1
|
Martinis E, Tonon S, Colamatteo A, La Cava A, Matarese G, Pucillo CEM. B cell immunometabolism in health and disease. Nat Immunol 2025; 26:366-377. [PMID: 39984733 DOI: 10.1038/s41590-025-02102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
B cells have crucial roles in the initiation and progression of many pathological conditions, and several therapeutic strategies have targeted the function of these cells. The advent of immunometabolism has provided compelling evidence that the metabolic reprogramming of immune cells can dramatically alter physiopathological immune activities. A better knowledge of the metabolic profiles of B cells can provide valuable means for developing therapies tuning defined cell pathways. Here we review the cellular and molecular mechanisms by which immunometabolism controls the physiology and pathophysiology of B cells and discuss the experimental evidence linking B cell metabolism to health, autoimmunity, and cancer. Considering that several metabolic pathways in B cells are involved differently, or even in opposite ways, in health and disease, we discuss how targeted modulation of B cell immunometabolism could be exploited mechanistically to rebalance abnormal B cell functions that have become altered in disease states.
Collapse
Affiliation(s)
| | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
| | - Antonio La Cava
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy.
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale 'G. Salvatore' - Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy.
| | | |
Collapse
|
2
|
Phipps WS, Kilgore MR, Kennedy JJ, Whiteaker JR, Hoofnagle AN, Paulovich AG. Clinical Proteomics for Solid Organ Tissues. Mol Cell Proteomics 2023; 22:100648. [PMID: 37730181 PMCID: PMC10692389 DOI: 10.1016/j.mcpro.2023.100648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
The evaluation of biopsied solid organ tissue has long relied on visual examination using a microscope. Immunohistochemistry is critical in this process, labeling and detecting cell lineage markers and therapeutic targets. However, while the practice of immunohistochemistry has reshaped diagnostic pathology and facilitated improvements in cancer treatment, it has also been subject to pervasive challenges with respect to standardization and reproducibility. Efforts are ongoing to improve immunohistochemistry, but for some applications, the benefit of such initiatives could be impeded by its reliance on monospecific antibody-protein reagents and limited multiplexing capacity. This perspective surveys the relevant challenges facing traditional immunohistochemistry and describes how mass spectrometry, particularly liquid chromatography-tandem mass spectrometry, could help alleviate problems. In particular, targeted mass spectrometry assays could facilitate measurements of individual proteins or analyte panels, using internal standards for more robust quantification and improved interlaboratory reproducibility. Meanwhile, untargeted mass spectrometry, showcased to date clinically in the form of amyloid typing, is inherently multiplexed, facilitating the detection and crude quantification of 100s to 1000s of proteins in a single analysis. Further, data-independent acquisition has yet to be applied in clinical practice, but offers particular strengths that could appeal to clinical users. Finally, we discuss the guidance that is needed to facilitate broader utilization in clinical environments and achieve standardization.
Collapse
Affiliation(s)
- William S Phipps
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark R Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
3
|
Rodrigues-Fernandes CI, Martins-Chaves RR, Vitório JG, Duarte-Andrade FF, Pereira TDSF, Soares CD, Moreira VR, Lebron YAR, Santos LVDS, Lange LC, Canuto GAB, Gomes CC, de Macedo AN, Pontes HAR, Burbano RMR, Martins MD, Pires FR, Mesquita RA, Gomez RS, Santos-Silva AR, Lopes MA, Vargas PA, Fonseca FP. The altered metabolic pathways of diffuse large B-cell lymphoma not otherwise specified. Leuk Lymphoma 2023; 64:1771-1781. [PMID: 37462418 DOI: 10.1080/10428194.2023.2234523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 11/07/2023]
Abstract
Altered metabolic fingerprints of Diffuse large B-cell lymphoma, not otherwise specified (DLBCL NOS) may offer novel opportunities to identify new biomarkers and improve the understanding of its pathogenesis. This study aimed to investigate the modified metabolic pathways in extranodal, germinal center B-cell (GCB) and non-GCB DLBCL NOS from the head and neck. Formalin-fixed paraffin-embedded (FFPE) tissues from eleven DLBCL NOS classified according to Hans' algorithm using immunohistochemistry, and five normal lymphoid tissues (LT) were analyzed by high-performance liquid chromatography-mass spectrometry-based untargeted metabolomics. Partial Least Squares Discriminant Analysis showed that GCB and non-GCB DLBCL NOS have a distinct metabolomics profile, being the former more similar to normal lymphoid tissues. Metabolite pathway enrichment analysis indicated the following altered pathways: arachidonic acid, tyrosine, xenobiotics, vitamin E metabolism, and vitamin A. Our findings support that GCB and non-GCB DLBCL NOS has a distinct metabolomic profile, in which GCB possibly shares more metabolic similarities with LT than non-GCB DLBCL NOS.
Collapse
Affiliation(s)
- Carla Isabelly Rodrigues-Fernandes
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Roberta Rayra Martins-Chaves
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Filipe Fideles Duarte-Andrade
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thaís Dos Santos Fontes Pereira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Victor Rezende Moreira
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucilaine Valéria de Souza Santos
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Liséte Celina Lange
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gisele André Baptista Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Adriana Nori de Macedo
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Hélder Antônio Rebelo Pontes
- Service of Oral Pathology, João de Barros Barreto University Hospital, Federal University of Pará (UFPA), Belém, Brazil
| | | | - Manoela Domingues Martins
- Department of Pathology, School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fábio Ramôa Pires
- Oral Pathology, Dental School, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Alan Roger Santos-Silva
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Márcio Ajudarte Lopes
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
4
|
Ding Y, Stevanato G, von Bonin F, Kube D, Glöggler S. Real-time cell metabolism assessed repeatedly on the same cells via para-hydrogen induced polarization. Chem Sci 2023; 14:7642-7647. [PMID: 37476713 PMCID: PMC10355108 DOI: 10.1039/d3sc01350b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Signal-enhanced or hyperpolarized nuclear magnetic resonance (NMR) spectroscopy stands out as a unique tool to monitor real-time enzymatic reactions in living cells. The singlet state of para-hydrogen is thereby one source of spin order that can be converted into largely enhanced signals of e.g. metabolites. Here, we have investigated a parahydrogen-induced polarization (PHIP) approach as a biological assay for in vitro cellular metabolic characterization. Here, we demonstrate the possibility to perform consecutive measurements yielding metabolic information on the same sample. We observed a strongly reduced pyruvate-to-lactate conversion rate (flux) of a Hodgkin's lymphoma cancer cell line L1236 treated with FK866, an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT) affecting the amount of NAD+ and thus NADH in cells. In the consecutive measurement the flux was recovered by NADH to the same amount as in the single-measurement-per-sample and provides a promising new analytical tool for continuous real-time studies combinable with bioreactors and lab-on-a-chip devices in the future.
Collapse
Affiliation(s)
- Yonghong Ding
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Gabriele Stevanato
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Frederike von Bonin
- Clinic for Hematology and Medical Oncology University Medical Center Göttingen Robert-Koch-Str. 40 37075 Göttingen Germany
| | - Dieter Kube
- Clinic for Hematology and Medical Oncology University Medical Center Göttingen Robert-Koch-Str. 40 37075 Göttingen Germany
| | - Stefan Glöggler
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| |
Collapse
|
5
|
Alfaifi A, Refai MY, Alsaadi M, Bahashwan S, Malhan H, Al-Kahiry W, Dammag E, Ageel A, Mahzary A, Albiheyri R, Almehdar H, Qadri I. Metabolomics: A New Era in the Diagnosis or Prognosis of B-Cell Non-Hodgkin's Lymphoma. Diagnostics (Basel) 2023; 13:diagnostics13050861. [PMID: 36900005 PMCID: PMC10000528 DOI: 10.3390/diagnostics13050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
A wide range of histological as well as clinical properties are exhibited by B-cell non-Hodgkin's lymphomas. These properties could make the diagnostics process complicated. The diagnosis of lymphomas at an initial stage is essential because early remedial actions taken against destructive subtypes are commonly deliberated as successful and restorative. Therefore, better protective action is needed to improve the condition of those patients who are extensively affected by cancer when diagnosed for the first time. The development of new and efficient methods for early detection of cancer has become crucial nowadays. Biomarkers are urgently needed for diagnosing B-cell non-Hodgkin's lymphoma and assessing the severity of the disease and its prognosis. New possibilities are now open for diagnosing cancer with the help of metabolomics. The study of all the metabolites synthesised in the human body is called "metabolomics." A patient's phenotype is directly linked with metabolomics, which can help in providing some clinically beneficial biomarkers and is applied in the diagnostics of B-cell non-Hodgkin's lymphoma. In cancer research, it can analyse the cancerous metabolome to identify the metabolic biomarkers. This review provides an understanding of B-cell non-Hodgkin's lymphoma metabolism and its applications in medical diagnostics. A description of the workflow based on metabolomics is also provided, along with the benefits and drawbacks of various techniques. The use of predictive metabolic biomarkers for the diagnosis and prognosis of B-cell non-Hodgkin's lymphoma is also explored. Thus, we can say that abnormalities related to metabolic processes can occur in a vast range of B-cell non-Hodgkin's lymphomas. The metabolic biomarkers could only be discovered and identified as innovative therapeutic objects if we explored and researched them. In the near future, the innovations involving metabolomics could prove fruitful for predicting outcomes and bringing out novel remedial approaches.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Mohammed Alsaadi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Waiel Al-Kahiry
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Enas Dammag
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Ageel Ageel
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Amjed Mahzary
- Eradah Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
6
|
Meta-Analysis of MS-Based Proteomics Studies Indicates Interferon Regulatory Factor 4 and Nucleobindin1 as Potential Prognostic and Drug Resistance Biomarkers in Diffuse Large B Cell Lymphoma. Cells 2023; 12:cells12010196. [PMID: 36611989 PMCID: PMC9818977 DOI: 10.3390/cells12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
The prognosis of diffuse large B cell lymphoma (DLBCL) is inaccurately predicted using clinical features and immunohistochemistry (IHC) algorithms. Nomination of a panel of molecules as the target for therapy and predicting prognosis in DLBCL is challenging because of the divergences in the results of molecular studies. Mass spectrometry (MS)-based proteomics in the clinic represents an analytical tool with the potential to improve DLBCL diagnosis and prognosis. Previous proteomics studies using MS-based proteomics identified a wide range of proteins. To achieve a consensus, we reviewed MS-based proteomics studies and extracted the most consistently significantly dysregulated proteins. These proteins were then further explored by analyzing data from other omics fields. Among all significantly regulated proteins, interferon regulatory factor 4 (IRF4) was identified as a potential target by proteomics, genomics, and IHC. Moreover, annexinA5 (ANXA5) and nucleobindin1 (NUCB1) were two of the most up-regulated proteins identified in MS studies. Functional enrichment analysis identified the light zone reactions of the germinal center (LZ-GC) together with cytoskeleton locomotion functions as enriched based on consistent, significantly dysregulated proteins. In this study, we suggest IRF4 and NUCB1 proteins as potential biomarkers that deserve further investigation in the field of DLBCL sub-classification and prognosis.
Collapse
|
7
|
Bhatt R, Ravi D, Evens AM, Parekkadan B. Scaffold-mediated switching of lymphoma metabolism in culture. Cancer Metab 2022; 10:15. [PMID: 36224623 PMCID: PMC9559005 DOI: 10.1186/s40170-022-00291-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Diffuse large B cell lymphoma (DLBCL) is an aggressive subtype of non-Hodgkin lymphoma (NHL) and accounts for about a third of all NHL cases. A significant proportion (~40%) of treated DLBCL patients develop refractory or relapsed disease due to drug resistance which can be attributed to metabolomic and genetic variations amongst diverse DLBCL subtypes. An assay platform that reproduces metabolic patterns of DLBCL in vivo could serve as a useful model for DLBCL. METHODS This report investigated metabolic functions in 2D and 3D cell cultures using parental and drug-resistant DLBCL cell lines as compared to patient biopsy tissue. RESULTS A 3D culture model controlled the proliferation of parental and drug-resistant DLBCL cell lines, SUDHL-10, SUDHL-10 RR (rituximab resistant), and SUDHL-10 OR (obinutuzumab resistant), as well as retained differential sensitivity to CHOP. The results from metabolic profiling and isotope tracer studies with D-glucose-13C6 indicated metabolic switching in 3D culture when compared with a 2D environment. Analysis of DLBCL patient tumor tissue revealed that the metabolic changes in 3D grown cells were shifted towards that of clinical specimens. CONCLUSION 3D culture restrained DLBCL cell line growth and modulated metabolic pathways that trend towards the biological characteristics of patient tumors. Counter-intuitively, this research thereby contends that 3D matrices can be a tool to control tumor function towards a slower growing and metabolically dormant state that better reflects in vivo tumor physiology.
Collapse
Affiliation(s)
- Rachana Bhatt
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Dashnamoorthy Ravi
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Andrew M Evens
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- Department of Medicine, Rutgers Biomedical Health Sciences, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
8
|
Boys EL, Liu J, Robinson PJ, Reddel RR. Clinical applications of mass spectrometry-based proteomics in cancer: where are we? Proteomics 2022; 23:e2200238. [PMID: 35968695 DOI: 10.1002/pmic.202200238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/12/2022]
Abstract
Tumor tissue processing methodologies in combination with data-independent acquisition mass spectrometry (DIA-MS) have emerged that can comprehensively analyze the proteome of multiple tumor samples accurately and reproducibly. Increasing recognition and adoption of these technologies has resulted in a tranche of studies providing novel insights into cancer classification systems, functional tumor biology, cancer biomarkers, treatment response and drug targets. Despite this, with some limited exceptions, MS-based proteomics has not yet been implemented in routine cancer clinical practice. Here, we summarize the use of DIA-MS in studies that may pave the way for future clinical cancer applications, and highlight the role of alternative MS technologies and multi-omic strategies. We discuss limitations and challenges of studies in this field to date and propose steps for integrating proteomic data into the cancer clinic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Emma L Boys
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jia Liu
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Campus, University of New South Wales, Sydney, NSW, Australia
| | - Phillip J Robinson
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Roger R Reddel
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
9
|
Serganova I, Chakraborty S, Yamshon S, Isshiki Y, Bucktrout R, Melnick A, Béguelin W, Zappasodi R. Epigenetic, Metabolic, and Immune Crosstalk in Germinal-Center-Derived B-Cell Lymphomas: Unveiling New Vulnerabilities for Rational Combination Therapies. Front Cell Dev Biol 2022; 9:805195. [PMID: 35071240 PMCID: PMC8777078 DOI: 10.3389/fcell.2021.805195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) are highly heterogenous by genetic, phenotypic, and clinical appearance. Next-generation sequencing technologies and multi-dimensional data analyses have further refined the way these diseases can be more precisely classified by specific genomic, epigenomic, and transcriptomic characteristics. The molecular and genetic heterogeneity of B-NHLs may contribute to the poor outcome of some of these diseases, suggesting that more personalized precision-medicine approaches are needed for improved therapeutic efficacy. The germinal center (GC) B-cell like diffuse large B-cell lymphomas (GCB-DLBCLs) and follicular lymphomas (FLs) share specific epigenetic programs. These diseases often remain difficult to treat and surprisingly do not respond advanced immunotherapies, despite arising in secondary lymphoid organs at sites of antigen recognition. Epigenetic dysregulation is a hallmark of GCB-DLBCLs and FLs, with gain-of-function (GOF) mutations in the histone methyltransferase EZH2, loss-of-function (LOF) mutations in histone acetyl transferases CREBBP and EP300, and the histone methyltransferase KMT2D representing the most prevalent genetic lesions driving these diseases. These mutations have the common effect to disrupt the interactions between lymphoma cells and the immune microenvironment, via decreased antigen presentation and responsiveness to IFN-γ and CD40 signaling pathways. This indicates that immune evasion is a key step in GC B-cell lymphomagenesis. EZH2 inhibitors are now approved for the treatment of FL and selective HDAC3 inhibitors counteracting the effects of CREBBP LOF mutations are under development. These treatments can help restore the immune control of GCB lymphomas, and may represent optimal candidate agents for more effective combination with immunotherapies. Here, we review recent progress in understanding the impact of mutant chromatin modifiers on immune evasion in GCB lymphomas. We provide new insights on how the epigenetic program of these diseases may be regulated at the level of metabolism, discussing the role of metabolic intermediates as cofactors of epigenetic enzymes. In addition, lymphoma metabolic adaptation can negatively influence the immune microenvironment, further contributing to the development of immune cold tumors, poorly infiltrated by effector immune cells. Based on these findings, we discuss relevant candidate epigenetic/metabolic/immune targets for rational combination therapies to investigate as more effective precision-medicine approaches for GCB lymphomas.
Collapse
Affiliation(s)
- Inna Serganova
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sanjukta Chakraborty
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Samuel Yamshon
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Yusuke Isshiki
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Ryan Bucktrout
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.,Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
10
|
Integration of Metabolomics and Gene Expression Profiling Elucidates IL4I1 as Modulator of Ibrutinib Resistance in ABC-Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13092146. [PMID: 33946867 PMCID: PMC8124963 DOI: 10.3390/cancers13092146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this study, we present a workflow to understand the modulator of ibrutinib resistance in ABC diffuse large B cell lymphoma by integrating Metabolomics and Gene expression profiling as shown in the graphical abstract. We performed an untargeted metabolomics analysis using a Q-Exactive high-resolution mass spectrometer to dissect the metabolic reprogramming associated with acquired ibrutinib resistance in paired ibrutinib-sensitive and ibrutinib-resistant DLBCL cell lines. Further, we identified common denominators, integrating metabolome and transcriptome data, confirming clinical significance, integrating pathways, and identifying the candidate gene driving ibrutinib resistance and metabolic reprogramming. Our work demonstrates that a multi-omics approach can be a robust and impartial strategy to uncover genes and pathways that cause metabolic deregulation in cancer cells. Abstract Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL). B-cell NHLs rely on Bruton’s tyrosine kinase (BTK) mediated B-cell receptor signaling for survival and disease progression. However, they are often resistant to BTK inhibitors or soon acquire resistance after drug exposure resulting in the drug-tolerant form. The drug-tolerant clones proliferate faster, have increased metabolic activity, and shift to oxidative phosphorylation; however, how this metabolic programming occurs in the drug-resistant tumor is poorly understood. In this study, we explored for the first time the metabolic regulators of ibrutinib-resistant activated B-cell (ABC) DLBCL using a multi-omics analysis that integrated metabolomics (using high-resolution mass spectrometry) and transcriptomic (gene expression analysis). Overlay of the unbiased statistical analyses, genetic perturbation, and pharmaceutical inhibition was further used to identify the key players contributing to the metabolic reprogramming of the drug-resistant clone. Gene-metabolite integration revealed interleukin four induced 1 (IL4I1) at the crosstalk of two significantly altered metabolic pathways involved in producing various amino acids. We showed for the first time that drug-resistant clones undergo metabolic reprogramming towards oxidative phosphorylation and are modulated via the BTK-PI3K-AKT-IL4I1 axis. Our report shows how these cells become dependent on PI3K/AKT signaling for survival after acquiring ibrutinib resistance and shift to sustained oxidative phosphorylation; additionally, we outline the compensatory pathway that might regulate this metabolic reprogramming in the drug-resistant cells. These findings from our unbiased analyses highlight the role of metabolic reprogramming during drug resistance development. Our work demonstrates that a multi-omics approach can be a robust and impartial strategy to uncover genes and pathways that drive metabolic deregulation in cancer cells.
Collapse
|
11
|
Krasny L, Huang PH. Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Mol Omics 2020; 17:29-42. [PMID: 33034323 DOI: 10.1039/d0mo00072h] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Data-independent acquisition mass spectrometry (DIA-MS) is a next generation proteomic methodology that generates permanent digital proteome maps offering highly reproducible retrospective analysis of cellular and tissue specimens. The adoption of this technology has ushered a new wave of oncology studies across a wide range of applications including its use in molecular classification, oncogenic pathway analysis, drug and biomarker discovery and unravelling mechanisms of therapy response and resistance. In this review, we provide an overview of the experimental workflows commonly used in DIA-MS, including its current strengths and limitations versus conventional data-dependent acquisition mass spectrometry (DDA-MS). We further summarise a number of key studies to illustrate the power of this technology when applied to different facets of oncology. Finally we offer a perspective of the latest innovations in DIA-MS technology and machine learning-based algorithms necessary for driving the development of high-throughput, in-depth and reproducible proteomic assays that are compatible with clinical diagnostic workflows, which will ultimately enable the delivery of precision cancer medicine to achieve optimal patient outcomes.
Collapse
Affiliation(s)
- Lukas Krasny
- Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | | |
Collapse
|
12
|
Platform independent protein-based cell-of-origin subtyping of diffuse large B-cell lymphoma in formalin-fixed paraffin-embedded tissue. Sci Rep 2020; 10:7876. [PMID: 32398793 PMCID: PMC7217957 DOI: 10.1038/s41598-020-64212-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/09/2020] [Indexed: 01/03/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is commonly classified by gene expression profiling according to its cell of origin (COO) into activated B-cell (ABC)-like and germinal center B-cell (GCB)-like subgroups. Here we report the application of label-free nano-liquid chromatography - Sequential Window Acquisition of all THeoretical fragment-ion spectra - mass spectrometry (nanoLC-SWATH-MS) to the COO classification of DLBCL in formalin-fixed paraffin-embedded (FFPE) tissue. To generate a protein signature capable of predicting Affymetrix-based GCB scores, the summed log2-transformed fragment ion intensities of 780 proteins quantified in a training set of 42 DLBCL cases were used as independent variables in a penalized zero-sum elastic net regression model with variable selection. The eight-protein signature obtained showed an excellent correlation (r = 0.873) between predicted and true GCB scores and yielded only 9 (21.4%) minor discrepancies between the three classifications: ABC, GCB, and unclassified. The robustness of the model was validated successfully in two independent cohorts of 42 and 31 DLBCL cases, the latter cohort comprising only patients aged >75 years, with Pearson correlation coefficients of 0.846 and 0.815, respectively, between predicted and NanoString nCounter based GCB scores. We further show that the 8-protein signature is directly transferable to both a triple quadrupole and a Q Exactive quadrupole-Orbitrap mass spectrometer, thus obviating the need for proprietary instrumentation and reagents. This method may therefore be used for robust and competitive classification of DLBCLs on the protein level.
Collapse
|
13
|
Janacova L, Faktor J, Capkova L, Paralova V, Pospisilova A, Podhorec J, Ebhardt HA, Hrstka R, Nenutil R, Aebersold R, Bouchal P. SWATH-MS Analysis of FFPE Tissues Identifies Stathmin as a Potential Marker of Endometrial Cancer in Patients Exposed to Tamoxifen. J Proteome Res 2020; 19:2617-2630. [PMID: 32343582 DOI: 10.1021/acs.jproteome.0c00064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A specific form of endometrial cancer (EC) can develop in breast cancer patients previously treated with tamoxifen (ET), an antagonist of estrogen receptor (ER) that inhibits proliferation of ER positive breast cancer. ET tumors have a different phenotype than endometrial tumors, which typically develop de novo without previous exposure to tamoxifen (EN). Here we aimed to identify specific protein markers that could serve as specific molecular targets in either phenotype. A set of total 45 formalin-fixed paraffin-embedded (FFPE) endometrial tumor tissues and adjacent myometrium tissue samples were analyzed using LC-MS/MS in SWATH-MS mode. We found that calcyphosin (CAPS) levels were elevated in EN tumors compared to ET tumors. The higher CAPS level in EC tissue invading to myometrium supports its relationship to EC aggressiveness. Further, stathmin (STMN1) levels were found significantly elevated in ET versus EN tumors and significantly associated with patient survival. This finding connects elevated levels of this cell cycle regulating, proliferation-associated protein with tamoxifen exposure. In summary, using SWATH-MS we show that CAPS and STMN1 should be recognized as clinicopathologically different EC markers of which STMN1 is specifically connected with a previous tamoxifen exposition.
Collapse
Affiliation(s)
- Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jakub Faktor
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Lenka Capkova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Vendula Paralova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Anna Pospisilova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jan Podhorec
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Holger Alexander Ebhardt
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute for Technology (ETH) Zurich, Zurich, Switzerland.,Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Rudolf Nenutil
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute for Technology (ETH) Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
14
|
Serine Biosynthesis Pathway Supports MYC-miR-494-EZH2 Feed-Forward Circuit Necessary to Maintain Metabolic and Epigenetic Reprogramming of Burkitt Lymphoma Cells. Cancers (Basel) 2020; 12:cancers12030580. [PMID: 32138178 PMCID: PMC7139810 DOI: 10.3390/cancers12030580] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Burkitt lymphoma (BL) is a rapidly growing tumor, characterized by high anabolic requirements. The MYC oncogene plays a central role in the pathogenesis of this malignancy, controlling genes involved in apoptosis, proliferation, and cellular metabolism. Serine biosynthesis pathway (SBP) couples glycolysis to folate and methionine cycles, supporting biosynthesis of certain amino acids, nucleotides, glutathione, and a methyl group donor, S-adenosylmethionine (SAM). We report that BLs overexpress SBP enzymes, phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1). Both genes are controlled by the MYC-dependent ATF4 transcription factor. Genetic ablation of PHGDH/PSAT1 or chemical PHGDH inhibition with NCT-503 decreased BL cell lines proliferation and clonogenicity. NCT-503 reduced glutathione level, increased reactive oxygen species abundance, and induced apoptosis. Consistent with the role of SAM as a methyl donor, NCT-503 decreased DNA and histone methylation, and led to the re-expression of ID4, KLF4, CDKN2B and TXNIP tumor suppressors. High H3K27me3 level is known to repress the MYC negative regulator miR-494. NCT-503 decreased H3K27me3 abundance, increased the miR-494 level, and reduced the expression of MYC and MYC-dependent histone methyltransferase, EZH2. Surprisingly, chemical/genetic disruption of SBP did not delay BL and breast cancer xenografts growth, suggesting the existence of mechanisms compensating the PHGDH/PSAT1 absence in vivo.
Collapse
|
15
|
Buszewska-Forajta M, Patejko M, Macioszek S, Sigorski D, Iżycka-Świeszewska E, Markuszewski MJ. Paraffin-Embedded Tissue as a Novel Matrix in Metabolomics Study: Optimization of Metabolite Extraction Method. Chromatographia 2019. [DOI: 10.1007/s10337-019-03769-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
The Metabolomic Profile of Lymphoma Subtypes: A Pilot Study. Molecules 2019; 24:molecules24132367. [PMID: 31248049 PMCID: PMC6650891 DOI: 10.3390/molecules24132367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Lymphoma defines a group of different diseases. This study examined pre-treatment plasma samples from 66 adult patients (aged 20–74) newly diagnosed with any lymphoma subtype, and 96 frequency matched population controls. We used gas chromatography-mass spectrometry (GC-MS) to compare the metabolic profile by case/control status and across the major lymphoma subtypes. We conducted univariate and multivariate analyses, and partial least square discriminant analysis (PLS-DA). When compared to the controls, statistically validated models were obtained for diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), multiple myeloma (MM), and Hodgkin lymphoma (HL), but not follicular lymphoma (FL). The metabolomic analysis highlighted interesting differences between lymphoma patients and population controls, allowing the discrimination between pathologic and healthy subjects: Important metabolites, such as hypoxanthine and elaidic acid, were more abundant in all lymphoma subtypes. The small sample size of the individual lymphoma subtypes prevented obtaining PLS-DA validated models, although specific peculiar features of each subtype were observed; for instance, fatty acids were most represented in MM and HL patients, while 2-aminoadipic acid, 2-aminoheptanedioic acid, erythritol, and threitol characterized DLBCL and CLL. Metabolomic analysis was able to highlight interesting differences between lymphoma patients and population controls, allowing the discrimination between pathologic and healthy subjects. Further studies are warranted to understand whether the peculiar metabolic patterns observed might serve as early biomarkers of lymphoma.
Collapse
|
17
|
Kleo K, Dimitrova L, Oker E, Tomaszewski N, Berg E, Taruttis F, Engelmann JC, Schwarzfischer P, Reinders J, Spang R, Gronwald W, Oefner PJ, Hummel M. Identification of ADGRE5 as discriminating MYC target between Burkitt lymphoma and diffuse large B-cell lymphoma. BMC Cancer 2019; 19:322. [PMID: 30953469 PMCID: PMC6451309 DOI: 10.1186/s12885-019-5537-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 03/27/2019] [Indexed: 12/27/2022] Open
Abstract
Background MYC is a heterogeneously expressed transcription factor that plays a multifunctional role in many biological processes such as cell proliferation and differentiation. It is also associated with many types of cancer including the malignant lymphomas. There are two types of aggressive B-cell lymphoma, namely Burkitt lymphoma (BL) and a subgroup of diffuse large cell lymphoma (DLBCL), which both carry MYC translocations and overexpress MYC but both differ significantly in their clinical outcome. In DLBCL, MYC translocations are associated with an aggressive behavior and poor outcome, whereas MYC-positive BL show a superior outcome. Methods To shed light on this phenomenon, we investigated the different modes of actions of MYC in aggressive B-cell lymphoma cell lines subdivided into three groups: (i) MYC-positive BL, (ii) DLBCL with MYC translocation (DLBCLpos) and (iii) DLBCL without MYC translocation (DLBCLneg) for control. In order to identify genome-wide MYC-DNA binding sites a chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) was performed. In addition, ChIP-Seq for H3K4me3 was used for determination of genomic regions accessible for transcriptional activity. These data were supplemented with gene expression data derived from RNA-Seq. Results Bioinformatics integration of all data sets revealed different MYC-binding patterns and transcriptional profiles in MYC-positive BL and DLBCL cell lines indicating different functional roles of MYC for gene regulation in aggressive B-cell lymphomas. Based on this multi-omics analysis we identified ADGRE5 (alias CD97) - a member of the EGF-TM7 subfamily of adhesion G protein-coupled receptors - as a MYC target gene, which is specifically expressed in BL but not in DLBCL regardless of MYC translocation. Conclusion Our study describes a diverse genome-wide MYC-DNA binding pattern in BL and DLBCL cell lines with and without MYC translocations. Furthermore, we identified ADREG5 as a MYC target gene able to discriminate between BL and DLBCL irrespectively of the presence of MYC breaks in DLBCL. Since ADGRE5 plays an important role in tumor cell formation, metastasis and invasion, it might also be instrumental to better understand the different pathobiology of BL and DLBCL and help to explain discrepant clinical characteristics of BL and DLBCL. Electronic supplementary material The online version of this article (10.1186/s12885-019-5537-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karsten Kleo
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany.
| | - Lora Dimitrova
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany
| | - Elisabeth Oker
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany
| | - Nancy Tomaszewski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany
| | - Erika Berg
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany
| | - Franziska Taruttis
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany
| | - Julia C Engelmann
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany.,Present address: Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1790, AB, Den Burg, The Netherlands
| | - Philipp Schwarzfischer
- Functional Genomics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany
| | - Jörg Reinders
- Functional Genomics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany
| | - Rainer Spang
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany
| | - Wolfram Gronwald
- Functional Genomics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany
| | - Peter J Oefner
- Functional Genomics, Institute of Functional Genomics, University of Regensburg, D-93053, Regensburg, Germany
| | - Michael Hummel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany
| |
Collapse
|
18
|
Helferich AM, Brockmann SJ, Reinders J, Deshpande D, Holzmann K, Brenner D, Andersen PM, Petri S, Thal DR, Michaelis J, Otto M, Just S, Ludolph AC, Danzer KM, Freischmidt A, Weishaupt JH. Dysregulation of a novel miR-1825/TBCB/TUBA4A pathway in sporadic and familial ALS. Cell Mol Life Sci 2018; 75:4301-4319. [PMID: 30030593 PMCID: PMC11105367 DOI: 10.1007/s00018-018-2873-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/07/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
Genetic and functional studies suggest diverse pathways being affected in the neurodegenerative disease amyotrophic lateral sclerosis (ALS), while knowledge about converging disease mechanisms is rare. We detected a downregulation of microRNA-1825 in CNS and extra-CNS system organs of both sporadic (sALS) and familial ALS (fALS) patients. Combined transcriptomic and proteomic analysis revealed that reduced levels of microRNA-1825 caused a translational upregulation of tubulin-folding cofactor b (TBCB). Moreover, we found that excess TBCB led to depolymerization and degradation of tubulin alpha-4A (TUBA4A), which is encoded by a known ALS gene. Importantly, the increase in TBCB and reduction of TUBA4A protein was confirmed in brain cortex tissue of fALS and sALS patients, and led to motor axon defects in an in vivo model. Our discovery of a microRNA-1825/TBCB/TUBA4A pathway reveals a putative pathogenic cascade in both fALS and sALS extending the relevance of TUBA4A to a large proportion of ALS cases.
Collapse
Affiliation(s)
- Anika M Helferich
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sarah J Brockmann
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jörg Reinders
- Institute of Functional Genomics, Regensburg University, 93053, Regensburg, Germany
| | | | - Karlheinz Holzmann
- Genomics-Core Facility, Center for Biomedical Research, Ulm University Hospital, 89081, Ulm, Germany
| | - David Brenner
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Peter M Andersen
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Dietmar R Thal
- Laboratory for Neuropathology, Institute of Pathology, Ulm University, 89081, Ulm, Germany
- Laboratory for Neuropathology, Department of Neurosciences, KU Leuven, 3000, Louvain, Belgium
- Department of Pathology, UZ Leuven, 3000, Louvain, Belgium
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, 89081, Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, Ulm University, 89081, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Axel Freischmidt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jochen H Weishaupt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
19
|
Chihanga T, Hausmann SM, Ni S, Kennedy MA. Influence of media selection on NMR based metabolic profiling of human cell lines. Metabolomics 2018; 14:28. [PMID: 30830358 DOI: 10.1007/s11306-018-1323-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/12/2018] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Comparative metabolic profiling of different human cancer cell lines can reveal metabolic pathways up-regulated or down-regulated in each cell line, potentially providing insight into distinct metabolism taking place in different types of cancer cells. It is noteworthy, however, that human cell lines available from public repositories are deposited with recommended media for optimal growth, and if cell lines to be compared are cultured on different growth media, this introduces a potentially serious confounding variable in metabolic profiling studies designed to identify intrinsic metabolic pathways active in each cell line. OBJECTIVES The goal of this study was to determine if the culture media used to grow human cell lines had a significant impact on the measured metabolic profiles. METHODS NMR-based metabolic profiles of hydrophilic extracts of three human pancreatic cancer cell lines, AsPC-1, MiaPaCa-2 and Panc-1, were compared after culture on Dulbecco's Modified Eagle Medium (DMEM) or Roswell Park Memorial Institute (RPMI-1640) medium. RESULTS Comparisons of the same cell lines cultured on different media revealed that the concentrations of many metabolites depended strongly on the choice of culture media. Analyses of different cell lines grown on the same media revealed insight into their metabolic differences. CONCLUSION The choice of culture media can significantly impact metabolic profiles of human cell lines and should be considered an important variable when designing metabolic profiling studies. Also, the metabolic differences of cells cultured on media recommended for optimal growth in comparison to a second growth medium can reveal critical insight into metabolic pathways active in each cell line.
Collapse
Affiliation(s)
- Tafadzwa Chihanga
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Sarah M Hausmann
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Shuisong Ni
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
20
|
Kraus JM, Lausser L, Kuhn P, Jobst F, Bock M, Halanke C, Hummel M, Heuschmann P, Kestler HA. Big data and precision medicine: challenges and strategies with healthcare data. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS 2018. [DOI: 10.1007/s41060-018-0095-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Che N, Ma Y, Ruan H, Xu L, Wang X, Yang X, Liu X. Integrated semi-targeted metabolomics analysis reveals distinct metabolic dysregulation in pleural effusion caused by tuberculosis and malignancy. Clin Chim Acta 2017; 477:81-88. [PMID: 29208371 DOI: 10.1016/j.cca.2017.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/13/2017] [Accepted: 12/02/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Tuberculous pleural effusion (TPE) and malignant pleural effusion (MPE) are the 2 most frequent causes of exudative pleural effusions (PEs). However, the clinical differentiation is challenging. METHODS Metabolic signatures in pleural effusion from 156 patients were profiled. An integrated semi-targeted metabolomics platform was incorporated for high throughput metabolite identification and quantitation. In this platform, orbitrap based mass spectrometry with data dependent MS/MS acquisition was applied in the analysis. In-house database containing ~1000MS/MS spectra were established and "MetaInt" was developed for metabolite alignment. RESULTS Using this strategy, lower levels of amino acids, citric acid cycle intermediates and free fatty acids accompanied with elevated acyl-carnitines and bile acids were observed, demonstrating increased energy expenditure caused by TPE. Kynurenine pathway from tryptophan was significantly enhanced in TPE. The ratio of tryptophan/kynurenine exhibited decent performance in differentiating TPE from MPE with sensitivity of 92.7% and specificity of 86.1%. After two further independent validations, it turns out that the ratio of tryptophan/kynurenine can be applied confidently as a potential biomarker together with adenosine deaminase (ADA) for clinical diagnosis of TPE. CONCLUSIONS Conclusively, the integrated in-house platform for high throughput semi-targeted metabolomics analysis reliably identified great potential of tryptophan/kynurenine ratio as a novel diagnostic biomarker to distinguish pleural effusion caused by tuberculosis and malignancy.
Collapse
Affiliation(s)
- Nanying Che
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Yan Ma
- Clinical Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Huabin Ruan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lina Xu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xueying Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinting Yang
- Department of Tuberculosis, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|