.1038/s41598-022-08790-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 11/11/2022] Open
Abstract
Urinary free-glycans are promising markers of disease. In this study, we attempted to identify novel tumor markers by focusing on neutral free-glycans in urine. Free-glycans extracted from the urine of normal subjects and cancer patients with gastric, colorectal, pancreatic and bile duct were fluorescently labeled with 2-aminopyridine. Profiles of these neutral free-glycans constructed using multidimensional high performance liquid chromatography separation were compared between normal controls and cancer patients. The analysis identified one glycan in the urine of cancer patients with a unique structure, which included a pentose residue. To reveal the glycan structure, the linkage fashion, monosaccharide species and enantiomer of the pentose were analyzed by high performance liquid chromatography and mass spectrometry combined with several chemical treatments. The backbone of the glycan was a monoantennary complex-type free-N-glycan containing β1,4-branch. The pentose residue was attached to the antennal GlcNAc and released by α1,3/4-l-fucosidase. Intriguingly, the pentose residue was consistent with d-arabinose. Collectively, this glycan structure was determined to be Galβ1-4(d-Araβ1-3)GlcNAcβ1-4Manα1-3Manβ1-4GlcNAc-PA. Elevation of d-arabinose-containing free-glycans in the urine of cancer patients was confirmed by selected reaction monitoring. This is the first study to unequivocally show the occurrence of a d-arabinose-containing oligosaccharide in human together with its detailed structure.
Collapse
|
4
|
Tanaka-Okamoto M, Hanzawa K, Murakami H, Mukai M, Miyamoto Y. Identification of β1-3 galactosylglucose-core free-glycans in human urine. Anal Biochem 2021; 641:114427. [PMID: 34688604 DOI: 10.1016/j.ab.2021.114427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
We previously reported the precise structure of acidic free-glycans in human urine. In the present study, structural analysis of neutral free-glycans in urine was performed in fine detail. Urine samples were collected from 21 healthy volunteers and free-glycans extracted from the creatinine-adjusted urine and then fluorescently labeled with 2-aminopyridine. Neutral glycan profiling was achieved by a combination of high-performance liquid chromatography, mass spectrometry, enzymatic digestion, and periodate cleavage. A total of 79 glycans were identified. Because the ABO-blood group antigen containing urinary neutral glycans are major components, profiling patterns were similar between individuals of the same ABO-group. The neutral glycans were composed of lactose-core (Galβ1-4Glc) glycans, type-II N-acetyllactosamine-core (GlcNAcβ1-4Glc) glycans, hexose oligomers, N-glycans and to our surprise β1-3 galactosylglucose-core (Galβ1-3Glc) glycans. Although glycans with a β1-3 galactosylglucose-core were identified as major components in urine, comprising structurally simple isomers of a lactose-core, the core structure has not previously been reported. The major β1-3 galactosylglucose-core glycans were Fucα1-2Galβ1-3(Fucα1-4)Glc, GalNAcα1-3(Fucα1-2)Galβ1-3(Fucα1-4)Glc and Galα1-3(Fucα1-2)Galβ1-3(Fucα1-4)Glc, corresponding to H-, A-, and B-blood group antigens, respectively. Three lactosamine extended β1-3 galactosylglucose-core glycans were also detected as minor components. Elucidating the biosynthesis of β1-3 galactosylglucose will be crucial for understanding the in vivo function of these glycans.
Collapse
Affiliation(s)
- Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Ken Hanzawa
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Hiroko Murakami
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Mikio Mukai
- Department of Medical Checkup, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Yasuhide Miyamoto
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan.
| |
Collapse
|
5
|
Tikhonov A, Smoldovskaya O, Feyzkhanova G, Kushlinskii N, Rubina A. Glycan-specific antibodies as potential cancer biomarkers: a focus on microarray applications. Clin Chem Lab Med 2021; 58:1611-1622. [PMID: 32324152 DOI: 10.1515/cclm-2019-1161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins and lipids. In the case of tumors, cell transformation accompanied by aberrant glycosylation results in the expression of tumor-associated glycans that promote tumor invasion. As part of the innate immunity, anti-glycan antibodies recognize tumor-associated glycans, and these antibodies can be present in the bloodstream in the early stages of cancer. Recently, anti-glycan antibody profiles have been of interest in various cancer studies. Novel advantages in the field of analytical techniques have simplified the analysis of anti-glycan antibodies and made it easier to have more comprehensive knowledge about their functions. One of the robust approaches for studying anti-glycan antibodies engages in microarray technology. The analysis of glycan microarrays can provide more expanded information to simultaneously specify or suggest the role of antibodies to a wide variety of glycans in the progression of different diseases, therefore making it possible to identify new biomarkers for diagnosing cancer and/or the state of the disease. Thus, in this review, we discuss antibodies to various glycans, their application for diagnosing cancer and one of the most promising tools for the investigation of these molecules, microarrays.
Collapse
Affiliation(s)
- Aleksei Tikhonov
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Smoldovskaya
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Guzel Feyzkhanova
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay Kushlinskii
- Laboratory of Clinical Biochemistry, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» оf the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alla Rubina
- Laboratory of Biological Microchips, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Hanzawa K, Tanaka-Okamoto M, Murakami H, Mukai M, Takahashi H, Omori T, Ikezawa K, Ohkawa K, Ohue M, Miyamoto Y. Investigation of acidic free-glycans in urine and their alteration in cancer. Glycobiology 2020; 31:391-409. [PMID: 33135073 PMCID: PMC8091460 DOI: 10.1093/glycob/cwaa100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/14/2022] Open
Abstract
Alterations to glycans in cancer patients have been used to identify novel tumor biomarkers. Most of these studies have focused on protein glycosylation but less attention has been paid to free-glycans. Here, we analyzed acidic free-glycans in the urine of cancer patients to identify novel tumor marker candidates. Specifically, urine samples were collected from patients with gastric cancer, pancreatic cancer and cholangiocarcinoma as well as normal controls. The free-glycans were extracted from creatinine-adjusted urine and fluorescently labeled with 2-aminopyridine. Initially, we performed profiling of urinary free-glycans by high-performance liquid chromatography and mass spectrometry with enzymatic and chemical degradation. More than 100 glycans, including novel structures, were identified. The chromatographic peaks suggested some of these glycans were present at elevated levels in cancer patients. To verify cancer-associated alterations, we compared the glycan levels between cancer patients and normal controls by selected reaction monitoring. Representative structures of glycans with elevated levels in cancer patients included the following: small glycans related to sialyllactose; sialyl Lewis X; lactose- and N-acetyllactosamine (LacNAc) type-II-core glycans with LacNAc (type-I or II)-extensions and modifications of α1,3/4-fucose and/or 6-sulfate on the Glc/GlcNAc; free-N-glycans containing sialylation or β1,6-branch of 6-sulfo Lewis X; novel NeuAcα2-3Galβ1-4(+/−Fucα1-3) Xylα1-3Glc glycans. Our results provide further insight into urinary free-glycans and suggest the potential utility of these compounds as tumor markers.
Collapse
Affiliation(s)
- Ken Hanzawa
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Hiroko Murakami
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Mikio Mukai
- Department of Medical Checkup, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Takeshi Omori
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Kenji Ikezawa
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Kazuyoshi Ohkawa
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Masayuki Ohue
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Yasuhide Miyamoto
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| |
Collapse
|
7
|
Tanaka-Okamoto M, Hanzawa K, Mukai M, Takahashi H, Ohue M, Miyamoto Y. Identification of internally sialylated carbohydrate tumor marker candidates, including Sda/CAD antigens, by focused glycomic analyses utilizing the substrate specificity of neuraminidase. Glycobiology 2018; 28:247-260. [PMID: 29390163 DOI: 10.1093/glycob/cwy010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/27/2018] [Indexed: 12/27/2022] Open
Abstract
In our previous study, 14 sulfated carbohydrate tumor marker candidates were identified by focused glycomic analyses. Here, glycomic analyses focused on internally sialylated glycans to identify novel marker candidates. Internally sialylated glycans were enriched by digestion of pyridylaminated glycans prepared from sera with α-neuraminidase from Salmonella typhimurium, which did not cleave sialic acids linked to internal residues, followed by anion-exchange chromatography. Next, internally sialylated O-glycan profiles were constructed using two types of high performance liquid chromatography, which were compared between 20 healthy controls and 11 patients with gastric cancer and 9 patients with pancreatic cancer. In all, 17 marker candidates were identified. The structures of glycan candidates were precisely analyzed using enzymatic digestion, glycan synthesis, 2D mapping and mass spectrometry. Among 17 candidates, one was STn, and the other 16 comprised 10 core1, 1 core2 and 5 core3 glycans. The various structures included a α2,6-sialylated reducing terminal GalNAc and α2,6-sialylated type1 N-acetyl-lactosamine. Eight candidates possessed the Sda/CAD antigen. The levels of these candidate glycans in sera from all 40 subjects were quantified using a selected reaction monitoring assay and found to be elevated in at least one or more patients. Although the serum levels of each candidate glycan varied between patients, those candidates having the same backbone or determinant, such as core3 backbone and core1 structures with extended type1 N-acetyl-lactosamine, displayed similar patterns of elevation. These results suggest that analysis of multiple markers may be an effective means of diagnosing various cancers.
Collapse
Affiliation(s)
| | | | | | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Masayuki Ohue
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | | |
Collapse
|
8
|
Peng W, Zhao J, Dong X, Banazadeh A, Huang Y, Hussien A, Mechref Y. Clinical application of quantitative glycomics. Expert Rev Proteomics 2018; 15:1007-1031. [PMID: 30380947 PMCID: PMC6647030 DOI: 10.1080/14789450.2018.1543594] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Aberrant glycosylation has been associated with many diseases. Decades of research activities have reported many reliable glycan biomarkers of different diseases which enable effective disease diagnostics and prognostics. However, none of the glycan markers have been approved for clinical diagnosis. Thus, a review of these studies is needed to guide the successful clinical translation. Area covered: In this review, we describe and discuss advances in analytical methods enabling clinical glycan biomarker discovery, focusing only on studies of released glycans. This review also summarizes the different glycobiomarkers identified for cancers, Alzheimer's disease, diabetes, hepatitis B and C, and other diseases. Expert commentary: Along with the development of techniques in quantitative glycomics, more glycans or glycan patterns have been reported as better potential biomarkers of different diseases and proved to have greater diagnostic/diagnostic sensitivity and specificity than existing markers. However, to successfully apply glycan markers in clinical diagnosis, more studies and verifications on large biological cohorts need to be performed. In addition, faster and more efficient glycomic strategies need to be developed to shorten the turnaround time. Thus, glycan biomarkers have an immense chance to be used in clinical prognosis and diagnosis of many diseases in the near future.
Collapse
Affiliation(s)
- Wenjing Peng
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Jingfu Zhao
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Xue Dong
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Alireza Banazadeh
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Yifan Huang
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Ahmed Hussien
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA.,b Department of Biotechnology , Institute of Graduate Studies and Research, University of Alexandria , Alexandria , Egypt
| | - Yehia Mechref
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| |
Collapse
|
9
|
Pearce OMT. Cancer glycan epitopes: biosynthesis, structure and function. Glycobiology 2018; 28:670-696. [DOI: 10.1093/glycob/cwy023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Oliver M T Pearce
- Centre for Cancer & Inflammation, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
10
|
Tanaka-Okamoto M, Hanzawa K, Mukai M, Takahashi H, Ohue M, Miyamoto Y. Correlation of serum sialyl Tn antigen values determined by immunoassay and SRM based method. Anal Biochem 2017; 544:42-48. [PMID: 29273237 DOI: 10.1016/j.ab.2017.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 01/02/2023]
Abstract
We previously identified four glycan tumor marker candidates using a HPLC-based method. One candidate was sialyl Tn (STN), NeuAcα2-6-GalNAc. In this study, glycans were prepared from sera by hydrazine treatment followed by fluorescent labeling with aminopyridine. Pyridylaminated-STN levels of 147 gastric cancer, 85 pancreatic cancer and 10 cholangiocarcinoma patients together with 102 normal controls were accurately quantified using HPLC separation followed by selected reaction monitoring (SRM) assay, which used a stable isotope, tetradeuterium-labeled pyridylamino glycan as an internal standard. Additionally, STN values were also quantified using conventional competitive inhibition radioimmunoassay (RIA). The two STN levels determined by RIA and SRM gave a similar distribution pattern in sera. STN levels were increased in sera from cancer patients compared to those from normal controls. Moreover, the STN levels in sera of cancer patients determined by the two different assay procedures showed a good correlation (i.e., correlation coefficient >0.9). Our results suggest it may be better to determine STN levels using SRM instead of RIA.
Collapse
Affiliation(s)
- Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Ken Hanzawa
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Mikio Mukai
- Department of Medical Checkup, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Masayuki Ohue
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Yasuhide Miyamoto
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka 541-8567, Japan.
| |
Collapse
|
11
|
Tanaka-Okamoto M, Mukai M, Takahashi H, Fujiwara Y, Ohue M, Miyamoto Y. Various sulfated carbohydrate tumor marker candidates identified by focused glycomic analyses. Glycobiology 2017; 27:400-415. [PMID: 28025252 DOI: 10.1093/glycob/cww133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022] Open
Abstract
Glycomic analysis focused on sulfated O-glycans was performed to identify novel serum carbohydrate tumor markers. Sulfated glycans were enriched by α-neuraminidase digestion of pyridylaminated glycans prepared from sera, followed by anion exchange chromatography. Sulfated O-glycan profiles were constructed by two types of high performance liquid chromatography separation. Comparison of the profiles from 20 healthy controls with those of 11 gastric and 9 pancreatic cancer patients identified 14 marker candidates. The structures of these candidates were precisely analyzed using various methods including enzymatic digestion and mass spectrometry. The candidates comprised 9 core1 and 5 core2 glycans. All these candidates were monosulfated, and 11 were also mono- or difucosylated, and included various determinants such as 6-sulfo type2 lactosamine, 6-sulfo Lewis X, 6-sulfo Lewis Y, 3'-sulfo type1 lactosamine and 3'-sulfo Lewis A. Furthermore, among the core1 glycans, five candidates displayed a type1 and type2 lactosamine hybrid backbone. The levels of these candidate glycans in the sera from all 40 subjects were quantified using a selected reaction monitoring assay. These analyses revealed: (i) the levels of all candidates were elevated in sera of at least one or more patients; (ii) core1 candidates having type1-type2 hybrid backbones with 6-sulfo Lewis X, 6-sulfo type2 lactosamine or 3'-sulfo Lewis A were elevated in sera of variety of patients; and (iii) levels of the candidates varied widely among patients, suggesting analysis of multiple candidates will be an effective means of screening various cancers. To fully evaluate the clinical utility of these candidates, a further verification study is required.
Collapse
Affiliation(s)
- Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Mikio Mukai
- Department of Multiphase Health Screening, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Hidenori Takahashi
- Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Yoshiyuki Fujiwara
- Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Masayuki Ohue
- Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | - Yasuhide Miyamoto
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| |
Collapse
|