1
|
Torres-Sangiao E, Giddey AD, Leal Rodriguez C, Tang Z, Liu X, Soares NC. Proteomic Approaches to Unravel Mechanisms of Antibiotic Resistance and Immune Evasion of Bacterial Pathogens. Front Med (Lausanne) 2022; 9:850374. [PMID: 35586072 PMCID: PMC9108449 DOI: 10.3389/fmed.2022.850374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic “Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens,” this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.
Collapse
Affiliation(s)
- Eva Torres-Sangiao
- Clinical Microbiology Lab, University Hospital Marqués de Valdecilla, Santander, Spain
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
- *Correspondence: Eva Torres-Sangiao,
| | - Alexander Dyason Giddey
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Cristina Leal Rodriguez
- Copenhagen Prospectives Studies on Asthma in Childhood, COPSAC, Copenhagen University Hospital, Herlev-Gentofte, Denmark
| | - Zhiheng Tang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nelson C. Soares
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Nelson C. Soares,
| |
Collapse
|
2
|
Keddy KH, Saha S, Okeke IN, Kalule JB, Qamar FN, Kariuki S. Combating Childhood Infections in LMICs: evaluating the contribution of Big Data Big data, biomarkers and proteomics: informing childhood diarrhoeal disease management in Low- and Middle-Income Countries. EBioMedicine 2021; 73:103668. [PMID: 34742129 PMCID: PMC8579132 DOI: 10.1016/j.ebiom.2021.103668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/26/2021] [Accepted: 10/20/2021] [Indexed: 01/20/2023] Open
Abstract
Despite efforts to reduce the global burden of childhood diarrhoea, 50% of all cases globally occur in children under five years in Low–Income and Middle- Income Countries (LMICs) and knowledge gaps remain regarding the aetiological diagnosis, introduction of diarrhoeal vaccines, and the role of environmental enteric dysfunction and severe acute malnutrition. Biomarkers may assist in understanding disease processes, from diagnostics, to management of childhood diarrhoea and the sequelae to vaccine development. Proteomics has the potential to assist in the identification of new biomarkers to understand the processes in the development of childhood diarrhoea and to aid in developing new vaccines. Centralised repositories that enable mining of large data sets to better characterise risk factors, the proteome of both the patient and the different diarrhoeal pathogens, and the environment, could inform patient management and vaccine development, providing a systems biological approach to address the burden of childhood diarrhoea in LMICs.
Collapse
Affiliation(s)
- Karen H Keddy
- Tuberculosis Platform, South African Medical Research Council, 1 Soutpansberg Rd, Pretoria, 0001, South Africa.
| | - Senjuti Saha
- Child Health Research Foundation, 23/2 Khilji Road, Mohammadpur, Dhaka 1207, Bangladesh
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| | - John Bosco Kalule
- Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Uganda
| | - Farah Naz Qamar
- Department of Pediatrics and Child Health. Aga Khan University, Stadoum road Karachi, Pakistan 74800
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Off Mbagathi Road, Nairobi, Kenya
| |
Collapse
|
3
|
Fortuin S, Iradukunda J, Nel AJ, Blackburn JM, Soares NC. Liquid chromatography mass spectrometry-based proteomics of Escherichia coli single colony. MethodsX 2021; 8:101277. [PMID: 34434797 PMCID: PMC8374269 DOI: 10.1016/j.mex.2021.101277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/14/2021] [Indexed: 01/17/2023] Open
Abstract
The Escherichia coli proteome is the most extensively characterized and studied of all prokaryotic proteomes. Despite this, large scale bacterial proteomics experiments performed on E. coli cells grown in liquid cultures have failed to identify key virulence factors thought to be important determinants in establishing bacterial infections. It seems likely that many important determinants associated with virulence and host cell adhesion are exclusively expressed during growth in biofilms, which can be crudely mimicked on solid media. This method describes a simple workflow to characterize the unique proteome signature of individual, isolated single colonies, using E. coli K12 strain grown on solid media as a model system. The workflow thus provides a means to explore the proteomes of minimally passaged clinical isolates of bacteria grown on primary culture plates and to identify both unique and differentially expressed proteins contained therein. Value of the method: - Simple mass spectrometry-based proteomics workflow to characterise the proteome of single colony forming units - Enables exploration of the proteomes of minimally passaged clinical isolates from primary culture plates - Identification of virulence factors expressed in true or mimicked biofilms that may be missed in liquid cultures Method name: E. coli single colony proteome analysis
Collapse
Affiliation(s)
- Suereta Fortuin
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio, Observatory, Cape Town 7925, South Africa
| | - John Iradukunda
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio, Observatory, Cape Town 7925, South Africa
| | - Andrew Jm Nel
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio, Observatory, Cape Town 7925, South Africa
| | - Jonathan M Blackburn
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio, Observatory, Cape Town 7925, South Africa.,Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio, Observatory, Cape Town 7925, South Africa
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Pettersen VK, Steinsland H, Wiker HG. Distinct Metabolic Features of Pathogenic Escherichia coli and Shigella spp. Determined by Label-Free Quantitative Proteomics. Proteomics 2020; 21:e2000072. [PMID: 33025732 DOI: 10.1002/pmic.202000072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/04/2020] [Indexed: 11/07/2022]
Abstract
Escherichia coli and Shigella spp. causing illnesses in humans represent a genotypically and phenotypically diverse group of pathogens. Although E. coli diversity has been studied by comparative genomics, the intra-species variation at the proteome level is currently unknown. The proteomes of 16 pathogenic E. coli, 2 non-pathogenic E. coli, and 5 Shigella strains originating from 18 phylogenetic lineages are investigated. By applying label-free quantitative proteomics on trypsin-digested cell extracts from bacteria grown on blood agar, 4018 proteins are detected, 3285 of which arequantified, and 261 represented virulence factors. Of 753 proteins quantified in all strains, the levels of 153 vary substantially between strains and are functionally associated mostly with stress response and peripheral metabolism. The levels of proteins associated with the central metabolism vary considerably less than the levels of proteins from other metabolic pathways. Hierarchical clustering analysis based on the protein levels results in strains grouping that differ from that obtained by gene-based phylogenetic analysis. Finally, strains of some E. coli pathotypes have more similar protein profiles even when the strains are not genetically closely related. The results suggest that the degree of genetic relatedness may not necessarily be a good predictor of E. coli phenotypic characteristics.
Collapse
Affiliation(s)
- Veronika Kuchařová Pettersen
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen, Haukeland universitetssykehus, Laboratoriebygget, Bergen, 5020, Norway
| | - Hans Steinsland
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Alrek helseklynge, blokk D, Årstadveien 17, Bergen, 5020, Norway.,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, 5020, Norway
| | - Harald G Wiker
- The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen, Haukeland universitetssykehus, Laboratoriebygget, Bergen, 5020, Norway
| |
Collapse
|
5
|
Fortuin S, Nel AJM, Blackburn JM, Soares NC. Comparison between the proteome of Escherichia coli single colony and during liquid culture. J Proteomics 2020; 228:103929. [PMID: 32800795 DOI: 10.1016/j.jprot.2020.103929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Most bacterial proteomic studies done to date utilise bacterial cells harvested from liquid culture media. However, it is widely accepted that many important determinants associated with virulence and host cell adhesion are exclusively expressed during growth on solid media, as a crude mimic of true biofilms. Here, we compare the observed proteome of Escherichia coli K12 from isolated single colonies on solid media with those observed at different growth phases in liquid culture; i.e. early-log, mid-log, early-, mid- and late-stationary growth phases. A total of 2044 protein groups covering approximately 47% of the total proteome were identified across all studied conditions, including 1650 proteins identified from single colonies and 1679 proteins from liquid cultured cells. Label-free quantitative analysis revealed that the E. coli proteome of single colonies on a solid agar differs from that observed in liquid culture. Notably, the presence of proteins in the Suf-operon that are involved in iron mobilisation and swarming motility was associated exclusively with single colony profiles, whereas proteins involved in motility such as motA, motB, fliH, flip, fliD and fliJ were associated exclusively with cells grown in liquid culture. The data presented here provide a valuable resource for understanding the role of key proteins within microenvironments surrounding E. coli single colonies. SIGNIFICANCE: To date, most proteomics studies have used E. coli cells harvested from liquid culture media even though many important determinants associated with virulence and host cell adhesion are exclusively expressed during growth on solid media. In this study, we compare the observed proteome of E. coli K12 from isolated single colonies on solid media with those observed at different growth phases in liquid culture; i.e. early-log, mid-log, early-, mid- and late-stationary growth phases. By using label-free quantitative analysis we demonstrate that the E. coli proteome of single colonies on a solid agar differs from that observed in liquid culture with an overlap of 68% of proteins between the two culture conditions. Our analysis further reveal the presence of proteins in the Suf-operon that are involved in iron mobilisation and swarming motility was associated exclusively with single colony profiles. While those proteins involved in motility such as motA, motB, fliH, flip, fliD and fliJ were associated exclusively with cells grown in liquid culture. By comparison to E. coli proteomic data available on liquid culture and solid media, this research represents a first effort to describe the differential expression of key E. coli proteins within microenvironments surrounding single colonies.
Collapse
Affiliation(s)
- Suereta Fortuin
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town. Cape Town, South Africa
| | - Andrew J M Nel
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town. Cape Town, South Africa
| | - Jonathan M Blackburn
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town. Cape Town, South Africa; Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town. Cape Town, South Africa.
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
6
|
Duport C, Alpha-Bazin B, Armengaud J. Advanced Proteomics as a Powerful Tool for Studying Toxins of Human Bacterial Pathogens. Toxins (Basel) 2019; 11:toxins11100576. [PMID: 31590258 PMCID: PMC6832400 DOI: 10.3390/toxins11100576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Exotoxins contribute to the infectious processes of many bacterial pathogens, mainly by causing host tissue damages. The production of exotoxins varies according to the bacterial species. Recent advances in proteomics revealed that pathogenic bacteria are capable of simultaneously producing more than a dozen exotoxins. Interestingly, these toxins may be subject to post-transcriptional modifications in response to environmental conditions. In this review, we give an outline of different bacterial exotoxins and their mechanism of action. We also report how proteomics contributed to immense progress in the study of toxinogenic potential of pathogenic bacteria over the last two decades.
Collapse
Affiliation(s)
- Catherine Duport
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France
- Correspondence:
| | - Béatrice Alpha-Bazin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France; (B.A.-B.); (J.A.)
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France; (B.A.-B.); (J.A.)
| |
Collapse
|
7
|
Proliferation of enterotoxigenic Escherichia coli strain TW11681 in stools of experimentally infected human volunteers. Gut Pathog 2018; 10:46. [PMID: 30349586 PMCID: PMC6192177 DOI: 10.1186/s13099-018-0273-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background As part of the effort to develop an enterotoxigenic Escherichia coli (ETEC) human challenge model for testing new heat-stable toxin (ST)-based vaccine candidates, a controlled human infection model study based on the ST-producing ETEC strain TW11681 was undertaken. Here, we estimate stool TW11681 DNA concentration and evaluate its association with dose, clinical symptoms, and with levels of antibodies targeting the CfaB subunit of the ETEC Colonization Factor Antigen I and the E. coli mucinase YghJ. Nine volunteers ingested different doses of the strain and were subsequently followed for 9 days with daily stool specimen collection and clinical examination. Stool DNA was purified by using a newly developed microplate-based method, and DNA originating from TW11681 was quantified by using a probe-based quantitative PCR assay. Antibody levels against CfaB and YghJ were measured in serum collected before and 10 and 28 days after TW11681 was ingested by using a bead-based flow cytometry immunoassay. Results For 6 of the 9 volunteers, the stool TW11681 DNA concentration increased sharply a median 3.5 (range 2-5) days after dose ingestion, peaking at a median of 5.4% (range 3.3-8.2%) of the total DNA in the specimen. The concentration then fell sharply during the subsequent days, sometimes even before the onset of antibiotic treatment. The size or timing of these proliferation peaks did not seem to be associated with the number of TW11681 bacteria ingested, but the 2 volunteers who developed diarrhea and all five who experienced abdominal pains or cramps had these peaks. The 3 volunteers who did not have the proliferation peaks experienced fewer symptoms and they generally had relatively low CfaB- and YghJ-specific antibody levels before ingesting the strain and subsequently weaker responses than the other volunteers afterwards. Conclusions Since the lack of proliferation peaks appears to be associated with fewer clinical symptoms and lower serum antibody responses to virulence factors of the infecting strain, it may be important to account for proliferation peaks when explaining results from controlled human infection model studies and for improving the accuracy of protective efficacy estimates when testing new ETEC diarrhea vaccine candidates.
Collapse
|
8
|
Harris S, Piotrowska MJ, Goldstone RJ, Qi R, Foster G, Dobrindt U, Madec JY, Valat C, Rao FV, Smith DGE. Variant O89 O-Antigen of E. coli Is Associated With Group 1 Capsule Loci and Multidrug Resistance. Front Microbiol 2018; 9:2026. [PMID: 30233517 PMCID: PMC6128206 DOI: 10.3389/fmicb.2018.02026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/09/2018] [Indexed: 11/13/2022] Open
Abstract
Bacterial surface polysaccharides play significant roles in fitness and virulence. In Gram-negative bacteria such as Escherichia coli, major surface polysaccharides are lipopolysaccharide (LPS) and capsule, representing O- and K-antigens, respectively. There are multiple combinations of O:K types, many of which are well-characterized and can be related to ecotype or pathotype. In this investigation, we have identified a novel O:K permutation resulting through a process of major genome reorganization in a clade of E. coli. A multidrug-resistant, extended-spectrum β-lactamase (ESBL)-producing strain - E. coli 26561 - represented a prototype of strains combining a locus variant of O89 and group 1 capsular polysaccharide. Specifically, the variant O89 locus in this strain was truncated at gnd, flanked by insertion sequences and located between nfsB and ybdK and we apply the term O89m for this variant. The prototype lacked colanic acid and O-antigen loci between yegH and hisI with this tandem polysaccharide locus being replaced with a group 1 capsule (G1C) which, rather than being a recognized E. coli capsule type, this locus matched to Klebsiella K10 capsule type. A genomic survey identified more than 200 E. coli strains which possessed the O89m locus variant with one of a variety of G1C types. Isolates from our collection with the combination of O89m and G1C all displayed a mucoid phenotype and E. coli 26561 was unusual in exhibiting a mucoviscous phenotype more recognized as a characteristic among Klebsiella strains. Despite the locus truncation and novel location, all O89m:G1C strains examined showed a ladder pattern typifying smooth LPS and also showed high molecular weight, alcian blue-staining polysaccharide in cellular and/or extra-cellular fractions. Expression of both O-antigen and capsule biosynthesis loci were confirmed in prototype strain 26561 through quantitative proteome analysis. Further in silico exploration of more than 200 E. coli strains possessing the O89m:G1C combination identified a very high prevalence of multidrug resistance (MDR) - 85% possessed resistance to three or more antibiotic classes and a high proportion (58%) of these carried ESBL and/or carbapenemase. The increasing isolation of O89m:G1C isolates from extra-intestinal infection sites suggests that these represents an emergent clade of invasive, MDR E. coli.
Collapse
Affiliation(s)
- Susan Harris
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Marta J Piotrowska
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | | | - Ruby Qi
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Geoffrey Foster
- Veterinary Services, SAC Consulting, Scotland's Rural College, Inverness, United Kingdom
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Jean-Yves Madec
- Unité Antibiorésistances et Virulences Bactériennes, Anses Laboratoire de Lyon, Université Lyon-1, Lyon, France
| | - Charlotte Valat
- Unité Antibiorésistances et Virulences Bactériennes, Anses Laboratoire de Lyon, Université Lyon-1, Lyon, France
| | | | - David G E Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|