1
|
Wu F, Zhang C, Chen R, Chu Z, Han B, Zhai R. Research Progress in Isotope Labeling/Tags-Based Protein Quantification and Metrology Technologies. J Proteome Res 2025; 24:13-26. [PMID: 39628444 DOI: 10.1021/acs.jproteome.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Advanced liquid chromatogram-mass spectrometry (LC-MS) and automated large-scale data processing have made MS-based quantitative analysis increasingly useful for research in fields such as biology, medicine, food safety, and beyond. This is because MS-based quantitative analysis can accurately and sensitively analyze thousands of proteins and peptides in a single experiment. However, the precision, coverage, complexity, and resilience of conventional quantification methods vary as a result of the modifications to the analytic environment and the physicochemical characteristics of analytes. Therefore, specially designed approaches are necessary for sample preparation. Dozens of methods have been developed and adapted for these needs based on stable isotopic labeling or isobaric tagging, each with distinct characteristics. In this review, we will summarize the leading strategies and techniques used thus far for MS-based protein quantification as well as analyze the advantages and shortcomings of different approaches. Additionally, we provide an overview of protein metrology development.
Collapse
Affiliation(s)
- Fan Wu
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Chenhuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Rui Chen
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Zhanying Chu
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| |
Collapse
|
2
|
Geyer PE, Hornburg D, Pernemalm M, Hauck SM, Palaniappan KK, Albrecht V, Dagley LF, Moritz RL, Yu X, Edfors F, Vandenbrouck Y, Mueller-Reif JB, Sun Z, Brun V, Ahadi S, Omenn GS, Deutsch EW, Schwenk JM. The Circulating Proteome─Technological Developments, Current Challenges, and Future Trends. J Proteome Res 2024; 23:5279-5295. [PMID: 39479990 PMCID: PMC11629384 DOI: 10.1021/acs.jproteome.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
Recent improvements in proteomics technologies have fundamentally altered our capacities to characterize human biology. There is an ever-growing interest in using these novel methods for studying the circulating proteome, as blood offers an accessible window into human health. However, every methodological innovation and analytical progress calls for reassessing our existing approaches and routines to ensure that the new data will add value to the greater biomedical research community and avoid previous errors. As representatives of HUPO's Human Plasma Proteome Project (HPPP), we present our 2024 survey of the current progress in our community, including the latest build of the Human Plasma Proteome PeptideAtlas that now comprises 4608 proteins detected in 113 data sets. We then discuss the updates of established proteomics methods, emerging technologies, and investigations of proteoforms, protein networks, extracellualr vesicles, circulating antibodies and microsamples. Finally, we provide a prospective view of using the current and emerging proteomics tools in studies of circulating proteins.
Collapse
Affiliation(s)
- Philipp E. Geyer
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Daniel Hornburg
- Seer,
Inc., Redwood City, California 94065, United States
- Bruker
Scientific, San Jose, California 95134, United States
| | - Maria Pernemalm
- Department
of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stefanie M. Hauck
- Metabolomics
and Proteomics Core, Helmholtz Zentrum München
GmbH, German Research Center for Environmental Health, 85764 Oberschleissheim,
Munich, Germany
| | | | - Vincent Albrecht
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Laura F. Dagley
- The
Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Robert L. Moritz
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Xiaobo Yu
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences-Beijing
(PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fredrik Edfors
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | | | - Johannes B. Mueller-Reif
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Zhi Sun
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Virginie Brun
- Université Grenoble
Alpes, CEA, Leti, Clinatec, Inserm UA13
BGE, CNRS FR2048, Grenoble, France
| | - Sara Ahadi
- Alkahest, Inc., Suite
D San Carlos, California 94070, United States
| | - Gilbert S. Omenn
- Institute
for Systems Biology, Seattle, Washington 98109, United States
- Departments
of Computational Medicine & Bioinformatics, Internal Medicine,
Human Genetics and Environmental Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M. Schwenk
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| |
Collapse
|
3
|
Donini L, Tanel R, Zuccarino R, Basso M. Protein biomarkers for the diagnosis and prognosis of Amyotrophic Lateral Sclerosis. Neurosci Res 2023; 197:31-41. [PMID: 37689321 DOI: 10.1016/j.neures.2023.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common motor neuron disease, still incurable. The disease is highly heterogenous both genetically and phenotypically. Therefore, developing efficacious treatments is challenging in many aspects because it is difficult to predict the rate of disease progression and stratify the patients to minimize statistical variability in clinical studies. Moreover, there is a lack of sensitive measures of therapeutic effect to assess whether a pharmacological intervention ameliorates the disease. There is also urgency of markers that reflect a molecular mechanism dysregulated by ALS pathology and can be rescued when a treatment relieves the condition. Here, we summarize and discuss biomarkers tested in multicentered studies and across different laboratories like neurofilaments, the most used marker in ALS clinical studies, neuroinflammatory-related proteins, p75ECD, p-Tau/t-Tau, and UCHL1. We also explore the applicability of muscle proteins and extracellular vesicles as potential biomarkers.
Collapse
Affiliation(s)
- Luisa Donini
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Italy.
| | - Raffaella Tanel
- Clinical Center NeMO, APSS Ospedale Riabilitativo Villa Rosa, Pergine 38057, TN, Italy.
| | - Riccardo Zuccarino
- Clinical Center NeMO, APSS Ospedale Riabilitativo Villa Rosa, Pergine 38057, TN, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Italy.
| |
Collapse
|
4
|
Weber M, Sogues A, Yus E, Burgos R, Gallo C, Martínez S, Lluch‐Senar M, Serrano L. Comprehensive quantitative modeling of translation efficiency in a genome-reduced bacterium. Mol Syst Biol 2023; 19:e11301. [PMID: 37642167 PMCID: PMC10568206 DOI: 10.15252/msb.202211301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Translation efficiency has been mainly studied by ribosome profiling, which only provides an incomplete picture of translation kinetics. Here, we integrated the absolute quantifications of tRNAs, mRNAs, RNA half-lives, proteins, and protein half-lives with ribosome densities and derived the initiation and elongation rates for 475 genes (67% of all genes), 73 with high precision, in the bacterium Mycoplasma pneumoniae (Mpn). We found that, although the initiation rate varied over 160-fold among genes, most of the known factors had little impact on translation efficiency. Local codon elongation rates could not be fully explained by the adaptation to tRNA abundances, which varied over 100-fold among tRNA isoacceptors. We provide a comprehensive quantitative view of translation efficiency, which suggests the existence of unidentified mechanisms of translational regulation in Mpn.
Collapse
Affiliation(s)
- Marc Weber
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Adrià Sogues
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eva Yus
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Raul Burgos
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Carolina Gallo
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sira Martínez
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| |
Collapse
|
5
|
Lundeen RA, Kennedy JJ, Murillo OD, Ivey RG, Zhao L, Schoenherr RM, Hoofnagle AN, Wang P, Whiteaker JR, Paulovich AG. Monitoring Both Extended and Tryptic Forms of Stable Isotope-Labeled Standard Peptides Provides an Internal Quality Control of Proteolytic Digestion in Targeted Mass Spectrometry-Based Assays. Mol Cell Proteomics 2023; 22:100621. [PMID: 37478973 PMCID: PMC10458721 DOI: 10.1016/j.mcpro.2023.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023] Open
Abstract
Targeted mass spectrometry (MS)-based proteomic assays, such as multiplexed multiple reaction monitoring (MRM)-MS assays, enable sensitive and specific quantification of proteotypic peptides as stoichiometric surrogates for proteins. Efforts are underway to expand the use of MRM-MS assays in clinical environments, which requires a reliable strategy to monitor proteolytic digestion efficiency within individual samples. Towards this goal, extended stable isotope-labeled standard (SIS) peptides (hE), which incorporate native proteolytic cleavage sites, can be spiked into protein lysates prior to proteolytic (trypsin) digestion, and release of the tryptic SIS peptide (hT) can be monitored. However, hT measurements alone cannot monitor the extent of digestion and may be confounded by matrix effects specific to individual patient samples; therefore, they are not sufficient to monitor sample-to-sample digestion variability. We hypothesized that measuring undigested hE, along with its paired hT, would improve detection of digestion issues compared to only measuring hT. We tested the ratio of the SIS pair measurements, or hE/hT, as a quality control (QC) metric of trypsin digestion for two MRM assays: a direct-MRM (398 targets) and an immuno-MRM (126 targets requiring immunoaffinity peptide enrichment) assay, with extended SIS peptides observable for 54% (216) and 62% (78) of the targets, respectively. We evaluated the quantitative bias for each target in a series of experiments that adversely affected proteolytic digestion (e.g., variable digestion times, pH, and temperature). We identified a subset of SIS pairs (36 for the direct-MRM, 7 for the immuno-MRM assay) for which the hE/hT ratio reliably detected inefficient digestion that resulted in decreased assay sensitivity and unreliable endogenous quantification. The hE/hT ratio was more responsive to a decrease in digestion efficiency than a metric based on hT measurements alone. For clinical-grade MRM-MS assays, this study describes a ready-to-use QC panel and also provides a road map for designing custom QC panels.
Collapse
Affiliation(s)
- Rachel A Lundeen
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jacob J Kennedy
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Oscar D Murillo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Richard G Ivey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lei Zhao
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Regine M Schoenherr
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Mount Sinai Hospital, New York, New York, USA
| | - Jeffrey R Whiteaker
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA.
| | - Amanda G Paulovich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA.
| |
Collapse
|
6
|
Hober A, Rekanovic M, Forsström B, Hansson S, Kotol D, Percy AJ, Uhlén M, Oscarsson J, Edfors F, Miliotis T. Targeted proteomics using stable isotope labeled protein fragments enables precise and robust determination of total apolipoprotein(a) in human plasma. PLoS One 2023; 18:e0281772. [PMID: 36791076 PMCID: PMC9931122 DOI: 10.1371/journal.pone.0281772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Lipoprotein(a), also known as Lp(a), is an LDL-like particle composed of apolipoprotein(a) (apo(a)) bound covalently to apolipoprotein B100. Plasma concentrations of Lp(a) are highly heritable and vary widely between individuals. Elevated plasma concentration of Lp(a) is considered as an independent, causal risk factor of cardiovascular disease (CVD). Targeted mass spectrometry (LC-SRM/MS) combined with stable isotope-labeled recombinant proteins provides robust and precise quantification of proteins in the blood, making LC-SRM/MS assays appealing for monitoring plasma proteins for clinical implications. This study presents a novel quantitative approach, based on proteotypic peptides, to determine the absolute concentration of apo(a) from two microliters of plasma and qualified according to guideline requirements for targeted proteomics assays. After optimization, assay parameters such as linearity, lower limits of quantification (LLOQ), intra-assay variability (CV: 4.7%) and inter-assay repeatability (CV: 7.8%) were determined and the LC-SRM/MS results were benchmarked against a commercially available immunoassay. In summary, the measurements of an apo(a) single copy specific peptide and a kringle 4 specific peptide allow for the determination of molar concentration and relative size of apo(a) in individuals.
Collapse
Affiliation(s)
- Andreas Hober
- Science for Life Laboratory, Solna, Sweden
- Division of Systems Biology, Department of Protein Science, School of Chemistry, Biotechnology and Health, The Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Mirela Rekanovic
- Translational Science and Experimental Medicine, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Björn Forsström
- Science for Life Laboratory, Solna, Sweden
- Division of Systems Biology, Department of Protein Science, School of Chemistry, Biotechnology and Health, The Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Sara Hansson
- Translational Science and Experimental Medicine, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - David Kotol
- Science for Life Laboratory, Solna, Sweden
- Division of Systems Biology, Department of Protein Science, School of Chemistry, Biotechnology and Health, The Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Andrew J. Percy
- Department of Applications Development, Cambridge Isotope Laboratories, Inc., Tewksbury, Massachusetts, United States of America
| | - Mathias Uhlén
- Science for Life Laboratory, Solna, Sweden
- Division of Systems Biology, Department of Protein Science, School of Chemistry, Biotechnology and Health, The Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Jan Oscarsson
- Late-stage Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Edfors
- Science for Life Laboratory, Solna, Sweden
- Division of Systems Biology, Department of Protein Science, School of Chemistry, Biotechnology and Health, The Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Tasso Miliotis
- Translational Science and Experimental Medicine, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
7
|
Surrogate peptide selection and internal standardization for accurate quantification of endogenous proteins. Bioanalysis 2022; 14:949-961. [PMID: 36017716 DOI: 10.4155/bio-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Relative quantification techniques have dominated the field of proteomics. However, biomarker discovery, mathematical model development and studies on transporter-mediated drug disposition still need absolute quantification of proteins. The quality of data of trace-level protein quantification is solely dependent on the specific selection of surrogate peptides. Selection of surrogate peptides has a major impact on the accuracy of the method. In this article, the advanced approaches for selection of surrogate peptides, which can provide absolute quantification of the proteins are discussed. In addition, internal standardization, which accounts for variations in the quantitation process to achieve absolute protein quantification is discussed.
Collapse
|
8
|
Edfors F, Iglesias MJ, Butler LM, Odeberg J. Proteomics in thrombosis research. Res Pract Thromb Haemost 2022; 6:e12706. [PMID: 35494505 PMCID: PMC9039028 DOI: 10.1002/rth2.12706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
A State of the Art lecture titled “Proteomics in Thrombosis Research” was presented at the ISTH Congress in 2021. In clinical practice, there is a need for improved plasma biomarker‐based tools for diagnosis and risk prediction of venous thromboembolism (VTE). Analysis of blood, to identify plasma proteins with potential utility for such tools, could enable an individualized approach to treatment and prevention. Technological advances to study the plasma proteome on a large scale allows broad screening for the identification of novel plasma biomarkers, both by targeted and nontargeted proteomics methods. However, assay limitations need to be considered when interpreting results, with orthogonal validation required before conclusions are drawn. Here, we review and provide perspectives on the application of affinity‐ and mass spectrometry‐based methods for the identification and analysis of plasma protein biomarkers, with potential application in the field of VTE. We also provide a future perspective on discovery strategies and emerging technologies for targeted proteomics in thrombosis research. Finally, we summarize relevant new data on this topic, presented during the 2021 ISTH Congress.
Collapse
Affiliation(s)
- Fredrik Edfors
- Science for Life Laboratory Department of Protein Science CBH KTH Royal Institute of Technology Stockholm Sweden
- Karolinska University Laboratory Karolinska University Hospital Stockholm Sweden
| | - Maria Jesus Iglesias
- Science for Life Laboratory Department of Protein Science CBH KTH Royal Institute of Technology Stockholm Sweden
| | - Lynn M. Butler
- Science for Life Laboratory Department of Protein Science CBH KTH Royal Institute of Technology Stockholm Sweden
- Clinical Chemistry and Blood Coagulation Research Department of Molecular Medicine and Surgery Karolinska Institute Stockholm Sweden
- Clinical Chemistry Karolinska University Laboratory Karolinska University Hospital Stockholm Sweden
- Department of Clinical Medicine The Arctic University of Norway Tromsø Norway
| | - Jacob Odeberg
- Science for Life Laboratory Department of Protein Science CBH KTH Royal Institute of Technology Stockholm Sweden
- Department of Clinical Medicine The Arctic University of Norway Tromsø Norway
- Division of Internal Medicine University Hospital of North Norway Tromsø Norway
- Coagulation Unit Department of Hematology Karolinska University Hospital Stockholm Sweden
- Department of Medicine Solna Karolinska Institute Stockholm Sweden
| |
Collapse
|
9
|
Pons ML, Loftus N, Vialaret J, Moreau S, Lehmann S, Hirtz C. Proteomics Challenges for the Assessment of Synuclein Proteoforms as Clinical Biomarkers in Parkinson’s Disease. Front Aging Neurosci 2022; 14:818606. [PMID: 35431896 PMCID: PMC9009522 DOI: 10.3389/fnagi.2022.818606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease is a complex neurodegenerative disorder resulting in a multifaceted clinical presentation which includes bradykinesia combined with either rest tremor, rigidity, or both, as well as many non-motor symptoms. The motor features of the disorder are associated with the pathological form of alpha synuclein aggregates and fibrils in Lewy bodies and loss of dopaminergic neurons in the substantia nigra. Parkinson’s disease is increasingly considered as a group of underlying disorders with unique genetic, biological, and molecular abnormalities that are likely to respond differentially to a given therapeutic approach. For this reason, it is clinically challenging to treat and at present, no therapy can slow down or arrest the progression of Parkinson’s disease. There is a clear unmet clinical need to develop reliable diagnostic and prognostic biomarkers. When disease-modifying treatments become available, prognostic biomarkers are required to support a definitive diagnosis and clinical intervention during the long prodromal period as no clinical implications or symptoms are observed. Robust diagnostic biomarkers would also be useful to monitor treatment response. Potential biomarkers for the sporadic form of Parkinson’s disease have mostly included synuclein species (monomer, oligomer, phosphorylated, Lewy Body enriched fraction and isoforms). In this review, we consider the analysis of synuclein and its proteoforms in biological samples using proteomics techniques (immunoassay and mass spectrometry) applied to neurodegenerative disease research.
Collapse
Affiliation(s)
- Marie-Laure Pons
- IRMB-PPC, INM, CHU Montpellier, INSERM, CNRS, Université de Montpellier, Montpellier, France
- Shimadzu Corporation, Duisburg, Germany
- *Correspondence: Marie-Laure Pons,
| | - Neil Loftus
- Shimadzu Corporation, Manchester, United Kingdom
| | - Jerome Vialaret
- IRMB-PPC, INM, CHU Montpellier, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | | | - Sylvain Lehmann
- IRMB-PPC, INM, CHU Montpellier, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Christophe Hirtz
- IRMB-PPC, INM, CHU Montpellier, INSERM, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
10
|
Francotte A, Esson R, Abachin E, Vanhamme M, Dobly A, Carpick B, Uhlrich S, Dierick JF, Vanhee C. Development and validation of a targeted LC-MS/MS quantitation method to monitor cell culture expression of tetanus neurotoxin during vaccine production. Talanta 2022; 236:122883. [PMID: 34635263 DOI: 10.1016/j.talanta.2021.122883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
The tetanus neurotoxin (TeNT) is one of the most toxic proteins known to man, which prior to the use of the vaccine against the TeNT producing bacteria Clostridium tetani, resulted in a 20% mortality rate upon infection. The clinical detrimental effects of tetanus have decreased immensely since the introduction of global vaccination programs, which depend on sustainable vaccine production. One of the major critical points in the manufacturing of these vaccines is the stable and reproducible production of high levels of toxin by the bacterial seed strains. In order to minimize time loss, the amount of TeNT is often monitored during and at the end of the bacterial culturing. The different methods that are currently available to assess the amount of TeNT in the bacterial medium suffer from variability, lack of sensitivity, and/or require specific antibodies. In accordance with the consistency approach and the three Rs (3Rs), both aiming to reduce the use of animals for testing, in-process monitoring of TeNT production could benefit from animal and antibody-free analytical tools. In this paper, we describe the development and validation of a new and reliable antibody free targeted LC-MS/MS method that is able to identify and quantify the amount of TeNT present in the bacterial medium during the different production time points up to the harvesting of the TeNT just prior to further upstream purification and detoxification. The quantitation method, validated according to ICH guidelines and by the application of the total error approach, was utilized to assess the amount of TeNT present in the cell culture medium of two TeNT production batches during different steps in the vaccine production process prior to the generation of the toxoid. The amount of TeNT generated under different physical stress conditions applied during bacterial culture was also monitored.
Collapse
Affiliation(s)
- Antoine Francotte
- Department of Expertise and Service Provision, Quality of Vaccines and Blood Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium; Department of Chemical and Physical Health Risks, Medicines and Health Care Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium
| | - Raphael Esson
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280, Marcy l'Etoile, France
| | - Eric Abachin
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280, Marcy l'Etoile, France
| | - Melissa Vanhamme
- Department of Chemical and Physical Health Risks, Medicines and Health Care Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium
| | - Alexandre Dobly
- Department of Expertise and Service Provision, Quality of Vaccines and Blood Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium
| | - Bruce Carpick
- Sanofi Pasteur, 1755 Steeles Ave West, Toronto, Ontario, Canada
| | - Sylvie Uhlrich
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280, Marcy l'Etoile, France
| | | | - Celine Vanhee
- Department of Chemical and Physical Health Risks, Medicines and Health Care Products, Sciensano, 14 rue Juliette Wytsman, 1050, Brussels, Belgium.
| |
Collapse
|
11
|
Kulyyassov A, Fresnais M, Longuespée R. Targeted liquid chromatography-tandem mass spectrometry analysis of proteins: Basic principles, applications, and perspectives. Proteomics 2021; 21:e2100153. [PMID: 34591362 DOI: 10.1002/pmic.202100153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022]
Abstract
Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is now the main analytical method for the identification and quantification of peptides and proteins in biological samples. In modern research, identification of biomarkers and their quantitative comparison between samples are becoming increasingly important for discovery, validation, and monitoring. Such data can be obtained following specific signals after fragmentation of peptides using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) methods, with high specificity, accuracy, and reproducibility. In addition, these methods allow measurement of the amount of post-translationally modified forms and isoforms of proteins. This review article describes the basic principles of MRM assays, guidelines for sample preparation, recent advanced MRM-based strategies, applications and illustrative perspectives of MRM/PRM methods in clinical research and molecular biology.
Collapse
Affiliation(s)
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
12
|
Benesova E, Vidova V, Spacil Z. A comparative study of synthetic winged peptides for absolute protein quantification. Sci Rep 2021; 11:10880. [PMID: 34035340 PMCID: PMC8149832 DOI: 10.1038/s41598-021-90087-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/06/2021] [Indexed: 11/09/2022] Open
Abstract
A proper internal standard choice is critical for accurate, precise, and reproducible mass spectrometry-based proteomics assays. Synthetic isotopically labeled (SIL) proteins are currently considered the gold standard. However, they are costly and challenging to obtain. An alternative approach uses SIL peptides or SIL "winged" peptides extended at C- or/and N-terminus with an amino acid sequence or a tag cleaved during enzymatic proteolysis. However, a consensus on the design of a winged peptide for absolute quantification is missing. In this study, we used human serum albumin as a model system to compare the quantitative performance of reference SIL protein with four different designs of SIL winged peptides: (i) commercially available SIL peptides with a proprietary trypsin cleavable tag at C-terminus, (ii) SIL peptides extended with five amino acid residues at C-terminus, (iii) SIL peptides extended with three and (iv) with five amino acid residues at both C- and N-termini. Our results demonstrate properties of various SIL extended peptides designs, e.g., water solubility and efficiency of trypsin enzymatic cleavage with primary influence on quantitative performance. SIL winged peptides extended with three amino acids at both C- and N-termini demonstrated optimal quantitative performance, equivalent to the SIL protein.
Collapse
Affiliation(s)
- Eliska Benesova
- Faculty of Science, Masaryk University, RECETOX, Kamenice 753/5, Pavilion D29, 625 00, Brno, Czech Republic
| | - Veronika Vidova
- Faculty of Science, Masaryk University, RECETOX, Kamenice 753/5, Pavilion D29, 625 00, Brno, Czech Republic
| | - Zdenek Spacil
- Faculty of Science, Masaryk University, RECETOX, Kamenice 753/5, Pavilion D29, 625 00, Brno, Czech Republic.
| |
Collapse
|
13
|
Detailed Method for Performing the ExSTA Approach in Quantitative Bottom-Up Plasma Proteomics. Methods Mol Biol 2021; 2228:353-384. [PMID: 33950503 DOI: 10.1007/978-1-0716-1024-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The use of stable isotope-labeled standards (SIS) is an analytically valid means of quantifying proteins in biological samples. The nature of the labeled standards and their point of insertion in a bottom-up proteomic workflow can vary, with quantification methods utilizing curves in analytically sound practices. A promising quantification strategy for low sample amounts is external standard addition (ExSTA). In ExSTA, multipoint calibration curves are generated in buffer using serially diluted natural (NAT) peptides and a fixed concentration of SIS peptides. Equal concentrations of SIS peptides are spiked into experimental sample digests, with all digests (control and experimental) subjected to solid-phase extraction prior to liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Endogenous peptide concentrations are then determined using the regression equation of the standard curves. Given the benefits of ExSTA in large-scale analysis, a detailed protocol is provided herein for quantifying a multiplexed panel of 125 high-to-moderate abundance proteins in undepleted and non-enriched human plasma samples. The procedural details and recommendations for successfully executing all phases of this quantification approach are described. As the proteins have been putatively correlated with various noncommunicable diseases, quantifying these by ExSTA in large-scale studies should help rapidly and precisely assess their true biomarker efficacy.
Collapse
|
14
|
Proteomics and Metabolomics Approaches towards a Functional Insight onto AUTISM Spectrum Disorders: Phenotype Stratification and Biomarker Discovery. Int J Mol Sci 2020; 21:ijms21176274. [PMID: 32872562 PMCID: PMC7504551 DOI: 10.3390/ijms21176274] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by behavioral alterations and currently affect about 1% of children. Significant genetic factors and mechanisms underline the causation of ASD. Indeed, many affected individuals are diagnosed with chromosomal abnormalities, submicroscopic deletions or duplications, single-gene disorders or variants. However, a range of metabolic abnormalities has been highlighted in many patients, by identifying biofluid metabolome and proteome profiles potentially usable as ASD biomarkers. Indeed, next-generation sequencing and other omics platforms, including proteomics and metabolomics, have uncovered early age disease biomarkers which may lead to novel diagnostic tools and treatment targets that may vary from patient to patient depending on the specific genomic and other omics findings. The progressive identification of new proteins and metabolites acting as biomarker candidates, combined with patient genetic and clinical data and environmental factors, including microbiota, would bring us towards advanced clinical decision support systems (CDSSs) assisted by machine learning models for advanced ASD-personalized medicine. Herein, we will discuss novel computational solutions to evaluate new proteome and metabolome ASD biomarker candidates, in terms of their recurrence in the reviewed literature and laboratory medicine feasibility. Moreover, the way to exploit CDSS, performed by artificial intelligence, is presented as an effective tool to integrate omics data to electronic health/medical records (EHR/EMR), hopefully acting as added value in the near future for the clinical management of ASD.
Collapse
|
15
|
Kotol D, Hunt H, Hober A, Karlsson MJ, Forsström B, Gummesson A, Bergström G, Fagerberg L, Uhlén M, Edfors F. Longitudinal Plasma Protein Profiling Using Targeted Proteomics and Recombinant Protein Standards. J Proteome Res 2020; 19:4815-4825. [DOI: 10.1021/acs.jproteome.0c00194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- David Kotol
- Department of Protein Science, School of Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
- Science For Life Laboratory, SE-17165 Solna, Sweden
| | - Helian Hunt
- Department of Protein Science, School of Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
- Science For Life Laboratory, SE-17165 Solna, Sweden
| | - Andreas Hober
- Department of Protein Science, School of Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
- Science For Life Laboratory, SE-17165 Solna, Sweden
| | - Max J. Karlsson
- Department of Protein Science, School of Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
- Science For Life Laboratory, SE-17165 Solna, Sweden
| | - Björn Forsström
- Department of Protein Science, School of Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
- Science For Life Laboratory, SE-17165 Solna, Sweden
| | - Anders Gummesson
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, and Clinical Physiology, Sahlgrenska University Hospital, SE-40530 Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, and Clinical Physiology, Sahlgrenska University Hospital, SE-40530 Gothenburg, Sweden
| | | | - Mathias Uhlén
- Department of Protein Science, School of Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
- Science For Life Laboratory, SE-17165 Solna, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Hørsholm, Denmark
| | - Fredrik Edfors
- Department of Protein Science, School of Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
- Science For Life Laboratory, SE-17165 Solna, Sweden
| |
Collapse
|
16
|
Van Gool A, Corrales F, Čolović M, Krstić D, Oliver-Martos B, Martínez-Cáceres E, Jakasa I, Gajski G, Brun V, Kyriacou K, Burzynska-Pedziwiatr I, Wozniak LA, Nierkens S, Pascual García C, Katrlik J, Bojic-Trbojevic Z, Vacek J, Llorente A, Antohe F, Suica V, Suarez G, t'Kindt R, Martin P, Penque D, Martins IL, Bodoki E, Iacob BC, Aydindogan E, Timur S, Allinson J, Sutton C, Luider T, Wittfooth S, Sammar M. Analytical techniques for multiplex analysis of protein biomarkers. Expert Rev Proteomics 2020; 17:257-273. [PMID: 32427033 DOI: 10.1080/14789450.2020.1763174] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The importance of biomarkers for pharmaceutical drug development and clinical diagnostics is more significant than ever in the current shift toward personalized medicine. Biomarkers have taken a central position either as companion markers to support drug development and patient selection, or as indicators aiming to detect the earliest perturbations indicative of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein biomarkers are of particular interest given their central role in biochemical pathways. Hence, capabilities to analyze multiple protein biomarkers in one assay are highly interesting for biomedical research. AREAS COVERED We here review multiple methods that are suitable for robust, high throughput, standardized, and affordable analysis of protein biomarkers in a multiplex format. We describe innovative developments in immunoassays, the vanguard of methods in clinical laboratories, and mass spectrometry, increasingly implemented for protein biomarker analysis. Moreover, emerging techniques are discussed with potentially improved protein capture, separation, and detection that will further boost multiplex analyses. EXPERT COMMENTARY The development of clinically applied multiplex protein biomarker assays is essential as multi-protein signatures provide more comprehensive information about biological systems than single biomarkers, leading to improved insights in mechanisms of disease, diagnostics, and the effect of personalized medicine.
Collapse
Affiliation(s)
- Alain Van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Fernado Corrales
- Functional Proteomics Laboratory, Centro Nacional De Biotecnología , Madrid, Spain
| | - Mirjana Čolović
- Department of Physical Chemistry, "Vinča" Institute of Nuclear Sciences, University of Belgrade , Belgrade, Serbia
| | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade , Belgrade, Serbia
| | - Begona Oliver-Martos
- Neuroimmunology and Neuroinflammation Group. Instituto De Investigación Biomédica De Málaga-IBIMA. UGC Neurociencias, Hospital Regional Universitario De Málaga , Malaga, Spain
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias I Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, and Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma De Barcelona , Cerdanyola Del Vallès, Spain
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb , Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health , Zagreb, Croatia
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE , Grenoble, France
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Biology, The Cyprus School of Molecular Medicine/The Cyprus Institute of Neurology and Genetics , Nicosia, Cyprus
| | - Izabela Burzynska-Pedziwiatr
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Lucyna Alicja Wozniak
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Stephan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology , Utrecht, The Netherlands
| | - César Pascual García
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST) , Belvaux, Luxembourg
| | - Jaroslav Katrlik
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences , Bratislava, Slovakia
| | - Zanka Bojic-Trbojevic
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy - INEP, University of Belgrade , Belgrade, Serbia
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital , Oslo, Norway
| | - Felicia Antohe
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Viorel Suica
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Guillaume Suarez
- Center for Primary Care and Public Health (Unisanté), University of Lausanne , Lausanne, Switzerland
| | - Ruben t'Kindt
- Research Institute for Chromatography (RIC) , Kortrijk, Belgium
| | - Petra Martin
- Department of Medical Oncology, Midland Regional Hospital Tullamore/St. James's Hospital , Dublin, Ireland
| | - Deborah Penque
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ines Lanca Martins
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Eda Aydindogan
- Department of Chemistry, Graduate School of Sciences and Engineering, Koç University , Istanbul, Turkey
| | - Suna Timur
- Institute of Natural Sciences, Department of Biochemistry, Ege University , Izmir, Turkey
| | | | | | - Theo Luider
- Department of Neurology, Erasmus MC , Rotterdam, The Netherlands
| | | | - Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College , Karmiel, Israel
| |
Collapse
|
17
|
Oeckl P, Halbgebauer S, Anderl-Straub S, von Arnim CAF, Diehl-Schmid J, Froelich L, Grimmer T, Hausner L, Denk J, Jahn H, Steinacker P, Weishaupt JH, Ludolph AC, Otto M. Targeted Mass Spectrometry Suggests Beta-Synuclein as Synaptic Blood Marker in Alzheimer's Disease. J Proteome Res 2020; 19:1310-1318. [PMID: 32101007 DOI: 10.1021/acs.jproteome.9b00824] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synaptic degeneration is a major hallmark of Alzheimer's disease (AD) and the best pathological correlate of cognitive dysfunction. Synaptic markers are therefore a highly desired read-out for patient diagnosis and possible follow-up in clinical trials. Several synaptic markers for AD are described in cerebrospinal fluid (CSF), but studies in blood have failed so far. Using quantitative mass spectrometry (IP-MS, MRM) we observed increased concentrations of the presynaptic protein beta-synuclein (βSyn) in CSF and blood of AD patients (n = 64, p < 0.01) and confirmed this finding in two validation cohorts (AD: n = 40 and n = 49, controls: n = 44 and n = 25). βSyn was already increased in patients with mild cognitive impairment (p < 0.01) and was also markedly increased in Creutzfeldt-Jakob disease (CJD; n = 25, p < 0.001) but not behavioral variant frontotemporal dementia (n = 16), dementia with Lewy bodies/Parkinson's disease dementia (n = 13), Parkinson's disease (n = 25), or amyotrophic lateral sclerosis (n = 30). The diagnostic sensitivity and specificity for CJD versus other neurodegenerative diseases was ≥96%. These findings suggest βSyn as a candidate blood marker for synaptic degeneration that might be used in clinical AD trials and patient follow-up as part of the recently suggested ATN biomarker panel. It can also serve in the differential diagnosis of CJD.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Steffen Halbgebauer
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Sarah Anderl-Straub
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | | | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Möhlstr. 26, 81675 Munich, Germany
| | - Lutz Froelich
- Central Institute of Mental Health Mannheim, Quadrat I 5, 68159 Mannheim, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Möhlstr. 26, 81675 Munich, Germany
| | - Lucrezia Hausner
- Central Institute of Mental Health Mannheim, Quadrat I 5, 68159 Mannheim, Germany
| | - Johannes Denk
- Department of Psychiatry, University Hospital Hamburg, Martinistraße 52, 20246 Hamburg, Germany
| | - Holger Jahn
- Department of Psychiatry, University Hospital Hamburg, Martinistraße 52, 20246 Hamburg, Germany
| | - Petra Steinacker
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Jochen H Weishaupt
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| |
Collapse
|
18
|
Fogh JR, Jacobsen AM, Nguyen TTTN, Rand KD, Olsen LR. Investigating surrogate cerebrospinal fluid matrix compositions for use in quantitative LC-MS analysis of therapeutic antibodies in the cerebrospinal fluid. Anal Bioanal Chem 2020; 412:1653-1661. [PMID: 32008082 PMCID: PMC7026242 DOI: 10.1007/s00216-020-02403-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 11/29/2022]
Abstract
As quantitative analysis of biotherapeutics in cerebrospinal fluid (CSF) with LC-MS becomes increasingly widespread, there is a need for method developments towards higher sensitivity. By using artificial CSF (aCSF) in the development phase, the consumption of costly and sparsely available CSF can be limited. The aCSF compositions tested here were made from various dilutions of bovine serum albumin (BSA) or rat plasma to mimic the total protein concentration found in CSF. Focusing on monoclonal antibodies, the aCSF was spiked with human immunoglobulin (hIgG) and prepared with the bottom-up analysis technique using LC-MS. Assuming that the composition of the aCSF would affect the digest, the response from aCSF matrices was compared with CSF from rat, monkey, and dog in terms of estimated sample concentration and matrix effects. The samples were spiked with hIgG in the range of 10 to 1000 ng/mL and volumes of 10 μL were transferred to sample preparation. The results indicate that BSA dilutions from 300 to 2000 μg/mL and rat plasma dilutions of 0.5–2% provide the most accurate concentration estimates when compared with rat CSF. 1000 μg/mL BSA did not produce significantly different concentration estimates for 500 ng/mL samples when compared with CSF from rat, monkey, and dog, and can therefore be used as aCSF for several different species.
Collapse
Affiliation(s)
- Jens Rose Fogh
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen, Denmark.,Translational DMPK, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | | | - Tam T T N Nguyen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen, Denmark
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen, Denmark
| | - Line Rørbæk Olsen
- Translational DMPK, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark.
| |
Collapse
|
19
|
Hober A, Edfors F, Ryaboshapkina M, Malmqvist J, Rosengren L, Percy AJ, Lind L, Forsström B, Uhlén M, Oscarsson J, Miliotis T. Absolute Quantification of Apolipoproteins Following Treatment with Omega-3 Carboxylic Acids and Fenofibrate Using a High Precision Stable Isotope-labeled Recombinant Protein Fragments Based SRM Assay. Mol Cell Proteomics 2019; 18:2433-2446. [PMID: 31591263 PMCID: PMC6885709 DOI: 10.1074/mcp.ra119.001765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 11/20/2022] Open
Abstract
Stable isotope-labeled standard (SIS) peptides are used as internal standards in targeted proteomics to provide robust protein quantification, which is required in clinical settings. However, SIS peptides are typically added post trypsin digestion and, as the digestion efficiency can vary significantly between peptides within a protein, the accuracy and precision of the assay may be compromised. These drawbacks can be remedied by a new class of internal standards introduced by the Human Protein Atlas project, which are based on SIS recombinant protein fragments called SIS PrESTs. SIS PrESTs are added initially to the sample and SIS peptides are released on trypsin digestion. The SIS PrEST technology is promising for absolute quantification of protein biomarkers but has not previously been evaluated in a clinical setting. An automated and scalable solid phase extraction workflow for desalting and enrichment of plasma digests was established enabling simultaneous preparation of up to 96 samples. Robust high-precision quantification of 13 apolipoproteins was achieved using a novel multiplex SIS PrEST-based LC-SRM/MS Tier 2 assay in non-depleted human plasma. The assay exhibited inter-day coefficients of variation between 1.5% and 14.5% (median = 3.5%) and was subsequently used to investigate the effects of omega-3 carboxylic acids (OM3-CA) and fenofibrate on these 13 apolipoproteins in human plasma samples from a randomized placebo-controlled trial, EFFECT I (NCT02354976). No significant changes were observed in the OM3-CA arm, whereas treatment with fenofibrate significantly increased apoAII and reduced apoB, apoCI, apoE and apoCIV levels. The reduction in apoCIV following fenofibrate treatment is a novel finding. The study demonstrates that SIS PrESTs can facilitate the generation of robust multiplexed biomarker Tier 2 assays for absolute quantification of proteins in clinical studies.
Collapse
Affiliation(s)
- Andreas Hober
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Edfors
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Maria Ryaboshapkina
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jonas Malmqvist
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Louise Rosengren
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Andrew J Percy
- Department of Applications Development, Cambridge Isotope Laboratories, Inc., Tewksbury, MA 01876
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Björn Forsström
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Oscarsson
- Global Medicines Development, Cardiovascular, Renal and Metabolism, AstraZeneca, Gothenburg, Sweden
| | - Tasso Miliotis
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
20
|
Edfors F, Forsström B, Vunk H, Kotol D, Fredolini C, Maddalo G, Svensson AS, Boström T, Tegel H, Nilsson P, Schwenk JM, Uhlen M. Screening a Resource of Recombinant Protein Fragments for Targeted Proteomics. J Proteome Res 2019; 18:2706-2718. [PMID: 31094526 DOI: 10.1021/acs.jproteome.8b00924] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The availability of proteomics resources hosting protein and peptide standards, as well as the data describing their analytical performances, will continue to enhance our current capabilities to develop targeted proteomics methods for quantitative biology. This study describes the analysis of a resource of 26,840 individually purified recombinant protein fragments corresponding to more than 16,000 human protein-coding genes. The resource was screened to identify proteotypic peptides suitable for targeted proteomics efforts, and we report LC-MS/MS assay coordinates for more than 25,000 proteotypic peptides, corresponding to more than 10,000 unique proteins. Additionally, peptide formation and digestion kinetics were, for a subset of the standards, monitored using a time-course protocol involving parallel digestion of isotope-labeled recombinant protein standards and endogenous human plasma proteins. We show that the strategy by adding isotope-labeled recombinant proteins before trypsin digestion enables short digestion protocols (≤60 min) with robust quantitative precision. In a proof-of-concept study, we quantified 23 proteins in human plasma using assay parameters defined in our study and used the standards to describe distinct clusters of individuals linked to different levels of LPA, APOE, SERPINA5, and TFRC. In summary, we describe the use and utility of a resource of recombinant proteins to identify proteotypic peptides useful for targeted proteomics assay development.
Collapse
Affiliation(s)
- Fredrik Edfors
- Science for Life Laboratory, Division of Systems Biology, Department of Protein Science , KTH-Royal Institute of Technology , SE - 171 21 Stockholm , Sweden
| | - Björn Forsström
- Science for Life Laboratory, Division of Systems Biology, Department of Protein Science , KTH-Royal Institute of Technology , SE - 171 21 Stockholm , Sweden
| | - Helian Vunk
- Science for Life Laboratory, Division of Systems Biology, Department of Protein Science , KTH-Royal Institute of Technology , SE - 171 21 Stockholm , Sweden
| | - David Kotol
- Science for Life Laboratory, Division of Systems Biology, Department of Protein Science , KTH-Royal Institute of Technology , SE - 171 21 Stockholm , Sweden
| | - Claudia Fredolini
- Science for Life Laboratory, Division of Affinity Proteomics, Department of Protein Science , KTH-Royal Institute of Technology , SE - 171 21 Stockholm , Sweden
| | - Gianluca Maddalo
- Science for Life Laboratory, Division of Systems Biology, Department of Protein Science , KTH-Royal Institute of Technology , SE - 171 21 Stockholm , Sweden
| | - Anne-Sophie Svensson
- Albanova University Center , KTH-Royal Institute of Technology , SE - 171 21 Stockholm , Sweden
| | - Tove Boström
- Albanova University Center , KTH-Royal Institute of Technology , SE - 171 21 Stockholm , Sweden.,Atlas Antibodies AB , SE - 114 21 Stockholm , Sweden
| | - Hanna Tegel
- Albanova University Center , KTH-Royal Institute of Technology , SE - 171 21 Stockholm , Sweden
| | - Peter Nilsson
- Science for Life Laboratory, Division of Affinity Proteomics, Department of Protein Science , KTH-Royal Institute of Technology , SE - 171 21 Stockholm , Sweden
| | - Jochen M Schwenk
- Science for Life Laboratory, Division of Affinity Proteomics, Department of Protein Science , KTH-Royal Institute of Technology , SE - 171 21 Stockholm , Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, Division of Systems Biology, Department of Protein Science , KTH-Royal Institute of Technology , SE - 171 21 Stockholm , Sweden.,Albanova University Center , KTH-Royal Institute of Technology , SE - 171 21 Stockholm , Sweden.,Department of Neuroscience - Karolinska Institute , SE - 171 65 Solna , Sweden.,Novo Nordisk Foundation Center for Biosustainability , Technical University of Denmark , DK - 2970 Hørsholm , Denmark
| |
Collapse
|
21
|
Poesen K, Van Damme P. Diagnostic and Prognostic Performance of Neurofilaments in ALS. Front Neurol 2019; 9:1167. [PMID: 30713520 PMCID: PMC6345692 DOI: 10.3389/fneur.2018.01167] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 01/03/2023] Open
Abstract
There is a need for biomarkers for amyotrophic lateral sclerosis (ALS), to support the diagnosis of the disease, to predict disease progression and to track disease activity and treatment responses. Over the last decade multiple studies have investigated the potential of neurofilament levels, both in cerebrospinal fluid and blood, as biomarker for ALS. The most widely studied neurofilament subunits are neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH). Neurofilament levels are reflecting neuronal injury and therefore potentially of value in ALS and other neurological disorders. In this mini-review, we summarize and discuss the available evidence about neurofilaments as diagnostic and prognostic biomarker for human ALS.
Collapse
Affiliation(s)
- Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, KU Leuven, Leuven, Belgium.,Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- Laboratory of Neurobiology, Department of Neurosciences, KU Leuven and Center for Brain & Disease Research VIB Leuven, Leuven, Belgium.,Department of Neurology, Neuromuscular Reference Centre, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Viodé A, Epelbaum S, Benyounes I, Verny M, Dubois B, Junot C, Fenaille F, Lamari F, Becher F. Simultaneous quantification of tau and α-synuclein in cerebrospinal fluid by high-resolution mass spectrometry for differentiation of Lewy Body Dementia from Alzheimer's Disease and controls. Analyst 2019; 144:6342-6351. [DOI: 10.1039/c9an00751b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel mass spectrometry assay offers simultaneous quantification of CSF α-synuclein and tau and has potential diagnostic value.
Collapse
Affiliation(s)
- Arthur Viodé
- Service de Pharmacologie et d'Immunoanalyse (SPI)
- Laboratoire d'Etude du Métabolisme des Médicaments (LEMM)
- CEA
- INRA
- Université Paris Saclay
| | - Stéphane Epelbaum
- Institut de la Mémoire et de Maladie d'Alzheimer (IM2A)
- Département de Neurologie
- Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix
- Paris
- France
| | - Imen Benyounes
- Service de Biochimie Métabolique
- Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix
- Paris
- France
| | - Marc Verny
- Service de Gériatrie
- Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix
- Paris
- France
| | - Bruno Dubois
- Institut de la Mémoire et de Maladie d'Alzheimer (IM2A)
- Département de Neurologie
- Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix
- Paris
- France
| | - Christophe Junot
- Service de Pharmacologie et d'Immunoanalyse (SPI)
- Laboratoire d'Etude du Métabolisme des Médicaments (LEMM)
- CEA
- INRA
- Université Paris Saclay
| | - François Fenaille
- Service de Pharmacologie et d'Immunoanalyse (SPI)
- Laboratoire d'Etude du Métabolisme des Médicaments (LEMM)
- CEA
- INRA
- Université Paris Saclay
| | - Foudil Lamari
- Service de Biochimie Métabolique
- Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix
- Paris
- France
| | - François Becher
- Service de Pharmacologie et d'Immunoanalyse (SPI)
- Laboratoire d'Etude du Métabolisme des Médicaments (LEMM)
- CEA
- INRA
- Université Paris Saclay
| |
Collapse
|
23
|
Jeanne Dit Fouque D, Maroto A, Memboeuf A. Internal Standard Quantification Using Tandem Mass Spectrometry of a Tryptic Peptide in the Presence of an Isobaric Interference. Anal Chem 2018; 90:14126-14130. [PMID: 30462486 DOI: 10.1021/acs.analchem.8b05016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Model mixtures of isobaric peptides were studied to evaluate the possibility, using tandem mass spectrometry experiments, for internal standard quantification of a tryptic peptide in the presence of an isobaric interference. To this end, direct injection electrospray ionization-tandem mass spectrometry (ESI-MS/MS) experiments were performed on an ion trap instrument using a large mass-selection window (15 m/ z) encompassing the isobaric mixture and the internal standard; MS/MS experiments were carried out to remove completely the interference from the mixture by fragmenting it. This allowed for the correct intensity assignment for the protonated peptide peak and, thus, for the analyte to be quantified through the relative intensity estimate of this peak with respect to the internal standard. This was done by monitoring the 15 m/ z mass-selection window only and without the necessity for careful inspection of any fragment ions peaks. The interference removal was assessed by determining an excitation voltage large enough for the analyte/internal standard ratio to remain constant ensuring correct quantification despite isobaric contamination. A calibration curve was obtained to predict reference samples and compared to reference samples purposely spiked with the interference using the proposed methodology; internal standard quantification of the analyte was made possible with ∼1% deviation despite the isobaric contamination.
Collapse
Affiliation(s)
- Dany Jeanne Dit Fouque
- CEMCA, Université de Brest, CNRS, Université Bretagne Loire, CS 93837, 6 Av. Le Gorgeu , Brest 29238 Cedex 3, France
| | - Alicia Maroto
- CEMCA, Université de Brest, CNRS, Université Bretagne Loire, CS 93837, 6 Av. Le Gorgeu , Brest 29238 Cedex 3, France
| | - Antony Memboeuf
- CEMCA, Université de Brest, CNRS, Université Bretagne Loire, CS 93837, 6 Av. Le Gorgeu , Brest 29238 Cedex 3, France
| |
Collapse
|